Genes del Mycobacterium tuberculosis involucrados en la patogenicidad y resistencia a antibióticos durante la tuberculosis pulmonar y extrapulmonar
PDF
HTML

Cómo citar

Fontalvo Rivera, D., & Gómez Camargo, D. (2015). Genes del Mycobacterium tuberculosis involucrados en la patogenicidad y resistencia a antibióticos durante la tuberculosis pulmonar y extrapulmonar. Médicas UIS, 28(1), 39–51. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistamedicasuis/article/view/4904

Resumen

Introducción: la tuberculosis sigue siendo un problema en salud pública, causada por el complejo Mycobacterium tuberculosis, por tanto es importante conocer las características genéticas de la bacteria. Objetivo: realizar una revisión bibliográfica sobre los principales componentes del genoma del Mycobacterium tuberculosis, a fin de comprender los mecanismos de patogénesis y la resistencia a medicamentos. Metodología de búsqueda: búsqueda de literatura en español e inglés a través Medline, PubMed, SciELO, UniProt, TubercuList. De 118 publicaciones revisadas solo 93 fueron seleccionados. Resultados: el genoma del Mycobacterium tuberculosis H37Rv comprende 4 411 529 pares de bases. Gran parte de su capacidad de codificación está destinada a la producción de enzimas envueltas en la lipogénesis y lipólisis. Conclusión: las dificultades para manipular las micobacterias genéticamente han hecho de ellas un modelo difícil de caracterizar genéticamente. El desarrollo de herramientas para la manipulación genética han facilitado el entendimiento de la organización del genoma, expresión de sus genes y determinación fenotípica que influyen en su patogenicidad y resistencia a fármacos. MÉD.UIS. 2015;28(1):39-51.

Palabras clave: Mycobacterium tuberculosis. Genes. Genoma. Metabolismo. Resistencia a medicamentos.


PDF
HTML

Referencias

Wheeler P, Ratledge C. Tuberculosis: Pathogenesis, Protection, and Control. En: Ed. Bloom BR. Washington DC: ASM Press; 1994. p. 353-85.

Brennan P, Draper P. Tuberculosis: Pathogenesis, Protection, and Control. En: Ed. Bloom BR. Washington DC: ASM Press; 1994.

p. 271-84.

Kolattukudy P, Fernandes N, Azad A, Fitzmaurice A, Sirakova T. Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol. Microbiol. 1997;24:263-70.

Chan J, Kaufmann S. Tuberculosis: Pathogenesis, Protection, and Control. En: Ed. Bloom BR. Washington DC: ASM Press; 1994. p. 271-84.

Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:537-43.

Lamichhane G, Zignol M, Blades N, Geiman D, Dougherty A, Grosset J, et al. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc Natl Acad Sci. 2003;100:7213-18.

Fleischmann R, Alland D, Eisen J,Carpenter L. Whole Genome comparison of Mycobacterium tuberculosis Clinical and

Laboratory strains. Journal of Bacteriology. 2002;184(19):5479-90.

Vissa V, Sakamuri R, Li W, Brennan PJ. Defining mycobacteria: Shared and specific genome features for different lifestyles. Indian J Microbiol. 2009;49:11-47.

Gordon SV, Heym B, Parkhill J, Barrell B, Cole ST. New insertion sequences and a novel repeated sequence in the genome of

Mycobacterium tuberculosis H37Rv. Microbiology. 1999;145(Pt

:881-92

Cave T, Eisenach K, Crawford J, Bates H, Gicquel G. IS6210, an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res. 1990;18:188.

Collins DM, Stephens DM. Identification of an insertion sequence, IS 1081, in Mycobacterium bovis. FEMS Microbiol Lett. 1991;67(1):11-5.

Fang Z, Morrison N, Watt B, Doig C, Forbes K. IS 61 10 transposition and evolutionary scenario of the direct repeat locus in a group of closely related Mycobacterium tuberculosis strains. J Bacteriol. 1998;180:2102-9.

Mariani F, Piccolella E, Colizzi V, Rappuoli R, Gross R. Characterization of an IS-like element from Mycobacterium tuberculosis. J Gen Microbiol. 1993;139(8):1767-72.

Saves I, Lewis LA, Westrelin F, Warren R, Daffé M, Masson JM. Specificities and functions of the recA and pps1 intein genes

of Mycobacterium tuberculosis and application for diagnosis of tuberculosis. J Clin Microbiol. 2002;40(3):943-50.

Baldeviano C, Luna C, Cáceres T, Calderón R. Detección sensible y específica de Mycobacterium tuberculosis a partir de muestras clínicas, mediante la amplificación de un elemento repetitivo de la familia REP13E12. Rev Peru Med Exp Salud Publica. 2007;24(1):5-12.

Bibb LA, Hatfull GF. Integration and excision of the Mycobacterium tuberculosis prophage-like element, phiRv1. Mol Microbiol. 2002;45(6):1515-26.

Young D, Fruth U. New Generation Vaccines. In: Levine M, Woodrow G, Kaper J, Cobon GS. Editors. New York: Marcel Dekker; 1997. p. 631-45.

Brennan M, Fruth U, Mlstien J, Tiernan R, de Andrade Nishioka S, Chocarro L, et al. Development of new tuberculosis vaccines: a global perspective on regulatory issues. PLoS Med. 2007;4(8):e252.

Young D, Dye C. The development and impact of tuberculosis

vaccines.Cell. 2006;124:683-7.

Brennan MJ. The tuberculosis vaccine challenge. Tuberculosis. 2005;85:7-12.

Fruth U, Young D. Prospects for new TB vaccines: Stop TB Working Group on TB vaccine development. Int J Tuberc Lung Dis. 2004;8:151-5.

Akhter Y, Ehebauer MT, Mukhopadhyay S, Hasnain SE. The PE/PPE multigene family codes for virulence factors and is a possible source of mycobacterial antigenic variation: perhaps more?. Biochimie. 2012;94(1):110-6.

Voskuil MI, Schnappinger D, Rutherford R, Liu Y, Schoolnik GK. Regulations of Mycobacterium tuberculosis PE/PPE genes. Tuberculosis (Edinb). 2004;84(3-4):256-62.

Gey van Pittius NC, Sampson SL, Lee H, Kim Y, van Helden PD, Warren RM. Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol. 2006;6:95.

McEvoy CR, van Helden PD, Warren RM, Gey van Pittius NC. Evidence for a rapid rate of molecular evolution at the hypervariable and immunogenic Mycobacterium tuberculosis PPE38 gene region. BMC Evol Biol. 2009;9:237.

McEvoy CR, Cloete R, Müller B, Schürch AC, van Helden PD, Gagneux S, et al. Comparative analysis of Mycobacterium tuberculosis pe and ppe genes reveals high sequence variation and an apparent absence of selective constraints. PLoS One. 2012;7(4):e30593. Epub 4 Abr 2012.

Sayes F, Sun L, Di Luca M, Simeone R, Degaiffier N, Fiette L, et al. Strong immunogenicity and cross-reactivity of Mycobacterium tuberculosis ESX-5 type VII secretion: encoded PE-PPE proteins predicts vaccine potential. Cell Host Microbe. 2012;11(4):352-63.

Gordon SV, Eiglmeier K, Brosch R, Garnier T, Honoré N, Barrell BG, Cole ST. Genomics of Mycobacterium Tuberculosis and Mycobacterium Leprae. In: Ratledge C, Dale J, editors. Mycobacteria: molecular biology and virulence. Oxford: Blackwell Science;1999. p. 93-109.

Arráiz N. Factores sigma y respuesta a estrés en micobacterias.

Kasmera. 2002;30(2):112-25.

Rodrigue S, Provvedi R, Jacques PE, Gaudreau L, Manganelli R. The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol Rev. 2006;30(6):926-41.

Gruber TM, Gross CA. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol. 2003;57:441-66.

Gruber TM, Markov D, Sharp MM, Young BA, Lu CZ, Zhong HJ, et al. Binding of the initiation factor sigma(70) to core RNA polymerase is a multistep process. Mol Cell. 2001;8(1):21-31.

Panaghie G, Aiyar SE, Bobb KL, Hayward RS, de Haseth PL. Aromatic amino acids in region 2.3 of Escherichia coli sigma 70 participate collectively in the formation of an RNA polymerasepromoter open complex. J Mol Biol. 2000;299(5):1217-30.

Zuber P, Healy J, Carter HL, Cutting S, Moran CP Jr, Losick R. Mutation changing the specificity of an RNA polymerase sigma factor. J Mol Biol. 1989;206(4):605-14.

Wu S, Howard ST, Lakey DL, Kipnis A, Samten B, Safi H, et al. The principal sigma factor sigA mediates enhanced growth of Mycobacterium tuberculosis in vivo. Mol Microbiol. 2004;51(6):1551-62.

Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev. 2003;16(3):463-96.

Graham JE, Clark-Curtiss JE. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by

human macrophages by selective capture of transcribed sequences

(SCOTS). Proc Natl Acad Sci U S A. 1999;96(20):11554-9.

Manganelli R, Dubnau E, Tyagi S, Kramer FR, Smith I. Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol Microbiol. 1999;31(2):715-24

Chen P, Ruiz RE, Li Q, Silver RF, Bishai WR. Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate sigma factor gene, sigF. Infect Immun. 2000;68(10):5575-80.

Wayne LG, Hayes LG. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun. 1996;64(6):2062-9.

Mathews CK, Van Holde KE, Ahern KG. Procesos oxidativos: ciclo del ácido cítrico y ruta de las pentosas fosfato. En: Mathews CK, Van Holde KE, Ahern KGm, editores. Bioquímica. 3a ed. España: Pearson Educación, 2002. p. 568-71.

Voskuil MI, Visconti KC, Schoolnik GK. Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis (Edinb). 2004;84(3-4):218-27.

Aguilar LD, Infante E, Bianco MV, Cataldi A, Bigi F. Immunogenicity and protection induced by Mycobacterium tuberculosis mce-2 and mce-3 mutants in a Balb/c mouse model of progressive pulmonary tuberculosis. Vaccine. 2006;24(13):2333-42. Epub 12 Dic 2005.

Boon C, Dick T. How Mycobacterium tuberculosis goes to sleep: the dormancy survival regulator DosR a decade later. Future Microbiol. 2012;7(4):513-8.

Yepiz-Plascencia GM, Radebaugh CA, Hallick RB. The Euglena gracilis chloroplast rpoB gene. Novel gene organization and transcription of the RNA polymerase subunit operon. Nucleic Acids Res. 1990;18(7):1869-78.

Woychik NA, Young RA. RNA polymerase II: subunit structure and function. Trends Biochem Sci. 1990;15(9):347-51.

Gingeras TR, Ghandour G, Wang E, Berno A, Small PM, Drobniewski F, et al. Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays. Genome Res. 1998;8(5):435-48.

Miller LP, Crawford JT, Shinnick TM. The rpoB gene of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1994;38(4):805-11.

Ebrahimi-Rad M, Bifani P, Martin C, Kremer K, Samper S, Rauzier J, et al. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg Infect Dis. 2003;9(7):838-45.

Agapito J, Neyra V, Baldeviano C, Espínoza JR, Accinelli R. Caracterización de las mutaciones en el gen rpob asociadas a la resistencia a rifampicina y tipificación molecular mediante rflp (IS6110) en cepas de M. Tuberculosis de pacientes con tuberculosis pulmonar. Enfermedades del Tórax. 2003;46(1):9-24.

Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993;341(8846):647-50.

Chakravorty S, Aladegbami B, Motiwala A, Dai Y, Safi H, Brimacombe M, et al. Rifampicin resistance, Beijing-W Clade-Single Nucleotide Polymorphism Cluster group 2 phylogeny, and the Rv2629 191-C-Allele in Mycobacterium tuberculosis strains. J Clin Microbiol. 2008:46(8):2555-60.

Almeida Da Silva PE, Palomino JC. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother. 2011;66(7):1417-30. Epub 9 May 2011.

Caws M, Duy PM, Tho DQ, Lan NT, Hoa DV, Farrar J. Mutations prevalent among rifampin- and isoniazid-resistant Mycobacterium tuberculosis isolates from a hospital in Vietnam. J Clin Microbiol. 2006;44(7):2333-7.

De La Iglesia AI, Morbidoni HR. Mecanismos de acción y de resistencia de rifampicina e isoniacida en Mycobacterium tuberculosis: nueva información sobre viejos conocidos. Rev Argent Microbiol. 2006;38(2):97-109.

Heym B, Alzari PM, Honoré N, Cole ST. Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol. 1995;15(2):235-45.

Pym AS, Saint-Joanis B, Cole ST. Effect of katG mutations on the

virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect Immun. 2002;70(9):4955-60.

Wengenack N, Rusnak F. Evidence for isoniazid-dependent free radical generation catalyzed by Mycobacterium tuberculosis KatG and the isoniazid-resistant mutant KatG(S315T). Biochemistry. 2001;40(30):8990-6.

Ramaswamy SV, Reich R, Dou SJ, Jasperse L, Pan X, Wanger A, et al. Single Nucleotide Polymorphisms in Genes Associated with Isoniazid Resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2003;47(4):1241-50.

Abate G, Hoffner SE, Thomsen VO, Miörner H. Characterization of isoniazid-resistant strains of Mycobacterium tuberculosis on the basis of phenotypic properties and mutations in katG. Eur J Clin Microbiol Infect Dis. 2001;20(5):329- 33.

Alland D, Steyn AJ, Weisbrod T, Aldrich K, Jacobs WR Jr. Characterization of the Mycobacterium tuberculosis iniBAC promoter, a promoter that responds to cell wall biosynthesis inhibition. J Bacteriol. 2000;182(7):1802-11.

Pagán-Ramos E, Master SS, Pritchett CL, Reimschuessel R, Trucksis M, Timmins GS, et al. Molecular and physiological effects of mycobacterial oxyR Inactivation. J Bacteriol. 2006;188(7):2674-80.

Zahrt TC, Song J, Siple J, Deretic V. Mycobacterial FurA is a negative regulator of catalase-peroxidase gene katG. Mol Microbiol. 2001;39(5):1174-85.

Timmins GS, Master S, Rusnak F, Deretic V. Requirements for nitric oxide generation from isoniazid activation in vitro and inhibition of mycobacterial respiration in vivo. J Bacteriol. 2004;186(16):5427-31.

Hillas PJ, del Alba FS, Oyarzabal J, Wilks A, Ortiz De Montellano

PR . The AhpC and AhpD antioxidant defense system of Mycobacterium tuberculosis. J Biol Chem. 2000;275(25):18801-9.

Master SS, Springer B, Sander P, Boettger EC, Deretic V, Timmins GS. Oxidative stress response genes in Mycobacterium tuberculosis: role of ahpC in resistance to peroxynitrite and stage-specific survival in macrophages. Microbiology. 2002;148(Pt 10):3139-44.

Chauhan R, Mande SC. Characterization of the Mycobacterium tuberculosis H37Rv alkyl hydroperoxidase AhpC points to the importance of ionic interactions in oligomerization and activity. Biochem J. 2001;354(Pt 1):209-15.

Zahrt TC, Deretic V. Reactive nitrogen and oxygen intermediates and bacterial defenses: unusual adaptations in Mycobacterium tuberculosis. Antioxid Redox Signal. 2002;4(1):141-59.

Dubrac S, Touati D. Fur positive regulation of iron superoxide

dismutase in Escherichia coli: functional analysis of the sodB promoter. J Bacteriol. 2000;182(13):3802-8.

Ulger M, Aslan G, Emekdaş G, Tezcan S, Serin MS. [Investigation of rpsL and rrs gene region mutations in streptomycin resistant Mycobacterium tuberculosis complex isolates]. Mikrobiyol Bul. 2009;43(1):115-20.

Chaoui I, Sabouni R, Kourout M, Jordaan AM, Lahlou O, Elouad R, et al. Analysis of Isoniazid, Streptomycin and Ethambutol resistance in Mycobacterium tuberculosis isolates from Morocco. J Infect Dev Ctries. 2009;3(4):278-84.

Ozturk CE, Sanic A, Kaya D, Ceyhan I. Molecular analysis of Isoniazid, Rifampin and streptomycin resistance in Mycobacterium tuberculosis isolates from patients with tuberculosis in Düzce, Turkey. Jpn J Infect Dis. 2005;58(5):309-12.

Juréen P, Werngren J, Toro JC, Hoffner S. Pyrazinamide resistance and pncA gene mutations in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2008;52(5):1852-4. Epub 2008 Mar 3.

Belanger AE, Besra GS, Ford ME, Mikusová K, Belisle JT, Brennan PJ, et al. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci U S A. 1996;93(21):11919-24.

Telenti A, Philipp WJ, Sreevatsan S, Bernasconi C, Stockbauer KE, Wieles B, et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med. 1997;3(5):567-70.

Von Groll A, Martin A, Jureen P, Hoffner S, Vandamme P, Portaels F, et al. Fluoroquinolone Resistance in Mycobacterium tuberculosis and Mutations in gyrA and gyrB. Antimicrob Agents Chemother. 2009;53(10):4498-500. Epub 2009 Aug 17.

Coll P. Fármacos con actividad frente a Mycobacterium tuberculosis. Enferm Infecc Microbiol Clin. 2009;27(8):474-80. Epub 2009 Sep 18.

Malik S, Willby M, Sikes D, Tsodikov OV, Posey JE. New Insights into Fluoroquinolone Resistance in Mycobacterium tuberculosis: Functional Genetic Analysis of gyrA and gyrB Mutations. PLoS One. 2012;7(6):e39754. Epub 2012 Jun 28.

Georghiou SB, Magana M, Garfein RS, Catanzaro DG, Catanzaro A, Rodwell TC. Evaluation of Genetic Mutations Associated with Mycobacterium tuberculosis Resistance to Amikacin, Kanamycin and Capreomycin: A Systematic Review. PLoS One. 2012;7(3):e33275. Epub 2012 Mar 29.

Fajardo A, Martinez-Martin N, Mercadillo M, Galán JC, Ghysels B, Matthijs S, et al. The neglected intrinsic resistome of bacterial pathogens. PLoS One. 2008;3(2):e1619.

Louw GE, Warren RM, Gey van Pittius NC, McEvoy CR, Van Helden PD, Victor TC. A balancing act: Efflux/ Influx in mycobacterial drug resistance. Antimicrob Agents Chemother. 2009;53(8):3181-9.

Nikaido H. Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol. 2001;12(3):215-23.

Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem. 1995;64:29-63.

Viveiros M, Portugal I, Bettencourt R, Victor TC, Jordaan AM, Leandro C, et al. Isoniazid-induced transient high-level resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2002;46(9):2804-10.

Tekaia F, Gordon SV, Garnier T, Brosch R, Barrell BG, Cole ST. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuber Lung Dis. 1999;79(6):329-42.

Machado D, Couto I, Perdigão J, Rodrigues L, Portugal I, Baptista P, et al. Contribution of Efflux to the emergence of Isoniazid and multidrug resistance in Mycobacterium tuberculosis. PLoS One. 2012;7(4):e34538. Epub 2012 Apr 6.

Pasca MR, Guglierame P, De Rossi E, Zara F, Riccardi G. mmpL7 gene of Mycocabterium tuberculosis is responsible for Isoniazid efflux in Mycobacterium smegmatis. Antimicrob Agents Chemother. 2005;49(11):4775-7.

Colangeli R, Helb D, Sridharan S, Sun J, Varma-Basil M, Hazbón MH, et al. The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. Mol Microbiol. 2005;55(6):1829-40.

Gupta AK, Chauhan DS, Srivastava K, Das R, Batra S, Mittal M, et al. Estimation of efflux mediated multi-drug resistance and its correlation with expression levels of two major efflux pumps in mycobacteria. J Commun Dis. 2006;38(3):246-54.

Jiang X, Zhang W, Zhang Y, Gao F, Lu C, Zhang X, et al. Assessment of efflux pump gene expression in a clinical isolate Mycobacterium tuberculosis by real-time reverse transcription PCR. Microb Drug Resist. 2008;14(1):7-11.

Obata S, Zwolska Z, Toyota E, Kudo K, Nakamura A, Sawai T, et al. Association of rpoB mutations with rifampicin resistance in Mycobacterium avium. Int J Antimicrob Agents. 2006;27(1):32- 9. Epub 2005 Dec 20.

Descargas

Los datos de descargas todavía no están disponibles.