Vol. 29 Núm. 2 (2016): Revista ION
Artículos

Copolímeros de poliuretano del tipo poli[(hexametilencarbamatobutanodiol)- co-(carbonato-co-éster)]

Borja Fernández-d'Arlas
Universidad del País Vasco
Maria Angeles Corcuera
Universidad del País Vasco
Arantxa Eceiza
Universidad del País Vasco

Publicado 2016-12-28

Palabras clave

  • Poliuretanos Elastoméricos Segmentados,
  • Diisocianato Alifático,
  • Policarbonato,
  • Copolímeros,
  • Relación Estructura-Propiedades.

Cómo citar

Fernández-d’Arlas, B., Corcuera, M. A., & Eceiza, A. (2016). Copolímeros de poliuretano del tipo poli[(hexametilencarbamatobutanodiol)- co-(carbonato-co-éster)]. Revista ION, 29(2). https://doi.org/10.18273/revion.v29n2-2016005

Resumen

Los poliuretanos segmentados termoplástico elastoméricos (PUSTE) comprenden una familia de materiales muy versátiles debido a su su potencial empleo en diversos campos tales como biomedicina. Entre los PUSTE los formados por policarbonatos dioles y diisocianatos alifáticos son especialmente atractivos debido a su bioestabilidad y biocompatibilidad. En este trabajo se presentan los resultados del análisis morfológico y conducta mecánica de una familia de PUSTEs formados por 1,6-hexametilen diisocianato (HDI), 1,4-butanodiol (BD) y un copolímero cauchoso de policaprolactona y polihexametilen carbonato diol, PCL-b-PHMC-b-PCL, sintetizados con distinta relación entre bloques rígidos (HDI-BD) y copolímero cauchoso.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Ugarte L, Saralegi A, Fernández R, Martín L, Corcuera MA, Eceiza A. Flexible polyurethane foams based on 100% renewably sourced polyols. Ind. Crop Prod. 2014;62(1):545-51.

[2] Mazo PC, Franco A, Ríos LA, Restrepo G. Obtención de espumas flexibles de poliuretano apartir de aceites de palma y castor modificados.Scientia et Technica, 2007;XIII(36):607-11.

[3] Padrón-Gamboa G, Arias-Marín EM, Romero-García J, Benavides-Mendoza A, Zamora-Rodríguez J, García-Rodríguez SP. Efecto de la cáscara de cacao en la obtención de espumas de poliuretano para uso hortícola. Propiedades físicas y de biodegradabilidad. Rev. Soc. Quím. Méx. 2004;48(2):156-64.

[4] Rangel NA, de Alva HE, Romero J, Rivera JL, Álvarez A, García E. Síntesis y caracterización de materiales reforzados (“composites”) de poliuretano poroso/hidroxiapatita.Revista Iberoamericana de Polímeros, 2007;8(2):99-111.

[5] Fuentes EL, Pérez S, Martínez SI, García AR. Redes poliméricas interpenetradas de poliuretano a partir de aceite de ricino modificado y poliestireno: miscibilidad y propiedades mecánicas en función de la composición. rev.ion. 2011;24(2):45-50.

[6] Olvera-Izaguirre V, Rivera-Armenta JL, Antonio-Cruz RdC, Mendoza-Martínez AM. Comportamiento térmico de IPN’s de poliuretano/poli (metacrilato de metilo) modificados con cargas inorgánicas. Revista Iberoamericana de Polímeros, 2007;8(4):313-22.

[7] Vega-Baudrit J, Sibaja-Ballestero M, Hernández-Hernández ME, Alvarado-Aguilar P. Síntesis y caracterizacion de redes elastoméricas de poliuretano (EPU) utilizado en la elaboración de calzado. I. estudio de la relacion estructura-propiedad. Revista Iberoamericana de Polímeros. 2006;7(3):99-112.

[8] Guzmán GA, Pardini OR, Aznar CA, Malvy JI. Dispersiones acuosas poliuretánicas e híbridos acrílico-poliuretánicas para la terminación de productos del cuero. XVI Congreso Latinoamericano de Químicos y técnicos de la Industria del Cuero. Buenos Aires, Argentina; 2004. Tabajo 7.

[9] Fernández-d’Arlas B, Corcuera MA, Labidi J, Mondragon I, Eceiza A. Poly(urea)urethanes based on amorphous quaternizable hard segments and a crystalline polyol derived from castor oil. Colloid. Polym. Sci. 2013;291(5):1247-54.

[10] Walezko RS, Korley LTJ, Pate BD, Thomas E and Hammond PT. Role of Increased Crystallinity in Deformation-Induced Structure of Segmented Thermoplastic Polyurethane Elastomers with PEO and PEO−PPO−PEO Soft Segments and HDI Hard Segments. Macromolecules. 2009;42(6):2041–53.

[11] Fernández-d ́Arlas B, Corcuera MA, Runt J, Eceiza A. Block architecture influence on the structure and mechanical performance of drawn polyurethane elastomers. Polym. Int. 2014;63(7):1278-87.

[12] Pulido-Florez J, Valero-Valdivieso M, Higuita-Arias L, Rodríguez-Gómez S. Elastómeros de poliuretano a partir de aceite de higuerilla y almidón de yuca modificado químicamente: síntesis y propiedades fisicoquímicas, fisicomecánicas y térmicas. rev.ion. 2008;21(1):79-86.

[13] Báez JE, Ramírez D, Valentín JL, Marcos-Fernández A. Biodegradable Poly(ester−urethane−amide)s Based on Poly(ε-caprolactone) and Diamide−Diol Chain Extenders with Crystalline Hard Segments. Synthesis and Characterization. Macromolecules. 2012;45(17):6966-80.

[14] Mishra A, Aswal VK, Maiti P. Nanostructure to Microstructure Self-Assembly of Aliphatic Polyurethanes: The Effect on Mechanical Properties. J. Phys. Chem. B. 2010;114(16):5292-300.

[15] Rueda-Larraz L, Fernández-d’Arlas B, Tercjak A, Ribes A, Mondragon I, Eceiza A. Synthesis and microstructure–mechanical property relationships of segmented polyurethanes based on a PCL–PTHF–PCL block copolymer as soft segment. Eur. Polym. J. 2009;45(7):2096-109.

[16] Patterson CW, Hanson D, Redondo A, Scott S, Henson N. Conformational Analysis of the Crystal Structure for MDI/BDO Hard Segments of Polyurethane Elastomers. J. Polym. Sci., Part B: Polym. Phys. 1999;37(17):2303–13.

[17] Fernández-d’Arlas B, Ramos JA, Saralagi A, Corcuera MA, Mondragon I, Eceiza A. Molecular Engineering of Elastic and Strong Supertough Polyurethanes. Macromolecules. 2012;45(8):3436-43.

[18] Fernández-d’Arlas B, González I, Eceiza I. Hacia la mímesis de la seda de araña a partir de poliuretanos con segmentos cortos de unidades rígidas y semiflexibles. Rev. Lat. Met. Mat. 2015;35(1):39-48.

[19] Calvo-Correas T, Santamaría-Echart A, Martin L, Valea A, Corcuera MA, Eceiza A. Novel thermally-responsive biopolyurethanes from biobased diisocyanates (Tesis de maestría). España: Universidad del País Vasco; 2015.

[20] Cooper SL, Tobolsky AV. Properties of linear elastomeric polyurethanes. J. Appl. Polym. Sci. 1966;10(12):1837-44.

[21] Yilgor I, Yilgor E, Guler IG, Ward TC, Wilkes GL. FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer. 2006;47(11):4105-14.

[22] Fernández-d’Arlas B, Rueda L, de la Caba K, Mondragon I, Eceiza A. Microdomain Composition and Properties Differences of Biodegradable Polyurethanes Based on MDI and HDI. Polym. Eng. Sci. 2008;48(3): 519-29.

[23] Lin SB, Hwang KS, Tsay SY, Cooper SL. Segmental orientation studies of polyether polyurethane block copolymers with different hard segment lengths and distributions. Colloid Polym. Sci. 1985;263(2):128-40.

[24] Martin DJ, Meijs GF, Gunatillake PA, Yozghatlian SP, Renwick GM. The Influence of Composition Ratio on the Morphology of Biomedical Polyurethanes. J. Appl. Polym. Sci. 1999;71(6):937–52.

[25] Santerre JP, Woodhouse K, Laroche G, Labow RS. Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials. 2005;26(35):7457-70.

[26] Kim YD, Kim SC. Effect of chemical structure on the biodegradation of polyurethanes under composting conditions. Polym. Degrad. Stab. 1998;62(2):343-52.

[27] Fernández-d’Arlas. Nanocomposites de poliuretanos elastoméricos y nanotubos de carbono multipared (Tesis Doctoral). España: Universidad del País Vasco (UPV/EHU); 2010.

[28] Salacinski HJ, Tai NR, Carson RJ, Edwards A, Hamilton G, Seifalian AM. In vitro stability of a novel compliant poly(carbonate-urea)urethane to oxidative and hydrolytic stress. J. Biomed. Mater. Res. 2002;59(2):207–18.

[29] Hirotsu T, Ketelaars AAJ, Nakayama K. Biodegradation of poly(e-caprolactone)-polycarbonate blend sheets. Polym. Degrad. Stab. 2000;68(3):311-6.

[30] Pinchuk L. A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of “biostable” polyurethanes. J. Biomater. Sci. Polym. Ed. 1994;6(3):225-67.

[31] Gogolewski S. Selected topics in biomedical polyurethanes. A review. Colloid Polym. Sci. 1989;267(9):757-85.

[32] Tang YW, Labow RS, Santerre JP. Isolation of methylene dianiline and aqueous-soluble biodegradation products from polycarbonate-polyurethanes. Biomaterials. 2003;24(17):2805-19.

[33] ASTM-D 4274-88. Polyurethane Raw Materials: Determination of hydroxyl Numbers of Polyols. Test Method A. Julio (2005).

[34] Sung CS, Scheider NS. Temperature Dependence of Hydrogen Bonding in Toluene Diisocyanate Based Polyurethanes. Macromolecules. 1997;10(2):452-8.

[35] Fernández CE, Bermúdez M, Moñoz-Guerra S, León S, Versteegen RM, Meijer EW. Crystal Structure and Morphology of Linear Aliphatic n-Polyurethanes. Macromolecules. 2010;43(9):4161-71.

[36] Wang CB, Cooper SL. Morphology and Properties of Segmented Polyether Polyurethane ureas. Macromolecules.1983;16(5):775-86.

[37] Chen TK, Chui JY, Shieh TS. Glass Transition Behaviors of a Polyurethane Hard Segment based on 4,4’-Diisocyanatodiphenylmethane and 1,4-Butanediol and the Calculation of Microdomain Composition. Macromolecules. 1997;30(17):5068-74.

[38] Chen TK, Shieh TS, Chui JY. Studies on the First DSC Endotherm of Polyurethane Hard Segment Based on 4,4’-Diphenylmethane Diisocyanate and 1,4-Butanediol. Macromolecules. 1998;31(4):1312-20.

[39] Cesteros-Iturbe LC. Aplicaciones de la FTIR al estudio de las interacciones polímero-polímero. Revista Iberoamericana de Polímeros. 2004;5(3):111-32.

[40] Rajkhowa R, Hu X, Tsuzuki T, Kaplan DL, Wang X. Structure and Biodegradation Mechanism of Milled Bombyx mori Silk Particles. Biomacromolecules. 2012;13(8):2503−12.

[41] Banderkar J, Krimm S. Vibrational analysis of peptides, polypeptides, and proteins: Characteristic amide bands of β-turns. Proc. Natl. Acad. Sci. USA, 1979;76(2):774-7.

[42] Papadopoulos P, Ene R, Weidner I, Kremer F. Similarities in the Structural Organization of Major and Minor Ampullate Spider Silk. Macromol. Rapid Commun. 2009;30(9):851-7.

[43] López-Carrasquero F. Análisis conformacional de polímeros mediante espectroscopía infrarroja de polarización (DIR). Revista Iberoamericana de Polímeros. 2003;4(4):48-64.

[44] Rabani G, Luftmann H, Kraft A. Synthesis and properties of segmented copolymers containing short aramid hard segments and aliphatic polyester or polycarbonate soft segments. Polymer. 2005;46(1):27-35.

[45] Franco-García L. Síntesis y caracterización de nuevas poliamidas con unidades monometilénicas. Tesis Doctoral, Universidad Politécnica de Cataluña, Barcelona, España, 1994.

[46] Lee KH, Kim KW, Pesapane A, Kim HY, Rabolt JF. Polarized FT-IR Study of Macroscopically Oriented Electrospun Nylon-6 Nanofibers. Macromolecules. 2008;41(4):1494-8.

[47] Yilgör E, Yilgör I, Yurtsever E. Hydrogen bonding and polyurethane morphology. I. Quantum mechanical calculations of hydrogen bond energies and vibrational spectroscopy of model compounds. Polymer. 2002;43(24):6551-9.

[48] Zha L, Wu M, Yang J. Hydrogen Bonding and Morphological Structure of Segmented Polyurethanes Based on Hydroquinone–Bis(β-hydroxyethy)ether as a Chain Extender. J. Appl. Polym. Sci. 1999;73(14):2895–902.

[49] Yeh F, Hsiao BS, Sauer B, Michel S, Siesler H. In-Situ Studies of Structure Development during Deformation of a Segmented Poly(urethane-urea) Elastomer. Macromolecules. 2003;36(6):1940-54.

[50] Huang SL, Lai JY. Structure-tensile properties of polyurethanes. Eur. Polym. J. 1997;33(10-12):1563-7.

[51] Vega-Baudrit J, Sibaja-Ballesteros, Martín-Martínez JM, Porras M. Perspectivas y uso de materiales nanoestructurados en el mejoramiento de materiales reforzados poliméricos. Revista Iberoamericana de Polímeros: 2010;11(7):574-92.

[52] Magonov SN, Cleveland J, Elings V, Denley D, Whangbo MH. Tapping-mode atomic force microscopy study of the near-surface composition of a styrene-butadiene-styrene triblock copolymer film. Surf. Sci. 1997;389(1-3):201-11.

[53] Ocando C, Tercjak A, Martín MD, Ramos JA, Campo M, Mondragon I. Morphology Development in Thermosetting Mixtures through the Variation on Chemical Functionalization Degree of Poly(styrene-b butadiene) Diblock Copolymer Modifiers. Thermomechanical Properties. Macromolecules. 2009;42(16):6215-24.

[54] McLean RS, Sauer BB. Tapping-Mode AFM Studies Using Phase Detection for Resolution of Nanophases in Segmented Polyurethanes and Other Block Copolymers. Macromolecules. 1997;30(26):8314-7.

[55] Garret JT, Siedlecki CA, Runt J. Microdomain Morphology of Poly (urethane urea) Multiblock Copolymers. Macromolecules. 2001;34(20):7066-70.

[56] Tamayo J, García F. Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy. Appl. Phys. Lett. 1997;71(16):2394-6.

[57] Fernández-d’Arlas B, Rueda L, Khan U, Coleman JN, Mondragon I, Eceiza A. Inverting Polyurethanes Synthesis: Effects on nano/micro-structure and mechanical properties. Soft Materials. 2011;9(1):79-93.

[58] Fernández-d’Arlas B, Fernández R, Runt J, Eceiza A. Polyurethanes containing a crystalline polyol and semiflexible urethane segments. J. Appl. Polym. Sci. 2014;132(3):41281.

[59] Kultys A, Pikus S. Polyurethanes Containing Sulfur. III. New Thermoplastic HDI-Based Segmented Polyurethanes with Diphenylmethane Unit in Their Structure. J. Polym. Sci., Part A: Polym. Chem. 2001;39(10):1733–42.

[60] Saiani A, Daunch WA, Verbeke H, Leenslag JW, Higgins JS. Origin of Multiple Melting Endotherms in a High Hard Block Content Polyurethane. 1. Thermodynamic Investigation. Macromolecules. 2001;34(26):9059-68.

[61] Díaz-Calderón P, Quero F, MacNaughtan B, Rousennova M, Enrione J. Efecto del sorbitol sobre la relajación estructural en películas de gelatina en estado vítreo. rev.ion. 2015;28(2):93-101.