Vol. 14 Núm. 2 (2016): Fuentes, el reventón energético
Artículos

Estudio de la perdida de conductividad debida a empotramiento de propante en formaciones de shale mediante simulación numérica

Kristhian Leandro Peña Cerón
Universidad Industrial de Santander (UIS), Carrera 27 calle 9, Bucaramanga, Santander, Colombia.
Luis Carlos Prada Socha
Universidad Industrial de Santander (UIS), Carrera 27 calle 9, Bucaramanga, Santander, Colombia.

Publicado 2017-01-30

Cómo citar

Peña Cerón, K. L., Prada Socha, L. C., & Cárdenas Montes, J. C. (2017). Estudio de la perdida de conductividad debida a empotramiento de propante en formaciones de shale mediante simulación numérica. Fuentes, El reventón energético, 14(2), 85–97. https://doi.org/10.18273/revfue.v14n2-2016008

Resumen

El empotramiento es inherente en la estimulación de yacimientos a través de fracturamiento hidráulico, ocurre cuando los esfuerzos en sitio son aplicados a la superficie de los propantes causando su incrustación en la formación. El empotramiento ocasiona pérdidas de conductividad producción y dinero, intensificándose en yacimientos no convencionales de formaciones de lutitas.


Este trabajo describe algunos factores composicionales y geomecánicos que influyen en el empotramiento, así como modelos matemáticos de empotramiento. Se estudia la pérdida de conductividad y ancho de fractura a través de simulación numérica. El software Predick K fue usado para pre-seleccionar los tipos de propante implementados en la simulación. La simulación numérica fue corrida en un simulador de Aceite Negro: IMEX, de la suite CMG.

Las fracturas empotradas son simuladas con un modelo de doble permeabilidad para un yacimiento de gas de lutita, considerando el esfuerzo de cierre efectivo mediante multiplicadores de permeabilidad y porosidad. En este artículo se generaron curvas de conductividad que muestran el desempeño del propante con esfuerzos aplicados en la producción. Debido a la escasez de datos de yacimientos de lutita, trabajar con la metodología de este trabajo es conveniente, los multiplicadores pueden replicar la geomecánica sin un alto esfuerzo computacional. Adicionalmente, se muestra los impactos de la mineralogía y geomecánica en la explotación de gas de lutita.


Palabras clave: Geomecánica, Fractura hidráulica, Modelo de doble permeabilidad, Multiplicador de porosidad, Multiplicador de permeabilidad, Yacimiento de gas, Yacimiento no convencional.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Akrad, O., Miskimins, J., & Prassad, M. (2011)
  2. The Effects of Fracturing Fluids on Shale Rock
  3. Mechanical Properties and Proppant Embedment.
  4. SPE Annual Technical Conference and Exhibition,
  5. Denver, Colorado, USA. SPE 146658: 7-9.
  6. Alexander, T., Baihly, J., Boyer, C., Clark, B.,
  7. Waters, G., Jochen, V., Le Calvez, J., Lewis, R.,
  8. Miller, C.,Thaeler, J. & Toelle, B (2011) Shale Gas
  9. Revolution. Oilfield Review, Autumn 2011; 23(3), 40-
  10. Alramahi, B. & Sundberg, M. (2012) Proppant
  11. Embedment and Conductivity of Hydraulic Fractures
  12. in Shales. 48th US Rock Mechanics/Geomechanics
  13. Symposium, Chicago, IL, U.S.A. ARMA 12-291.
  14. Chaitanya, M. (2012) Mechanics of Light Weight
  15. Proppants: A Discrete Approach. Ph.D. Dissertation,
  16. Texas A&M University, College Station, Texas, USA,
  17. pp: 40.
  18. Ciezobka, J. & Salehi, I. (2013) Controlled
  19. Hydraulic Fracturing of Naturally Fractured Shales
  20. – A Case Study in the Marcellus Shale Examining
  21. How to Identify and Exploit Natural Fractures.
  22. SPE Unconventional Resources Conference-USA,
  23. Woodlands, Texas, USA. SPE-164524-MS: 4, 5.
  24. COMPUTER MODEL GROUP. (2012) User’s Guide
  25. IMEX Advanced Black Oil/Gas Reservoir Simulator.
  26. COMPUTER MODEL GROUP. (2014) CMG Suite,
  27. General Release v.14.10.
  28. Corapcioglu, H., Miskimins, J. & Prassad, M. (2014)
  29. Fracturing Fluid Effects on Young’s Modulus and
  30. Embedment in the Niobara Formation. SPE Annual
  31. Technical Conference and Exhibition, Amsterdam,
  32. The Netherlands. SPE-170835: 8, 13, 14.
  33. CORE LABORATORIES. Program Description and
  34. User’s Manual. Predict K v.13.1
  35. Cui, A., Glover, K. & Wust, R.A.J. (2014) Elastic
  36. and plastic mechanical properties of liquid-rich
  37. unconventional shales and their implications for
  38. hydraulic fracturing and proppant embedment: a case
  39. study of the Nordegg Member in Alberta, Canada.
  40. th US Rock Mechanics/Geomechanics Symposium,
  41. Minneapolis, MN, USA. ARMA 14-7556.
  42. Elamin, A., Fathi, E. & Ameri, S. (2013) Simulation
  43. of Multicomponent Gas Flow and Condensation in
  44. Marcellus Shale Reservoir. SPE Unconventional
  45. Resources Conference-USA, Woodlands, Texas,
  46. USA. SPE-164538-MS: 8.
  47. Espinoza, C. (1983) A New Formulation for
  48. Numerical Simulation of Compaction, Sensitivity
  49. Studies for Steam Injection. SPE Reservoir Simulation
  50. Symposium, San Francisco, California, USA. SPE-
  51. -MS.
  52. Fredd, C., McConnell, S., Boney, C. & England, K.
  53. (2000) Experimental Study of Hydraulic Fracture
  54. Conductivity Demonstrates the Benefits of Using
  55. Proppants. 2000 SPE Rocky Mountain Regional/Low
  56. Permeability Reservoirs Symposium, Denver, CO,
  57. USA. SPE 60326: 6, 14.
  58. Gao, Y., SINOPEC Petroleum Exploration &
  59. Production Research Institute, Lv, Y., Wang, M., China
  60. Pingmei Shenma Group, Li, K., China University of
  61. Geosciences (Beijing) & Yangtze University. (2013)
  62. New Mathematical Models for Calculating the
  63. Proppant Embedment and Conductivity. International
  64. Petroleum Technology Conference, Beijing, China.
  65. IPTC 16410.
  66. Guo, J., Liu, Y. (2012) Modeling of Proppant
  67. Embedment: Elastic Deformation and Creep
  68. Deformation. SPE International Production and
  69. Operations Conference and Exhibition, Doha, Qatar.
  70. SPE 157449: 4, 8.
  71. Huitt, J. & McGlothlin, Jr. (1958) The Propping of
  72. Fractures in Formations Susceptible to Proppingsand
  73. Embedment. Pacific Coast District, Division of
  74. Production, Los Angeles, California, USA. API-58-
  75. Kassis, S. & Sondergeld, C. (2010) Fracture
  76. Permeability of Gas Shale: Effects of Roughness,
  77. Fracture Offset, Proppant, and Effective Stress.
  78. CPS/SPE International Oil & Gas Conference and
  79. Exhibition in China, Beijing, China. SPE 131376: 3,
  80. , 11.
  81. King, G. (2010) Thirty Years of Gas Shale Fracturing:
  82. What Have We Learned? SPE Annual Technical
  83. Conference and Exhibition, Florence, Italy. SPE
  84. : 8, 17.
  85. Lacy, L., Rickards, A. & Bilden, D. (1998) FractureWidth and Embedment Testing in Soft Reservoir
  86. Sandstone. SPE Drilling & Completion, 13(01), 25-
  87. : 27, 28.
  88. Lacy, L., Rickards, A. & Ali, S. (1997) Embedment
  89. and Fracture Conductivity in Soft Formations
  90. Associated with HEC, Borate and Water-Based
  91. Fracture Designs. 1997 SPE Annual Technical
  92. Conference and Exhibition, San Antonio, Texas,
  93. USA. SPE 38590.
  94. Martins, J., Leung, K., Jackson, M., Stewart, D. &
  95. Carr, A. (1992) Tip Screenout Fracturing Applied to
  96. the Ravenspurn South Gas Field Development. SPE
  97. Production Engineering, 7(3), 252-258: 253.
  98. Montgomery, C. & Steanson (1985) Proppant
  99. Selection: The Key to Successful Fracture
  100. Stimulation. Journal of Petroleum Technology,
  101. (12), 2163-2172: 2165.
  102. Nagarajan, N. Honarpour, M. & Arasteh. (2013)
  103. Critical Role of Rock and Fluid - Impact on Reservoir
  104. Performance on Unconventional Shale Reservoirs.
  105. Unconventional Resources Technology Conference,
  106. Denver, Colorado, USA. SPE-168864-MS: 2.
  107. Silseth, J. (2015) Effect of Relative Permeability
  108. on History Matching a Permian Basin Oil Well.
  109. M.Sc. Thesis, Department of Petroleum Engineering
  110. and Applied Geophysics, Norwegian University of
  111. Science and Technology, Norway, 109pp: 28.
  112. Terracina, J., Turner, J., Collins, D. & Spillars.
  113. (2012) Proppant Selection and Its Effect on the
  114. Results of Fracturing Treatments Performed in Shale
  115. Formations. SPE Annual Technical Conference and
  116. Exhibition, Florence, Italy. SPE 135502: 3.
  117. Wang, G. & Carr, R. (2013) Organic-rich Marcellus
  118. Shale lithofacies modeling and distribution pattern
  119. analysis in the Appalachian Basin. AAPG Bulletin,
  120. December 2013; 97 (12), 2173-2205: 21181.
  121. Yu, W. & Spehrnoori, K. (2013a) Simulation of
  122. Gas Desorption and Geomechanics Effects for
  123. Unconventional Gas Resources. SPE Western
  124. Regional & AAPG Pacific Section Meeting, 2013
  125. Joint Technical Conference, Monterrey, California,
  126. USA. SPE 165377.
  127. Yu, W. & Spehrnoori, K. (2013b) Simulation of
  128. Proppant Distribution Effect on Well Performance
  129. in Shale Gas Reservoirs. SPE Unconventional
  130. Resources Conference-Canada, Calgary, Alberta,
  131. Canada. SPE 167225.
  132. Yu, W., Sepehrnoori, K. Patzek, T. (2014) Evaluation
  133. of Gas Adsorption in Marcellus Shale. SPE Annual
  134. Technical Conference and Exhibition, Amsterdam,
  135. The Netherlands. SPE-170801-MS: 3, 10.