Vol. 39 Núm. 1 (2017): Boletín de Geología
Artículos

ESTIMACIÓN DE LAS EMISIONES DE DIÓXIDO DE AZUFRE – SO2, ASOCIADAS CON EL CRECIMIENTO DE UN DOMO DE LAVA EN EL VOLCÁN GALERAS EN 2008

Patricia Ponce
Servicio Geológico Colombiano, Pasto, Colombia.

Publicado 2017-02-24

Palabras clave

  • volcán Galeras,
  • Dióxido de Azufre,
  • domo de lava

Cómo citar

Ponce, P. (2017). ESTIMACIÓN DE LAS EMISIONES DE DIÓXIDO DE AZUFRE – SO2, ASOCIADAS CON EL CRECIMIENTO DE UN DOMO DE LAVA EN EL VOLCÁN GALERAS EN 2008. Boletín De Geología, 39(1), 69–81. https://doi.org/10.18273/revbol.v39n1-2017003

Altmetrics

Resumen

Se estimó la cantidad de Dióxido de Azufre (SO2) emitido en 2008 durante el ascenso y extrusión de un domo de lava en el volcán Galeras y se comparó el comportamiento de las emisiones con otros parámetros como los sismos asociados con movimiento de fluidos y la deformación volcánica. El flujo de SO2 es el parámetro que comienza a evidenciar el ascenso del domo de lava de 2008, los demás parámetros reflejan similar comportamiento pero con desfases en el tiempo. Utilizando un valor promedio de velocidad del viento de 5 m/s se estimó que fueron emitidas a la atmósfera 334.947 toneladas de SO2, equivalentes al 2,2% del total anual de las emisiones volcánicas globales (mundiales) y al 15,9% de las emisiones anuales correspondientes a los volcanes de la zona de subducción de Sur América.

 

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Chouet, B., and Matoza, R. 2013. A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. Journal of Volcanology and Geothermal Research, 252: 108-175.
  2. Deutschmann, T. 2008. Atmospheric radiative transfer modelling with Monte Carlo methods. Diploma thesis, University of Heidelberg. Heidelberg. 80p.
  3. Dzurisin, D. 2007. Volcano Deformation: New Geodetic Monitoring Techniques. Springer, published in association with Praxis Publishing. Berlin. 441p.
  4. Galle, B., Oppenheimer, C., Geyer, A., McGonigle, A., Edmonds, M., and Horrocks, L. 2002. A miniaturized ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance. Journal of Volcanology and Geothermal Research, 119(1-4): 241-254.
  5. Galle, B., Johansson, M., Rivera, C., Zhang, Y., Kihlman, M., Kern, C., Lehmann, T., Platt, U., Arellano, S., and Hidalgo, S. 2010. Network for Observation of Volcanic and Atmospheric Change (NOVAC) — A global network for volcanic gas monitoring: Network layout and instrument description. Journal of Geophysical Research, 115: 1-19.
  6. Galle, B. 2011. Method and device for measuring emissions of gaseous substances to the atmosphere using scattered sunlight spectroscopy. US Patent No. 8035813 B2. United States.
  7. Halmer, M.M., Schmincke, H.U., and Graf, H.F. 2002. The annual volcanic gas input into the atmosphere in particular into the stratosphere: a global data set for the past 100 years. Journal of Volcanology and Geothermal Research, 115: 511-528.
  8. Havskov, J., and Alguacil, G. 2002. Instrumentation in Earthquake Seismology. Bergen: Versión Preliminar.
  9. IDEAM. 2007-2010. Instituto de Hidrología, Meteorología y Estudios Ambientales. Pronósticos y Alertas. http://pronosticos.ideam.gov.co/jsp/750.
  10. INGEOMINAS. 1997. Memoria del Mapa de Amenaza Volcánica del Galeras (Tercera Versión). Publicación Especial de INGEOMINAS. Bogotá. 38p.
  11. INGEOMINAS. 2000. Atlas de Amenaza Volcánica en Colombia. ed. Cepeda Héctor. Popayán: Ingeominas.
  12. INGEOMINAS. 2009. Boletín Semestral de Actividad del Volcán Galeras, Julio a Diciembre de 2008. Pasto: Instituto Colombiano de Geología y Minería. 72p.
  13. Jewell Instruments. 2016. Geophysical/Tech Tilt Sensors. Consultado el 30 de agosto de 2016. http://jewellinstruments.com/wp-content/uploads/2016/01/L00209-A701-2-Rev-B.pdf.
  14. Kern, C., Deutschmann, T., Vogel, L., Wöhrbach, M., Wagner, T., and Platt, U. 2010. Radiative transfer corrections for accurate spectroscopic measurements of volcanic gas emissions. Bulletin of Volcanology, 72: 233-247.
  15. McGonigle, A. 2005. Volcano remote sensing with ground-based spectroscopy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1837), 2915-2929.
  16. NOVAC. 2005-2010. Network for observation of volcanic and atmospheric change. Consultado el 30 de agosto de 2016. http://www.novac-project.eu/project-results.html
  17. NOVAC. 2007. NOVAC Station User Manual: Technical Report / Department of Radio and Space Science; Chalmers University of Technology. Göteborg, Sweden: [s.n.].
  18. Oppenheimer, C., Scaillet, B., and Martin, R. 2011. Sulfur degassing from volcanoes: Source conditions, surveillance, plume chemistry and Earth system impacts. Reviews in Mineralogy and Geochemistry, 73: 363-421.
  19. Platt, U., and Stutz, J. 2008. Differential optical absorption spectroscopy: Principles and applications. Heidelberg: Springer-Verlag, 272p.
  20. Rodríguez, L., y Nadeau, P. 2015. Resumen de las principales técnicas de percepción remota usadas en volcanes para monitorear las emisiones de gas en la superficie. Revista Geológica de América Central, 52: 67-105.
  21. Servicio Geológico Colombiano. 2016a. Observatorio Vulcanológico y Sismológico de Pasto. Consultado el 15 de febrero de 2016. http://www.sgc.gov.co/Pasto.aspx
  22. Servicio Geológico Colombiano. 2016b. Observatorio Vulcanológico de Popayán. Consultado el 15 de febrero de 2016. http://www.sgc.gov.co/Popayan/Volcanes/Volcan-Purace/Generalidades.aspx
  23. Servicio Geológico Colombiano. 2016c. Observatorio Vulcanológico y Sismológico de Manizales. Consultado el 15 de febrero de 2016. http://www.sgc.gov.co/Manizales/Volcanes/Nevado-del-ruiz/Videos.aspx
  24. Thies Clima. 2016. The complete Program for Meteorology and Environmental measurement technology. Consultado el 31 de agosto de 2016. https://thiesclima.com/ultrasonic_anemometer_e.html
  25. Vandaele, A.C., Simon, P.C., Guilmot, J.M., Carleer, M., and Colin, R. 1994. SO2 absorption cross section measurement in the UV using a Fourier transform spectrometer. Journal of Geophysical Research, 99(D12): 599-605.
  26. Wagner, T., Burrows, J.P., Deutschmann, T., Dix, B., von Friedeburg, C., Frieß, U., Hendrick, F., Heue, K.P., Irie, H., Iwabuchi, H., Kanaya, Y., Keller, J., McLinden, C.A., Oetjen, H., Palazzi, E., Petritoli, A., Platt, U., Postylyakov, O., Pukite, J., Richter, A., van Roozendael, M., Rozanov, A., Rozanov, V., Sinreich, R., Sanghavi, S., and Wittrock, F. 2007. Comparison of box-air-mass-factors and radiances for Multiple-Axis Differential Optical Absorption Spectroscopy (MAXDOAS) geometries calculated from different UV/visible radiative transfer models. Atmospheric Chemistry and Physics, 7(7): 1809-1833.
  27. Zobin, V.M. 2003. Introduction to Volcanic Seismology. Elsevier Science. Amsterdam, 290p.