Vol. 30 Núm. 2 (2017): Revista ION
Artículos

Efectos del envejecimiento por radiación UV en las propiedades químicas y reológicas de los cementos asfálticos extraídos de dos mezclas asfálticas

Wilmar Darío Fernández Gómez
Faculty of Environment and Natural Resources, Center of Pavements and Sustainable Material, Universidad Distrital Francisco Jose de Caldas
Hugo Alexander Rondón Quintana
Faculty of Environment and Natural Resources, Center of Pavements and Sustainable Material, Universidad Distrital Francisco Jose de Caldas, Bogota, Colombia
Fredy Alberto Reyes Lizcano
Department of Civil Engineering, CECATA Research Center, Pontificia Universidad Javeriana

Publicado 2018-05-05

Palabras clave

  • Oxidación del Asfalto,
  • fraccionamiento SARA,
  • Envejecimiento Asfalto,
  • Radiación UV

Cómo citar

Fernández Gómez, W. D., Rondón Quintana, H. A., & Reyes Lizcano, F. A. (2018). Efectos del envejecimiento por radiación UV en las propiedades químicas y reológicas de los cementos asfálticos extraídos de dos mezclas asfálticas. Revista ION, 30(2), 7–16. https://doi.org/10.18273/revion.v30n2-2017001

Resumen

El envejecimiento del asfalto es un problema crítico en la ingeniería de pavimentos porque el envejecimiento
reduce la durabilidad de los pavimentos asfálticos. Este artículo establece los efectos en las propiedades químicas y reológicas no solo por tratamientos de radiación ultravioleta sino también por exposición a temperatura y presión. Se utilizaron dos cementos asfálticos AC 60-70 y AC 80-100 para evaluar dos tipos de muestras. Las muestras de control son los asfaltos mencionados sin envejecer y otros extraídos de mezclas asfálticas. Los asfaltos originales se envejecieron siguiendo el protocolo del grado de desempeño de SUPERPAVE®. También el método SUPERPAVE® se utilizó para realizar el diseño de la mezcla asfáltica tipo MD-12. La superficie de las briquetas se sometió a periodos de radiación UV y de condensación de dos horas cada uno, hasta alcanzar 1000 horas. Después de los tratamientos de envejecimiento, el módulo complejo aumentó y el ángulo de fase decreció de manera similar en los dos asfaltos. Sin embargo, para el caso del tratamiento en PAV, la relación de envejecimiento medida a través del índice de inestabilidad coloidal fue de dos veces para el AC 60-70, mientras que en el AC 80-100 fue de 1,5 veces. Para el caso del tratamiento UV esta relación AR fue de 1,9 veces para ambos asfaltos. Lo anterior es debido al espesor del asfalto, que es diferente en la mezcla asfáltica comparado con el espesor del asfalto en la prueba PAV. El fraccionamiento SARA mostró incrementos en los asfaltenos lo que puede explicar la pérdida de ductilidad y el aumento de la rigidez después del envejecimiento.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Rondón HA, Moreno LÁ. Influence of Water on Asphalt Mixture Stripping: A Study on Asphalt Binders. Ing. Univ. 2010;14(2):297–312.

[2] Ruan Y, Davinson RR, Glover CJ. An investigation of asphalt durability: Relationships between ductility and rheological properties for unmodified asphalts. Pet. Sci. Technol. 2003;21:231–54.

[3] Khalid HA. A new approach for the accelerated ageing of porous asphalt mixtures. Proceedings of the Institution of Civil Engineers - Transport. 2002;153(3):171–81.

[4] Khalid HA, Walsh CM. Relating mix and binder fundamental properties of aged porous asphalt materials. In: Proceedings of the papers submitted for review at 2nd eurasphalt and eurobitume congress. E u r o p e a n Asphalt Pavement Association. European Bitumen Association, Editor. The Netherlands: Foundation Eurasphalt; 2000. p. 398–405.

[5] Kim OK, Bell CA, Wilson JE, Boyle G. Development of laboratory oxidative aging procedures for asphalt cements and asphalt mixtures. Transp. Res. Rec. 1987;1115:101–12.

[6] Santagata E, Baglieri O, Dalmazzo D, Tsantilis L. Experimental Investigation on the Combined Effects of Physical Hardening and Chemical Ageing on Low Temperature Properties of Bituminous Binders. In: 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials; Springer, Dordrecht: 2016. p. 631–41.

[7] Alavi MZ, Morian NE. Influence of asphalt binder oxidative aging on critical thermal cracking characteristics of asphalt mixtures. In: Asphalt Paving Technology 2015. Eugene Skok, Editor. United States of America: DEStech Publications, Inc;2016. p. 115-43.

[8] Lesueur D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid Interface Sci. 2009;145:42–82.

[9] Bocci M, Cerni G. The ultraviolet radiation in short-and long-term aging of bitumen. In: Proceedings of the Papers Submitted for Review at 2nd Eurasphalt and Eurobitume Congress. Spain: Foundation eurasphalt; 2000. p. 49-58.

[10] Durrieu F, Farcas F, Mouillet V. The influence of UV aging of a styrene/butadiene/ styrene modified bitumen: comparison between laboratory and on site aging. Fuel. 2007;86:1446–51.

[11] Wang PY, Wen Y, Zhao K, Chong D, Wong AS. Evolution and locational variation of asphalt binder aging in long-life hot-mix asphalt pavements. Constr. Build. Mater. 2014;68:172–82.

[12] Fernández WD, Rondón HA, Daza CE, Reyes FA. The effects of environmental aging on Colombian asphalts. Fuel. 2014;115:321–8.

[13] Bell A. Summary report on the aging of asphalt-aggregate systems. Strategic Highway Research Program (SHRP). 1989; SHRP-A-305:100.

[14] Bell CA. Evaluating Aging of Asphalt Mixtures. In: Performance Related Test Procedures for Bituminous Mixtures. Boole Press Limited, editor. Ireland: Dublin Boole Press 1997; 1997. p. 179-89.

[15] Chiu CT, Tia M, Ruth BE, Page GC. Investigation of laboratory aging processes of asphalt binders used in Florida. Transp. Res. Rec.1994;1436:60–70.

[16] Montepara A, Giuliani F. Comparison between ageing simulation tests of road bitumen. 2000.

[17] Brown S, Scholz TV. Development of laboratory protocols for the ageing of asphalt mixtures. In Eurasphalt and Eurobitume Congress, 2nd; 2000; Barcelona, Spain: ARRB Group Limited; 2000. p. 83–90.

[18] Airey G. State of the art report on ageing test methods for bituminous pavement materials. Int. J. Pavement Eng. 2003;4(3):165–76.

[19] Fernández W, Rondón H, Reyes F. A revie of asphalt and asphalt mixture aging. Ing. Investig.2013; 33(1):5–12.

[20] Rondon H, Reyes F. Envejecimiento de mezcla asfáltica en condiciones ambientales reales. Editorial Academica Española, 2012.

[21] Hugo F, Kennedy T. Surface cracking of asphalt mixtures in Southern Africa (doctoral dissertation). Austin, United States: University of Texas; 1984.

[22] Tia M, Ruth BE, Charai J, Shiau J, Richardson D, Williams J. Investigation of Original and In-Service Asphlat Properties for the Development of Improve Specifications. FDOT project University of Florida, final report, 1988.

[23] Montepara A. A theoretical-interpretative model of the relationship between UV-radiation ageing of bitumen and viscosity variation. In Proc. of Eurobitume Workshop, paper, 1999;(N°075).

[24] Martínez G, Caicedo B. Efecto de la radiación solar en el envejecimiento de ligantes y mezclas asfálticas. 2005.

[25] Lins VFC, Araújo MFA, Yoshida MI, Ferraz VP, Andrada DM, Lameiras FS. Photodegradation of hot-mix asphalt. Fuel. 2008;87(15–16):3254–61.

[26] Wu S, Pang L, Liu G, Zhu J. Laboratory study on ultraviolet radiation aging of bitumen. Journal of Materials in Civil Engineering. 2010;22(8):767-72.

[27] Rojas J, Amado H, Fernandez W, Reyes F, “Efectos de la radiación ultravioleta en asfaltos colombianos. Rev. Cient. Univ. Dist. 2012;15(1):97–105.

[28] Ardila ÁA, Granados SP. Envejecimiento de mezclas asfálticas 60-70 y 80-100 a largo plazo. 2012.

[29] Menapace I, Masad E. Evolution of the microstructure of unmodified and polymer modified asphalt binders with aging in an accelerated weathering tester. J. Microsc. 2016;263(3):341–56.

[30] Valtorta D, Poulikakos LD, Partl MN, Mazza E. Rheological properties of polymer modified bitumen from long-term field tests. Fuel.2008;86(7);938–48.

[31] Mouillet V, Farcas F, Besson S. Ageing by UV radiation of an elastomer modified bitumen. Fuel.2008; 87(12):2408–19.

[32] Afanasieva, N., & Álvarez, M. Estudio del envejecimiento de los asfaltos bajo la acción de algunos factores climáticos. Universidad Industrial de Santander, Colombia. 2004.

[33] Instituto de Desarrollo Urbano. Especificaciones técnicas generales de materiales y construcción para proyectos de infraestructura vial y de espacio público en Bogotá v3.0 [Online]. Available: https:// www.idu.gov.co/web/geodata/esp-tecnicas/ esp-tecnicas-2011. [Accessed: 01-May-2017].

[34] McGreer M. Weathering Testing Guidebook. Atlas Material Testing Technology, 2003.

[35] Instituto de Hidrología, Meteorología y Estudios Ambientales IDEAM, Atlas de Radiación Solar, Ultravioleta y Ozono de Colombia; 2014.

[36] Anderson DA, Christensen DW, Bahia HU, Dongre R, Sharma MG, Antle CE. Binder Characterization and Evaluation. Volume 3: Physical Characterization. Unite States: 1994.

[37] Anderson DA, Bahia HU. The pressure aging vessel (PAV): a test to simulate rheological changes due to field aging. Phys. Prop. Asph. Cem. Bind.1995: 67–88.

[38] Siddiqui MN, Ali MF. Studies on the aging behavior of the Arabian asphalts. Fuel. 1999;78(9):1005-15.

[39] H. Rondon and F. Reyes, Envejecimiento de mezcla asfáltica en condiciones ambientales reales. Editorial Academica Española, 2012.

[40] Kandhal, P., & Chakraborty, S. “Effect of asphalt film thickness on short-and longterm aging of asphalt paving mixtures”. Transportation Research Record: Journal of the Transportation Research Board, (1535), 83-90, 1996.