Vol. 30 Núm. 1 (2017): Revista ION
Artículo de Investigación Científica y Tecnológica

Reducibilidad y comportamiento catalítico de la fase Ruddlesden-Popper La 0,25 Sr 1,75 MnO4 preparada por el método de Pechini modificado

Reinaldo Calderón Supelano
Centro de Investigaciones en Sólidos (UNIDEF-MINIDEF-CONICET),
Susana Adelina Larrondo
Instituto de Investigación e Ingeniería Ambiental, Universidad de San Martín
Gilles Henri Gauthier
Universidad Industrial de Santander

Publicado 2017-06-30

Palabras clave

  • SOFC,
  • ánodo,
  • manganita,
  • XRD,
  • TPR,
  • oxidación catálica
  • ...Más
    Menos

Cómo citar

Supelano, R. C., Larrondo, S. A., & Gauthier, G. H. (2017). Reducibilidad y comportamiento catalítico de la fase Ruddlesden-Popper La 0,25 Sr 1,75 MnO4 preparada por el método de Pechini modificado. Revista ION, 30(1). https://doi.org/10.18273/revion.v30n1-2017003

Resumen

Se han reportado pocos estudios sobre el uso de compuestos de manganeso (La,Sr)2MnO4 de estructura tipo Ruddlesden-Popper, como electrolitos de Celdas de Combustible de Óxido Sólido (SOFC), en particular como ánodos. En este trabajo el compuesto La0,25Sr1,75MnO4 fue sintetizado por el método de Pechini modificado. Este material fue estudiado por la técnica de Difracción de Rayos X (XRD), Microscopía Electrónica de Barrido (SEM) y su estructura analizada en detalle mediante refinamiento de los patrones de difracción de rayos X. La0,25Sr1,75MnOfue sometido a un estudio de Reducción a Temperatura Programada (TPR) y se evaluaron sus propiedades catalíticas para la oxidación total y/o parcial de metano. Los parámetros de celda estimados en el refinamiento son bastante próximos con los reportados en la literatura para series con composiciones cercanas. La reducción del material en H2  diluido ocurre en múltiples etapas y la descomposición comienza por encima de 800°C. En los estudios catalíticos el material actúa como catalizador para la oxidación total de metano incluso en atmósferas deficientes de oxígeno.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Zhu WZ, Deevi SC. A review on the status of anode materials for solid oxide fuel cells. Mater. Sci. Eng., A. 2003;362(1–2):228-39.

[2] Jiang S, Chan S. A review of anode materials development in solid oxide fuel cells. J. Mater. Sci. 2004;39(14):4405-39.

[3] Sun C, Stimming U. Recent anode advances in solid oxide fuel cells. J. Power Sources. 2007;171(2):247-60.

[4] Kee RJ, Zhu H, Goodwin DG. Solid-oxide fuel cells with hydrocarbon fuels. Proceedings of the Combustion Institute. 2005;30(2):2379-404.

[5] Steele BCH. Survey of materials selection for ceramic fuel cells II. Cathodes and anodes. Solid State Ionics. 1996;86–88, Part 2(0):1223-34.

[6] Ge X-M, Chan S-H, Liu Q-L, Sun Q. Solid Oxide Fuel Cell Anode Materials for Direct Hydrocarbon Utilization. Adv. Energy Mater. 2012;2(10):1156-81.

[7] Mukundan R, Brosha EL, Garzon FH. Sulfur Tolerant Anodes for SOFCs. Electrochem. Solid-State Lett. 2004;7(1):A5-A7.

[8] Cowin PI, Petit CTG, Lan R, Irvine JTS, Tao S. Recent Progress in the Development of Anode Materials for Solid Oxide Fuel Cells. Adv. Energy Mater. 2011;1(3):314-32.

[9] Hui S, Petric A. Electrical Properties of Yttrium-Doped Strontium Titanate under Reducing Conditions. J. Electrochem. Soc. 2002;149(1):J1-J10.

[10] Marina OA, Canfield NL, Stevenson JW. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics. 2002;149(1–2):21-8.

[11] Canales-Vázquez J, Tao SW, Irvine JTS. Electrical properties in La2Sr4Ti6O19−δ: a potential anode for high temperature fuel cells. Solid State Ionics. 2003;159(1–2):159-65.

[12] Hashimoto S, Kindermann L, Poulsen FW, Mogensen M. A study on the structural and electrical properties of lanthanum-doped strontium titanate prepared in air. J. Alloys Compd. 2005;397(1–2):245-9.

[13] Fu QX, Tietz F, Stöver D. La0.4Sr0.6Ti1−xMnxO3−δPerovskites as Anode Materials for Solid Oxide Fuel Cells. J. Electrochem. Soc. 2006;153(4):D74-D83.

[14] Ovalle A, Ruiz-Morales JC, Canales-Vázquez J, Marrero-López D, Irvine JTS. Mn-substituted titanates as efficient anodes for direct methane SOFCs. Solid State Ionics. 2006;177(19–25):1997-2003.

[15] Ruiz-Morales JC, Canales-Vázquez J, Savaniu C, Marrero-López D, Zhou W, Irvine JTS. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature. 2006;439(7076):568-71.

[16] Miller DN, Irvine JTS. B-site doping of lanthanum strontium titanate for solid oxide fuel cell anodes. J. Power Sources. 2011;196(17):7323-7.

[17] Tarancon A, Skinner SJ, Chater RJ, Hernandez-Ramirez F, Kilner JA. Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 2007;17(30):3175-81.

[18] Kharton VV, Yaremchenko AA, Shaula AL, Patrakeev MV, Naumovich EN, Logvinovich DI, et al. Transport properties and stability of Ni-containing mixed conductors with perovskite- and K2NiF4-type structure. J. Solid State Chem. 2004;177(1):26-37.

[19] Lalanne C, Prosperi G, Bassat JM, Mauvy F, Fourcade S, Stevens P, et al. Neodymium-deficient nickelate oxide Nd1.95NiO4+δ as cathode material for anode-supported intermediate temperature solid oxide fuel cells. J. Power Sources. 2008;185(2):1218-24.

[20] Sayers R, Rieu M, Lenormand P, Ansart F, Kilner JA, Skinner SJ. Development of lanthanum nickelate as a cathode for use in intermediate temperature solid oxide fuel cells. Solid State Ionics. 2011;192(1):531-4.

[21] Le Flem G, Demazeau G, Hagenmuller P. Relations between structure and physical properties in K2NiF4-type oxides. J. Solid State Chem. 1982;44(1):82-8.

[22] Bao W, Chen CH, Carter SA, Cheong SW. Electronic phase separation and charge ordering in (Sr,La)2MnO4: Indication of triplet bipolarons. Solid State Commun. 1996;98(1):55-9.

[23] Jennings AJ, Skinner SJ. Thermal stability and conduction properties of the LaxSr2−xFeO4+δ system. Solid State Ionics. 2002;152–153:663-7.

[24] Larochelle S, Mehta A, Lu L, Mang PK, Vajk OP, Kaneko N, et al. Structural and magnetic properties of the single-layer manganese oxide La1−xSr1+xMnO4. Phys. Rev. B: Condens. Matter. 2005;71(2):424-35.

[25] Li-Ping S, Qiang L, Li-Hua H, Hui Z, Guo-Ying Z, Nan L, et al. Synthesis and performance of Sr1.5LaxMnO4 as cathode materials for intermediate temperature solid oxide fuel cell. J. Power Sources. 2011;196(14):5835-9.

[26] Munnings CN, Skinner SJ, Amow G, Whitfield PS, Davidson IJ. Structure, stability and electrical properties of the La2−xSrxMnO4±δ solid solution series. Solid State Ionics. 2006;177(19–25):1849-53.

[27] Nie HW, Wen TL, Wang SR, Wang YS, Guth U, Vashook V. Preparation, thermal expansion, chemical compatibility, electrical conductivity and polarization of A2−αA′αMO4 (A = Pr, Sm; A′ = Sr; M = Mn, Ni; α = 0.3, 0.6) as a new cathode for SOFC. Solid State Ionics. 2006;177(19–25):1929-32.

[28] Karita R, Kusaba H, Sasaki K, Teraoka Y. Synthesis, characterization and catalytic activity for NO–CO reaction of Pd–(La, Sr)2MnO4 system. Catal. Today. 2007;119(1–4):83-7.

[29] Karita R, Kusaba H, Sasaki K, Teraoka Y. Superiority of nitrate decomposition method for synthesis of K2NiF4-type LaxSr2−xMnO4 catalysts. Catal. Today. 2007;126(3–4):471-5.

[30] Sakka S. Handbook of sol-gel science and technology. 1. Sol-gel processing: Springer Science & Business Media; 2005.

[31] Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter. 1993;192(1–2):55-69.

[32] Rodríguez-Carvajal J. Recent Developments of the Program FullProf. Commission on Powder Diffraction (IUCr) Newsletter. 2001;26:12-9.

[33] Berar J-F, Lelann P. Esd’s and estimated probable error obtained in Rietveld refinements with local correlations. J. Appl. Crystallogr. 1991;24(1):1-5.

[34] Monti DAM, Baiker A. Temperature-programmed reduction. Parametric sensitivity and estimation of kinetic parameters. J. Catal. 1983;83(2):323-35.

[35] Malet P, Caballero A. The selection of experimental conditions in temperature-programmed reduction experiments. J. Chem. Soc., Faraday Trans. 1. 1988;84(7):2369-75.

[36] Perego C, Peratello S. Experimental methods in catalytic kinetics. Catal. Today. 1999;52(2–3):133-45.

[37] Trambouze P. Countercurrent two-phase flow fixed bed catalytic reactors. Chem. Eng. Sci. 1990;45(8):2269-75.

[38] Weisz PB, Prater CD. Interpretation of Measurements in Experimental Catalysis. In: W.G. Frankenburg VIK, Rideal EK, editors. Advances in Catalysis. Volume 6: Academic Press; 1954. p. 143-96.

[39] Frevel LK, Adams CE, Ruhberg LR. A fast search-match program for powder diffraction analysis. J. Appl. Crystallogr. 1976;9(3):199-204.

[40] Gorte RJ, Vohs JM. Nanostructured anodes for solid oxide fuel cells. Current Opinion in Colloid & Interface Science. 2009;14(4):236-44.

[41] ZHONG H, ZENG R. Structure of LaSrMO4 (M = Mn, Fe, Co, Ni, Cu) and their catalytic properties in the total oxidation of hexane. J. Serb. Chem. Soc. 2006;71:1049–59.

[42] Ponce S, Peña MA, Fierro JLG. Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites. Appl. Catal., B. 2000;24(3–4):193-205.

[43] Cimino S, Lisi L, Pirone R, Russo G, Turco M. Methane combustion on perovskites-based structured catalysts. Catal. Today. 2000;59(1–2):19-31.

[44] Porta P, De Rossi S, Faticanti M, Minelli G, Pettiti I, Lisi L, et al. Perovskite-Type Oxides: I. Structural, Magnetic, and Morphological Properties of LaMn1−xCuxO3 and LaCo1−xCuxO3 Solid Solutions with Large Surface Area. J. Solid State Chem. 1999;146(2):291-304.

[45] Rojas ML, Fierro JLG, Tejuca LG, Bell AT. Prepa-ration and characterization of LaMn1−xCUxO3+λ perovskite oxides. J. Catal. 1990;124(1):41-51.

[46] Al Daroukh M, Vashook VV, Ullmann H, Tietz F, Arual Raj I. Oxides of the AMO3 and A2MO4-type: structural stability, electrical conductivity and ther-mal expansion. Solid State Ionics. 2003;158(1–2):141-50.

[47] Broux T, Prestipino C, Bahout M, Hernandez O, Swain D, Paofai S, et al. Unprecedented High Solubility of Oxygen Interstitial Defects in La1.2Sr0.8MnO4+δ up to δ ~ 0.42 Revealed by In Situ High Temperature Neutron Powder Diffraction in Flowing O2. Chem. Mater. 2013;25(20):4053-63.

[48] Broux T, Bahout M, Hernandez O, Tonus F, Paofai S, Hansen T, et al. Reduction of Sr2MnO4Investigated by High Temperature in Situ Neutron Powder Diffraction under Hydrogen Flow. Inorg. Chem. 2013;52(2):1009-17.