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1. Introduction

Let U and V be quasi-definite linear functionals and let {Pn}n∈N
and {Rn}n∈N

be their
sequences of monic orthogonal polynomials (SMOP), respectively. (U, V ) is a coherent

pair if there exists a sequence (an) , an 6= 0, such that

Pn(x) =
R′

n+1(x)

n+ 1
+ an

R′
n(x)

n
.

This concept is introduced in [7] where it is studied its connection with polynomials
orthogonal with respect to Sobolev inner products like

〈p, q〉S =

∫

I

p(x)q(x)dµ1 + λ

∫

I

p(x)q(x)dµ0 , λ > 0, (1)

where µ0 and µ1 are positive Borel measures supported on an infinite subset I ⊆ R,
with U and V as the associated functionals, respectively. In this way, among others, it
is studied an algebraic connection between the Sobolev polynomials and the sequence
{Rn}n∈N

, in such a way that the coefficients of connection are independent of the
degree; an algorithm is presented for to compute Fourier coefficients using as basis the
Sobolev polynomials. Likewise, if U and V are symmetric, (U, V ) is a symmetric

coherent pair if there exists a sequence (an) , an 6= 0, such that

Pn(x) =
R′

n+1(x)

n+ 1
+ an

R′
n−1(x)

n− 1
.

In [8] all coherent pairs and symmetric coherent pairs are determined and it is shown that
at least one of the functionals has to be classical (Hermite or Gegenbauer in the symmetric

case); moreover, if ξ > 0, the symmetric coherent pair dµ0 = e−x2

dx, dµ1 = 1
x2+ξ e

−x2

dx

is obtained. In connection with this particular case, in [2] the outer relative asymptotics
of Sobolev polynomials orthogonal with respect to (1) is found; besides, in [9] Mehler-
Heine type formulas are established with respect to rational modification of the Hermite
polynomials. Under the same assumptions, (U, V ) is a symmetric (1, 1)−coherent pair

if there exist sequences (an)n∈N
and (bn)n∈N

, bn 6= 0, such that the respective SPOM
satisfies

Pn(x) + anPn−2(x) =
R′

n+1(x)

n+ 1
+ bn

R′
n−1(x)

n− 1
.

About this subject, in [4] is presented the algebraic relation between the Sobolev polyno-
mials and the polynomials {Rn}n∈N

,; besides, the particular case where V is classical is
studied, and the respective symmetric (1, 1)−coherent companion is found. In particular,
we focus on the symmetric (1, 1)−coherent pair

dµ0 = e−x2

dx, dµ1 =
x2 + a

x2 + b
e−x2

dx, a, b > 0, a 6= b, (2)

and we will study the asymptotic behavior of the orthogonal polynomials associated with
dµ1. Thus, the structure of this manuscript is as follows: In the section 2 we present some
basic facts about of asymptotic behavior of Hermite orthogonal polynomials. In section
3 we present an algebraic connection between the Hermite polynomials and the SMOP
associated with dµ1, as well as the asymptotic behavior of the respective connection
coefficients. Finally, in section 4 some asymptotics properties are studied.
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2. Preliminaries

From now on, and as it is usual, {Hn}n∈N
will represent the sequence of monic Hermite

polynomials, orthogonal with respect to the weight e−x2

on (−∞,∞). The classical
Hermite linear functional will be denoted by H and 〈H, p(x)〉 will be the application
of H on any polynomial p. The norm of the monic Hermite polynomials is defined as

〈

H, H2
n(x)

〉

= ‖Hn‖2 =
√
π
n!

2n
.

On the other hand the sequence {Hn}n∈N
is defined via the three terms recurrence

relation
Hn+1(x) = xHn(x) −

n

2
Hn−1(x), n ≥ 0, (3)

with the initial conditions H0(x) = 1 and H −1(x) = 0. With respect to the asymptotic
behavior of Hermite polynomials we present the next results.

Theorem 2.1 (See [10]).

lim
n→∞

nHn(x)

2Hn+2(x)
= −1, (4)

uniformly on compact sets of C\R.
Theorem 2.2 (Mehler-Heine). (See [1]). For j ∈ Z fixed,

lim
n→∞

(−1)n
√
n

n!
H2n

(

x

2
√
n+ j

)

=
(x

2

)1/2

J−1/2(x), (5)

and

lim
n→∞

(−1)n

n!
H2n+1

(

x

2
√
n+ j

)

=
(x

2

)1/2

J1/2(x), (6)

uniformly on compact sets of the complex plane, where Jα represents Bessel’s function
of the first kind defined by

Jα(x) =

∞
∑

j=0

(−1)j

j!Γ (j + α+ 1)

(x

2

)2j+α

.

Theorem 2.3 (Mehler-Heine). (See [10]).

lim
n→∞

(−1)n
√
n+ j

n!
H2n

(

x

2
√
n+ j

)

=
1√
π
cos(x), (7)

and

lim
n→∞

(−1)n

n!
H2n+1

(

x

2
√
n+ j

)

=
1√
π
sin(x), (8)

uniformly on compact subsets of C and uniformly on j ∈ N ∪ {0} .
Theorem 2.4 (See [11]). For j ∈ Z fixed,

lim
n→∞

√
n
Hn−1

(√
n+ jz

)

Hn

(√
n+ jz

) =

√
2

ϕ
(

z/
√
2
) , j ∈ Z,

holds uniformly on compact subsets of C\
[

−
√
2,
√
2
]

. Here, ϕ (z) = z +
√
z2 − 1 is the

conformal mapping of C\ [−1, 1] onto the exterior of the closed unit disk.
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If i = 0 and if p and q are non-negative integers such that n > p− 1, then

Hn−p

(√
n+ jz

)

Hn+q

(√
n+ jz

) =

p+q−1
∏

k=0

Hn−p+k

(√
n+ jkz

)

Hn−p+k+1

(√
n+ jkz

) , jk ∈ Z,

and as a consequence,

lim
n→∞

(
√
n)

p+q
Hn−p

(√
n+ jz

)

Hn+q

(√
n+ jz

) =

p+q−1
∏

k=0

lim
n→∞

√
n

Hn−p+k

(√
n+ jkz

)

Hn−p+k+1

(√
n+ jkz

) .

The above proves the next

Corollary 2.5. For j ∈ Z fixed, and non-negative integers p and q such that n > p− 1,

lim
n→∞

(
√
n)

p+q
Hn−p

(√
n+ jz

)

Hn+q

(√
n+ jz

) =

( √
2

ϕ
(

z/
√
2
)

)p+q

(9)

holds uniformly on compact subsets of C\
[

−
√
2,
√
2
]

.

The zeros of Hn are real, simples and symmetric; that is, for every n, Hn(t) = 0 is

equivalent to Hn(−t) = 0. Let {xn,k}[n/2]n=1 be the positive zeros of Hn in increasing order.
It is well known that the zeros of Hn and Hn−1 are interlaced and for k fixed, xn,k → 0
when n → ∞. Besides, given that Jα has a countably infinite set of real and positive
zeros if α > −1, as a consequence of Mehler-Heine formulas and the Hurwitz’s theorem,
if n → ∞ and k ≥ 1 then

2
√
nx2n,k → j−1/2,k, 2

√
nx2n+1,k → j1/2,k, (10)

and xn,k ∼ ck√
n
, where ck > 0 and {jα,k}n∈N

are the zeros of Jα when α > −1.

On the other hand, let
{

H
(a,b)
n

}

n∈N

be the sequence of monic polynomials orthogonal

with respect to the positive definite linear functional Ha
b , defined as

〈Ha
b , p(x)〉 =

∫

R

p(x)
x2 + a

x2 + b
e−x2

dx, (11)

where a, b > 0, and a 6= b. As it is usual, let ‖.‖(a,b) be the induced norm. If c > 0, then

{Hc
n} will be the sequence of monic polynomials orthogonal with respect to the positive

definite functional Hc defined by 〈Hc, p(x)〉 =
∫

R
p(x) e

−x2

x2+cdx, and ‖.‖c the respective
induced norm. On the algebraic connection between the sequence {Hc

n} and the classical
Hermite polynomials we get the next result.

Lemma 2.6 (See [2]). There exists a sequence of real numbers (σn) such that

Hc
n(x) = Hn(x) + σnHn−2(x), (12)

with

σn =
‖Hc

n‖2c
‖Hn−2‖2

, (13)
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and

lim
n→∞

σn

n
=

1

2
; (14)

moreover,

lim
n→∞

√

[n

2

]

(

2σn

n
− 1

)

= −
√
b. (15)

With respect to asymptotic behavior and Mehler-Heine type formulas for the sequence
{Hc

n}n∈N
, we get the next

Theorem 2.7 (See [9]).

lim
n→∞

(−1)n

(n− 1)!
Hc

2n

(

x

2
√
n

)

=

√

c

π
cos(x), (16)

and

lim
n→∞

√
n(−1)n

n!
Hc

2n+1

(

x

2
√
n

)

=

√

c

π
sin(x), (17)

both uniformly on compact subsets of C.

Let Lα be the classical Laguerre functional, α > −1, and let {Lα
n(x)} be the respective

SMOP. We present the next result about asymptotics behavior of ratios of Laguerre
polynomials that will be necessary in our work. The proof can be see in [5].

Lemma 2.8. For x ∈ C\R+,

− Lα
n(x)

nLα
n−1(x)

= 1 +

√−x√
n

+

(

α

2
− 1

4
− x

2

)

1

n
+O

(

n−3/2
)

. (18)

In this paper also will be important to deal with rational perturbations of the Lα and
the asymptotic behavior of the associated SPOM. About this topic, in [6] is made an
exhaustive study of asymptotic behavior of orthogonal polynomials associated to this kind

of perturbations. Indeed, given c1, c2 < 0, let
{

L
(α,c1,c2)
n (x)

}

be the SMOP associated

to positive definite linear functional Lα
c1,c2 defined on the space of polynomials as

〈

Lα
c1,c2 , p

〉

=

∫ ∞

0

p(x)
x− c1
x− c2

xαe−xdx,

and about the asymptotic behavior of the sequence
{

L
(α,c1,c2)
n (x)

}

,we get the next

Theorem 2.9 (See [6]).

a). Uniformly on compact subsets of C\[0,∞),

lim
n→∞

L
(α,c1,c2)
n (x)

Lα
n(x)

=

√−x+
√−c1√

−x+
√−c2

. (19)

b). Uniformly on compact subsets of C,

lim
n→∞

L
(α,c1,c2)
n (x/(n+ j))

nα
=

√−c1√−c2
x−α/2Jα

(

2
√
x
)

, (20)
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where j ∈ N ∪ {0} .
c). (Plancherel-Rotach type exterior asymptotics).

lim
n→∞

L
(α,c1,c2)
n ((n+ j)x)

Lα
n((n+ j)x)

= 1, (21)

uniformly on compact subsets of C\[0, 4], and uniformly on j ∈ N ∪ {0} .

3. Some basic results

Given that H is a symmetric linear functional, it is well known that there is a relation
between the classical Laguerre and Hermite polynomials, namely

H2n(x) = L−1/2
n (x2) and H2n+1(x) = xL1/2

n (x2). (22)

In this way, the next result is an extension of the above relations.

Lemma 3.1. For every n ∈ N,

H
(a,b)
2n (x) = L(−1/2,−a,−b)

n (x2) and H
(a,b)
2n+1(x) = xL(1/2,−a,−b)

n (x2). (23)

Proof. Given that Ha
b is symmetric, there exists an unique quasi-definite linear functional

v, with {Pn} as the associated SPOM and such that H
(a,b)
2n (x) = Pn(x

2) and H
(a,b)
2n+1(x) =

xPn(x
2) (see [3]), moreover,

〈

Ha
b , p(x

2)
〉

= 〈v, p(x)〉 . We will see that v = L−1/2
−a,−b. Indeed,

with the change of variable u = x2 we get

〈

Ha
b , p(x

2)
〉

=

∫

R

p
(

x2
) x2 + a

x2 + b
e−x2

dx

=− 1

2

∫ 0

−∞
p (u)

u+ a

u + b
u−1/2e−udu+

1

2

∫ ∞

0

p (u)
u+ a

u+ b
u−1/2e−udu

=

∫ ∞

0

p (u)
u+ a

u+ b
u−1/2e−udu

=
〈

L−1/2
−a,−b, p(x)

〉

. �XXX

On the other hand, from (22) we have H2n(x)
H2n+2(x)

=
L−1/2

n (x2)

L
−1/2
n+1 (x2)

, and given that (see (18))

− Lα
n(x)

nLα
n−1(x)

∼ 1 +
√
−x√
n

, we get

−2nH2n(x)

H2n+2(x)
= −2

nL
−1/2
n (x2)

L
−1/2
n+1 (x2)

∼ −2

√
n√

−x2 +
√
n
;

in the same way, in the odd case we get

− (2n+ 1)H2n+1(x)

H2n+3(x)
= − (2n+ 1)L

1/2
n (x2)

L
1/2
n+1(x

2)
∼ −2

√
n√

−x2 +
√
n
.

Then we have deduced the next
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Lemma 3.2. For x ∈ C\R we get

nHn(x)

Hn+2(x)
∼ −2

√
n√

−x2 +
√
n
. (24)

By using of
{

Hb
n

}

n∈N
as a basis we get

(x2 + a)H(a,b)
n = Hb

n+2 +

n
∑

j=0

cn,jH
b
j ,

where

cn,j =

〈

Hb, (x
2 + a)H

(a,b)
n (x)Hb

j (x)
〉

∥

∥Hb
j

∥

∥

2

b

=

〈

Ha
b , H

(a,b)
n (x)Hb

j (x)
〉

∥

∥Hb
j

∥

∥

2

b

;

then, cn,j = 0, for j = 0, ..., n− 1, and cn := cn,n =

∥

∥

∥
H

(a,b)
n

∥

∥

∥

2

(a,b)

‖Hb
n‖

2
b

. So we get

(x2 + a)H(a,b)
n (x) = Hb

n+2(x) + cnH
b
n(x). (25)

As a consequence of (12), we have

(x2 + a)H(a,b)
n (x) = Hn+2(x) + (σn+2 + cn)Hn (x) + σncnHn−2 (x) . (26)

In order to obtain the behavior limit of the sequence (cn), we choose x = i
√
a in (25),

and then for every n

cn = −Hb
n+2(i

√
a)

Hb
n(i

√
a)

.

By using (12) we get

cn = −Hb
n+2(i

√
a)

Hb
n(i

√
a)

= −Hn+2(i
√
a) + σn+2Hn(i

√
a)

Hn(i
√
a) + σnHn−2(i

√
a)

.

In the even case,

c2n = −L
−1/2
n+1 (−a) + σ2n+2L

−1/2
n (−a)

L
−1/2
n (−a) + σ2nL

−1/2
n−1 (−a)

=
L
−1/2
n (−a)

nL
−1/2
n−1 (−a)

L
−1/2
n+1 (−a)

2(n+ 1)L
−1/2
n (−a)

+
σ2n+2

2 (n+ 1)

L
−1/2
n (−a)

nL
−1/2
n−1 (−a)

+ 2
σ2n

2n

n+ 1

n
.
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From (12) we obtain

c2n
2n

= − L
−1/2
n (−a)

nL
−1/2
n−1 (−a)

L
−1/2
n+1 (−a)

2(n+ 1)L
−1/2
n (−a)

+
σ2n+2

2 (n+ 1)
− 1

2 + 1
2

L
−1/2
n (−a)

nL
−1/2
n−1 (−a)

+ 2
(σ2n

2n
− 1

2

)

+ 1

n+ 1

n
,

and by using of (18) we get

c2n
2n

∼
(

1 +

√
a√
n

)

−1−
√

a
√

n+1

2 −
√
b

2
√
n+1

+ 1
2

−1−
√
a√
n
−

√
b√
n
+ 1

=

(

1 +

√
a√
n

)

1

2

√
n√

n+ 1
.

Given that H2n+1(x) = xL
1/2
n (x2), and following the same arguments in the odd case for

the subsequence

(

c2n+1

2n+ 1

)

, we get the next

Lemma 3.3.

lim
n→∞

cn
n

=
1

2
. (27)

4. Asymptotic Properties

We want to obtain formulas of the kind (4) associated to the ratios
Hb

n(x)

Hb
n+2(x)

and
H(a,b)

n (x)

H
(a,b)
n+2 (x)

.

First, we will deduce the next

Lemma 4.1.

lim
n→∞

nHb
n(x)

2Hb
n+2(x)

= −1, (28)

uniformly on compact sets of C\R.

Proof. From (12), we get that

Hb
n(x)

Hb
n+2(x)

=
Hn(x) + σnHn−2(x)

Hn+2(x) + σn+2Hn(x)

=
2

n

1 +
2σn

n− 2

(n− 2)Hn−2(x)

2Hn(x)

2Hn+2(x)

nHn(x)
+

2σn+2

n

,
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and by using of (24) we get

Hb
n(x)

Hb
n+2(x)

∼ 2

n

1−
√
n√

−x2 +
√
n

1−
√
−x2 +

√
n√

n

= − 2

n

√
n√

−x2 +
√
n
;

then the result follows. �XXX

In the above result we have obtained a formula of the type (4) for the sequence
{

Hb
n

}

n∈N
.

Now we will get the same one for the sequence
{

H
(a,b)
n

}

n∈N

. Indeed, in the odd case and

from (23) we get

(2n+ 1)H
(a,b)
2n+1(x)

H
(a,b)
2n+3(x)

= (2n+ 1)
L
(1/2,−a,−b)
n (x2)

L
(1/2,−a,−b)
n+1 (x2)

=

L
(1/2,−a,−b)
n (x2)

L
1/2
n (x2)

L
(1/2,−a,−b)
n+1 (x2)

L
1/2
n+1(x

2)

2n+ 1

n

nL
1/2
n (x2)

L
1/2
n+1(x

2)
;

as before, the even case is similar. Then, as a consequence of (18) and (19) we get the
next

Proposition 4.2.

lim
n→∞

nH
(a,b)
n (x)

2H
(a,b)
n+1 (x)

= −1,

uniformly on compact subsets of C\R.

Moreover, from (23) we get

H
(a,b)
2n (x)

H2n(x)
=

L
(−1/2,−a,−b)
n (x2)

L
−1/2
n (x2)

and
H

(a,b)
2n+1(x)

H2n+1(x)
=

L
(1/2,−a,−b)
n (x2)

L
1/2
n (x2)

,

and as a consequence of (19) we obtain

Lemma 4.3. Uniformly on compact subsets of C\R,

lim
n→∞

H
(a,b)
n (x)

Hn(x)
=

√
−x2 +

√
a√

−x2 +
√
b
.

On the other hand, scaling the variable, and by (23), we get

H
(a,b)
2n

(

x/
√
n+ j

)

nα
=

L
(−1/2,−a,−b)
n

(

x2/ (n+ j)
)

nα

and
H

(a,b)
2n+1

(

x/
√
n+ j

)

nα
=

xL
(1/2,−a,−b)
n

(

x2/ (n+ j)
)

nα
.

And from (20) we deduce
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Lemma 4.4. Uniformly on compact subsets of C,

lim
n→∞

H
(a,b)
2n

(

x/
√
n+ j

)

nα
=

√

a

b
x1/4J−1/2

(

2
√
x2
)

and

lim
n→∞

H
(a,b)
2n+1

(

x/
√
n+ j

)

nα
=

√

a

b
x3/4J1/2

(

2
√
x2
)

,

where j ∈ N ∪ {0} .

Finally, given that

H
(a,b)
2n

(√
n+ jx

)

H2n

(√
n+ jx

) =
L
(−1/2,−a,−b)
n

(

(n+ j)x2
)

L
−1/2
n ((n+ j)x2)

and
H

(a,b)
2n+1

(√
n+ jx

)

H2n+1

(√
n+ jx

) =
L
(1/2,−a,−b)
n

(

(n+ j)x2
)

L
1/2
n ((n+ j)x2)

,

as a consequence of (21) we have

Lemma 4.5 (Plancherel-Rotach type exterior asymptotics).

lim
n→∞

H
(a,b)
n

(√
n+ jx

)

Hn

(√
n+ jx

) = 1,

uniformly on compact subsets of C− [−2, 2], and uniformly on j ∈ N ∪ {0} .

In our search of information about of asymptotic behavior of the sequence
{

H
(a,b)
n

}

n∈N

,

it is very useful to consider the sequence
{

(x2 + a)H
(a,b)
n

}

and the results obtained in

the above lemmas. In this way, using (25) we obtain

(x2 + a)
H

(a,b)
n (x)

Hb
n+2(x)

= 1 + cn
Hb

n(x)

Hb
n+2(x)

= 1 + 2
cn
n

nHb
n(x)

2Hb
n+2(x)

,

then, the next proposition is a consequence of (27) and (28).

Proposition 4.6. The sequence
{

H
(a,b)
n

}

satisfy

lim
n→∞

(x2 + a)
H

(a,b)
n (x)

Hb
n+2(x)

= 0,

uniformly on compact sets of C\R.
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Naturally, it is possible to obtain a similar result for the ratio
H

(a,b)
n (x)

Hn+2(x)
. It is enough to

consider (4) and (12) to obtain

lim
n→∞

Hb
n(x)

Hn(x)
= 1 + 2 lim

n→∞

(

σn

n

nHn−2(x)

2Hn(x)

)

= 0,

uniformly on compact sets of C\R, and to use the above theorem for the expression

(x2 + a)
H

(a,b)
n (x)

Hn+2(x)
= (x2 + a)

H
(a,b)
n (x)

Hb
n+2(x)

Hb
n+2(x)

Hn+2(x)
.

On the other hand, using recurrence relation (3) we get

Hn(x)

Hn+1(x)
=

xHn−1(x) − (n−1)
2 Hn−2(x)

Hn+1(x)
= x

Hn−1(x)

Hn+1(x)
− (n− 1)

2

Hn−2(x)

Hn+1(x)
,

and as a consequence,
Hn(x)

Hn+1(x)
= x

Hn−1(x)

Hn+1(x)

1 +
(n− 1)

2

Hn−2(x)

Hn(x)

. As before, for x ∈ C\R, and

from (24), it follows

nHn(x)

Hn+1(x)
= x

nHn−1(x)

Hn+1(x)

1 +
1

2

(n− 1)Hn−2(x)

Hn(x)

∼ x

−2

√
n− 1√

−x2 +
√
n− 1

1−
√
n− 2√

−x2 +
√
n− 2

∼ −2x

√
n− 1√
−x2

,

and as a consequence,

√
nHn(x)

Hn+1(x)
∼ −2

x√
−x2

. Then we get the next

Lemma 4.7.

lim
n→∞

√
nHn(x)

Hn+1(x)
= −2sig(Im(x))i, (29)

uniformly on compact subsets of C\R.

Now, we will see the importance of above lemma in the following theorems.

Theorem 4.8.

lim
n→∞

(x2 + a)
H

(a,b)
n (x)√

nHn+1(x)
= −1

2
sig(Im(x))i,

uniformly on subsets compact of C\R.
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Proof. From (26) we get

(x2 + a)
H

(a,b)
n (x)√

nHn+1(x)
=

Hn+2(x)√
nHn+1(x)

+

(

(σn+2 + cn)

n
+

σncn
n2

nHn−2 (x)

Hn(x)

) √
nHn (x)

Hn+1(x)
;

then, using (4) and (29) the result holds. �XXX

Theorem 4.9 (Scaled Relative Asymptotics).

lim
n→∞

(nx2 + a)H
(a,b)
n (

√
nx)

Hn+2(
√
nx)

=

(

1 +
1

ϕ2
(

x/
√
2
)

)2

holds uniformly on compact subsets of C\
[

−
√
2,
√
2
]

.

Proof. Making the scaling x → √
nx in (26), we have

(nx2 + a)
H

(a,b)
n (

√
nx)

Hn+2 (
√
nx)

= 1 +

(

σn+2

n+ 2

n+ 2

n
+

cn
n

)

(
√
n)2Hn (

√
nx)

Hn+2 (
√
nx)

+
σn

n

cn
n

(
√
n)4Hn−2 (

√
nx)

Hn+2 (
√
nx)

.

Then, using (9) and (14) we obtain

lim
n→∞

(nx2 + a)
H

(a,b)
n (

√
nx)

Hn+2 (
√
nx)

= 1 +
2

ϕ2
(

x/
√
2
) +

1

ϕ4
(

x/
√
2
) . �XXX

Now we will deduce Mehler-Heine type formulas for the polynomials
{

H
(a,b)
n

}

. Making

x → x

2
√
n

in (25), for the even case we get

(−1)n+1

n!

(

x2

4n
+ a

)

H
(a,b)
2n

(

x

2
√
n

)

=
(−1)n+1

n!
Hb

2n+2

(

x

2
√
n

)

+
(−1)n+1

n!
c2nH

b
2n

(

x

2
√
n

)

=
(−1)n+1

n!
Hb

2n+2

(

x

2
√
n

)

− 2
c2n
2n

(−1)n

(n− 1)!
Hb

2n

(

x

2
√
n

)

.

Then, using (16) and following a similar procedure in the odd case, we get the next

Proposition 4.10 (Mehler-Heine type formulas).

lim
n→∞

(−1)n+1

n!

(

x2

4n
+ a

)

H
(a,b)
2n

(

x

2
√
n

)

= 0

and

lim
n→∞

(−1)n+1

(n+ 1)!

(

x2

4n
+ a

)

H
(a,b)
2n+1

(

x

2
√
n

)

= 0,

uniformly on compact subsets of the complex plane.
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