Vol. 17 Núm. 2 (2018): Revista UIS Ingenierías
Artículos

Propiedades de contacto tibiofemoral para diferentes ángulos de flexión en rodilla por lesión de LCA

Daniel Chaparro
Universidad Industrial de Santander
Cesar Herrera
Instituto Tecnológico y de Estudios Superiores de Monterrey
Diego Fernando Villegas Bermudez
Universidad Industrial de Santander

Publicado 2018-06-02

Palabras clave

  • LCA,
  • propiedades de contacto tibio-femoral,
  • rodilla,
  • osteoartritis,
  • sensor de presión

Cómo citar

Chaparro, D., Herrera, C., & Villegas Bermudez, D. F. (2018). Propiedades de contacto tibiofemoral para diferentes ángulos de flexión en rodilla por lesión de LCA. Revista UIS Ingenierías, 17(2), 283–290. https://doi.org/10.18273/revuin.v17n2-2018024

Resumen

En condiciones normales, uno de los estabilizadores de rodilla más importante es el Ligamento Cruzado Anterior (LCA).  Siete rodillas de cerdo fueron sometidas a una carga de compresión de 700 N, a tres diferentes ángulos de flexión (70°, 55° y 40°), usando una máquina universal de ensayos MTS Bionix 515.11. Se obtuvieron presiones de contacto, área de contacto y fuerza pico para rodillas sanas y rodillas con LCA lesionado por hiperextensión inducido por una carga a la rodilla, en la parte posterior de la tibia, con la rodilla en extensión completa hasta que el ligamento falló.  Los resultados obtenidos mostraron diferencias significativas (p<0.05) para la presión de contacto para el más grande ángulo evaluado vs. todos los otros ángulos en la rodilla lesionada.  Para el área de contacto hubo solo algunas pequeñas diferencias.  Por último, la fuerza pico tuvo diferencias estadísticamente significativas en casi todas las condiciones, lo que denota la importancia del LCA como estabilizador primario. Este estudio busca determinar la mecánica del contacto tibiofemoral en rodillas sanas y con ruptura de LCA.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

A.M. Kiapour, M.R. Shalvoy et al., “Validation of Porcine Knee as a Sex-specific Model to Study Human Anterior Cruciate Ligament Disorders”, Clinical Orthopaedics and Related Research, vol. 473, no.2, pp. 639–650, 2014

B.E. Øiestad et al., “Knee function and prevalence of knee osteoarthritis after anterior cruciate ligament reconstruction: A prospective study with 10 to 15 years of follow-up”, American Journal of Sports Medicine, vol. 38, no. 11, pp. 2201–2210, 2010.

B.L. Proffen et al., “A comparative anatomical study of the human knee and six animal species”, Knee, vol. 19, no. 4, pp. 493–499, 2012.

D. F. Villegas et al. “A quantitative study of the microstructure and biochemistry of the medial meniscal horn attachments”, Annals of biomedical engineering, vol. 36, no 1, p. 123-131, 2008

D. F. Villegas et al. “Failure properties and strain distribution analysis of meniscal attachments”, Journal of biomechanics, vol. 40, no 12, p. 2655-2662, 2007

D.K. Nikolić. “Lateral meniscal tears and their evolution in acute injuries of the anterior cruciate ligament of the knee. Arthroscopic analysis”, Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA. 1998, vol. 6, pp. 26–30, pp. 26–30, Jan. 1989.

E.G. Meyer and R.C. Haut, “Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression”, Journal of Biomechanics, vol. 41, no. 16, pp. 3377–3383, 2008

E.G. Meyer and R.C. Haut, “Excessive compression of the human tibio-femoral joint causes ACL rupture”, Journal of Biomechanics, vol. 38, no. 16, pp. 2311-2316, 2005.

E.J. Miller et al., “Experimental validation of a tibiofemoral model for analyzing joint force distribution”, Journal of Biomechanics, vol. 42, no. 9, pp. 1355–1359, 2009

F. Forriol, A. Maestro y J. Vaquero. "El ligamento cruzado anterior: morfología y función." Trauma Fund MAPFRE 19, pp° 7-18, 2008

F. Garcia Perez, M. Florez-Garcia. “Escalas de valoración funcional en lesiones ligamentosas de rodilla”, Revista de la Sociedad Española de Rehabilitación y Medicina Física: Vol. 28, p. 456-464, junio, 1994.

F.P. Carpes et al., “On the bilateral asymmetry during running and cycling - A review considering leg preference”, Physical Therapy in Sport, vol. 11, no. 4, pp. 136–142, 2010

Ferretti et al., “Osteoarthritis of the knee after ACL reconstruction”, International Orthopaedics, vol. 15, no. 4, pp. 367–371, 1991

Georgoulis et al., “Tibial rotation is not restored after ACL reconstruction with a hamstring graft”, Clinical Orthopaedics and Related Research, no. 454, pp. 89–94, 2007

Guoan Li, et al, “In vivo kinematics of the ACL during weight-bearing knee flexion”, Journal of orthopaedic research, vol. 23, no 2, p. 340-344, 2005

H. Jonsson et al., “Positive pivot shift after ACL reconstruction predicts later osteoarthrosis: 63 Patients followed 5-9 years after surgery”, Acta Orthopaedica Scandinavica, vol. 75, no. 5, pp. 594–599, 2004

J. Gillquist and K. Messner, “Anterior cruciate ligament reconstruction and the long-term incidence of gonarthrosis”, Sports medicine (Auckland, N.Z.), vol. 27, no. 3, pp. 143–156, 1999

J. Guillen, J. Jiménez. “Anatomía Quirúrgica de la Rodilla”, Revista Ortopédica de Trauma. vol. 28, fascículo 3, 1984

J. Robinson et al. “Two-bundle, four-tunnel anterior cruciate ligament reconstruction”, Knee Surgery, Sports Traumatology, Arthroscopy, vol. 14, p. 629-636, Julio, 2006

J.D. Ayala-mejías, G.A. García-Estrada and L. Alcocer Pérez-España, “Lesiones del ligamento cruzado anterior”, vol. 28, no. 1, pp. 57–67, 2014

J.W. Xerogeanes et al., “A functional comparison of animal anterior cruciate ligament models to the human anterior cruciate ligament”, Annals of biomedical engineering, vol. 26, no. 3, pp. 345–52, 1998

Jeong-Hee Seo, et al. “Effect of repair of radial tears at the root of the posterior horn of the medial meniscus with the pullout suture technique: a biomechanical study using porcine knees”, Arthroscopy, vol. 25, no 11, p. 1281-1287, 2009

Jin Goo Kim, et al, “Tibiofemoral contact mechanics following posterior root of medial meniscus tear, repair, meniscectomy, and allograft transplantation”, Knee Surgery, Sports Traumatology, Arthroscopy, vol. 21, no 9, p. 2121-2125, 2013

Kent N. Bachus, et al. “Measuring contact area, force, and pressure for bioengineering applications: using Fuji Film and TekScan systems”, Medical engineering and physics, vol. 28, no 5, p. 483-488, 2006

L.S. Lohmander, P.M. Englund et al., “The long-term consequence of anterior cruciate ligament and meniscus injuries: Osteoarthritis”, American Journal of Sports Medicine, vol. 35, no. 10, pp. 1756–1769, 2010

M. A. Campuzano-Marín. “Predicción diagnóstica en las lesiones del ligamento cruzado anterior. Madrid”. Universidad Complutense de Madrid. Facultad de Medicina. Departamento de Cirugía, 1998. 188 p.

M. C. Panesso et al. “Biomecánica clínica de la rodilla”. Facultad de Rehabilitación y Desarrollo Humano. Bogotá D.C.: Editorial Universidad del Rosario, 2009. 40 p. – (Documento de investigación; 39).

M.F. Arruda and G. Salomão, “Morphological Characterization and Preparation of Knee Joint Porcino, Verisimilitude and Contributions as Alternative Material for Teaching Human Anatomy”, vol. 3, no. 7, pp. 35–41, 2015

M.L. Killian, D.I. Isaac et al., “Traumatic anterior cruciate ligament tear and its implications on meniscal degradation: A preliminary novel lapine osteoarthritis model” Journal of Surgical Research, vol. 164, no. 2, pp. 234–241, 2010

N. Wetters et al., “Mechanism of Injury and Risk Factors for Anterior Cruciate Ligament Injury”, Operative Techniques in Sports Medicine, vol. 24, no. 1, pp. 2–6, 2016

Nikhil N. Verma, et al, “The effects of medial meniscal transplantation techniques on intra-articular contact pressures”, J Knee Surg, vol. 21, p. 20-26, 2008

R. Linares B. “Diseño y construcción de un banco experimental adaptable a una máquina universal de ensayos MTS 810 para el análisis biomecánico de la articulación de la rodilla del cuerpo humano bajo la acción de diferentes tipos de carga estática”. Trabajo de grado Ingeniero Mecánico. Bucaramanga.: Universidad Industrial de Santander. Facultad de Ingenierías Físico-Mecánicas. Escuela de Ingeniería Mecánica, 2015. 98 p.

S. T Hanley, R. F. Warren. “Arthroscopic meniscectomy in the anterior cruciate ligament-deficient knee”, Arthroscopy, vol 3, p. 59-65 ,1987

Sally Arno, et al, “Tibiofemoral contact mechanics following a horizontal cleavage lesion in the posterior horn of the medial meniscus”, Journal of Orthopaedic Research, vol. 33, no 4, p. 584-590, 2015

Stephen J. Lee, et al, “Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee”, The American journal of sports medicine, vol. 34, no 8, p. 1334-1344, 2006

T. Fukubayashi, H. Kurosawa, “The contact area and pressure distribution pattern of the knee: A study of normal and osteoarthrotic knee joints”, Acta Orthopaedica, vol. 51, no. 1–6, pp. 871–879, 1980

T.P. Andriacchi et al., “Changes at the knee after ACL injury cause cartilage thinning”, Clinical Orthopaedics and Related Research, no. 442, pp. 39–44, 2006

F. Valencia-Aguirre, C. Mejía-Echeverría, V. Erazo-Arteaga, “Desarrollo de una prótesis de rodilla para amputaciones transfemorales usando herramientas computacionales. CAD-CAE-CAM,” Rev. UIS Ing., vol. 16, no. 2, pp. 23-34, 2017. DOI: https://doi.org/10.18273/revuin.v16n2-2017002


V.C Mow and W.C Hayes, en Basic Orthopaedic Biomechanics, 2^nd ed. Lippincott-Raven, 1997. ISBN 0397516843.

Y. Morimoto et al., “Tibiofemoral Joint Contact Area and Pressure After Single- and Double-Bundle Anterior Cruciate Ligament Reconstruction”, Arthroscopy - Journal of Arthroscopic and Related Surgery, vol. 25, no. 1, pp. 62–69, 2009