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Abstract
This work presents a method for rock porosity prediction from the X-ray computed tomography (CT) logs 
obtained using a double energy approach, bulk density (RHOB) and photoelectric factor (PEF). The proposed 
method seeks to correlate the known porosity from the Routine Core Analysis (RCAL) with RHOB and PEF 
high-resolution logs, as the response of these two measurements depends on the volumetric quantity of different 
rock materials and of the volume of its porous space. Artificial Neural Networks (ANNs) are trained so they 
can predict porosity from CT logs at a high resolution (0.625 mm). The ANNs validation and regression plots 
show that porosity predictions are good. High-resolution porosity models linked to CT images could contribute 
to enhancing the petrophysics model as they allow a more refined identification of intervals of interest due to 
the detailed measurement.
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Predicción de la porosidad a partir de registros de tomografía computarizada de 
rayos X (RHOB y PEF) usando Redes Neuronales Artificiales (ANN)

Resumen
Este trabajo presenta un método para la predicción de la porosidad de la roca, a partir de los registros de 
tomografía computarizada de rayos X (CT) obtenidos mediante un enfoque de doble energía, específicamente, 
densidad aparente (RHOB) y factor fotoeléctrico (PEF). El método propuesto busca correlacionar la porosidad 
conocida de los Análisis básicos (RCAL) con los registros de alta resolución RHOB y PEF, ya que la respuesta 
de estas dos mediciones depende de la cantidad volumétrica de diferentes materiales de roca y del volumen de 
su espacio poroso. Redes Neuronales Artificiales (ANN) son entrenadas para que puedan predecir la porosidad 
a partir de estos registros CT a una alta resolución (0,625 mm). Los gráficos de validación y regresión de las 
ANN muestran que las predicciones de porosidad son buenas. Los modelos de porosidad de alta resolución 
vinculados a imágenes de CT podrían contribuir a mejorar el modelo de petrofísica del pozo, ya que permiten 
una identificación más refinada de los intervalos de interés debido a su medición detallada.
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Introduction

X-ray computed tomography (CT) applied to rock 
samples is a very useful tool due to its ability to inspect 
the internal structure of the rock in a non-intrusive way, 
this allows verifying the status of the drilling cores 
inside their aluminum barrel and to obtain a digital 
reconstruction of the initial state of the rocks that will be 
conserved in time (Withjack et al., 2003).

Currently, tomography images are normally obtained 
within the rock sample characterization workflow (Akin 
and Kovscek, 2003), and they are used to facilitate and 
improve operational processes such as the geological 
description or the extraction of plug-type rock samples 
(1’’ or 1.5’’ diameter) from the full diameter cores. 
Additionally, as this type of tomography is based on 
determining the attenuation that matter produces on the 
X-rays that pass through it, the phenomena involved 
can be used to estimate different properties of the rock 
(Kantzas et al., 1992).

The X-rays attenuation is related to two material 
properties, its density, and its effective atomic number, 
as this phenomenon occurs because of two different 
effects, the Compton effect related to bulk density, and 
the photoelectric effect related to the effective atomic 
number. As these two effects have a non-linear response 
to the X-rays energy level, scanning the rocks at two 
different energy levels gives enough information to 
determine both, bulk density and effective atomic number 
(it can be converted to a photoelectric factor PEF). The 
method and calculations used for this estimation are 
presented elsewhere (Siddiqui and Khamees, 2004; 
Ortiz-Meneses et al., 2015).

Many other authors have made efforts to integrate these 
measurements within the reservoir characterization and 
to get the most out of them (Calzado and Geleijns, 2010; 
Funk et al., 2011). It is important to consider that the 
measurements made with CT generate high-resolution 
logs (0.002 ft approx.), with a much more detailed scale 
than the well logs (0.5 ft approx.); On the other hand, 
tools to obtain well logs perform an average reading 
of everything that is found near the wellbore, while 
in the tomography logs, as their interpretation is done 
by choosing a region of interest (ROI) over the rock, 
the measurements are effectively made on this ROI 
(avoiding fractures, cracks, unwanted materials, etc.) 
and therefore, they may differ from those obtained in the 
well.

Several approaches have been proposed for porosity 
determination using tomography, Akin et al. (2000) 
estimated porosity by means of a dual scan (not dual-
energy) in the same location using different known fluid 
saturation of the porous medium. Akin et al. (1996) 
proposed a method that uses a dual scan at two different 
energy levels. These and other methods that use dual 
or simple scanning are described by Akin and Kovscek 
(2003). However, these approaches do not apply to full-
diameter drilling cores as those considered in this paper. 
Similarly, Larmagnat et al. (2019) proposed an improved 
method to generate 3D porosity maps using CT images 
of core samples at different states (dry and saturated 
state) for heterogeneous sedimentary rocks.

On the other hand, ANNs have been used for rock 
property predictions based on well logs. Konaté 
et al. (2015) designed ANNs to predict porosity in 
continental crystalline rocks from four logs (density, 
neutron porosity, sonic and resistivity), they found that 
ANNs provide better performances with sets of three 
geophysical well logs (density, sonic and resistivity) 
than a regression technique. Singh et al. (2016) created 
back-propagation artificial neural network (BP-ANN) 
to estimate the reliable porosity values from the well 
log data taken from Kansas gas field, they used as input 
sonic, density and resistivity log data; they found that 
porosity generated by their ANNs has a high degree of 
the correlation with the one generated from combined 
density and neutron data. 

Sun et al. (2001) used ANN inversion to populate the 
porosity of a reservoir model for a producing zone in 
Bermejo Field. Al-Bulushi et al. (2007) developed a 
methodology based on ANNs to predict water saturation 
using wire-line logs and Dean-Stark core data. Finally, 
White et al. (1995) developed successfully several ANNs 
for zone identification in a heterogeneous formation from 
geophysical logs (Gamma Ray, Deep Induction and Bulk 
Density), and core description and analysis.

This work presents a new approach based on Artificial 
Neural Networks (ANNs) for porosity prediction from 
RHOB and PEF data estimated by CT. ANNs are trained 
using porosity data from laboratory measurements. 
As CT logs have a high resolution, up to 0.625 mm, a 
high-resolution porosity model could be made, so more 
detailed information about porosity would be obtained 
and the porosity estimation would be improved as no 
fracture or void space is taking account on CT analysis.
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Theoretical framework 

Bulk density (RHOB) and photoelectric factor (PEF) 
estimations in the rock are made by using a dual-
energy approach, where the rock sample is scanned 
at two energy levels, one high (greater than 100 
kV), and other low (less than or equal to 100 kV), in 
addition, materials of known properties are scanned 
with it, this allows identifying in each slice (image), 
the relationship between the X-ray attenuation (CT 
numbers) in both images and the known RHOB and 
PEF. Subsequently, the results are calibrated using 
rock samples with known properties and necessary 
shifts on the calculated properties are made, this 
ensures the accuracy of the estimated values. A more 
detailed description of the methodology is presented 
elsewhere (Ortiz-Meneses et al., 2015).

Importantly, this estimation is made by taking CT 
numbers from the rock images on specific areas 
called Regions of Interest (ROI), thus preventing 
measurements of sections that could deflect the 
calculation, such as fractures or void spaces. According 
to this, it can be expected that the logs taken in the 
well do not match exactly those interpreted from CT 
images. Correspondingly, it can be inferred that these 
CT logs will present not only a high resolution but 
a high accuracy. The method used in this work has 
been shown to estimate the RHOB of the rock with 
a relative error of less than 3%. On the other hand, 
linking images of the inside of the rock to logs allows 
the interpreter to check where the measures were 
taken and improve the calculation in case that it was 
necessary.

As mentioned, porosity is predicted from RHOB and 
PEF. Note that even when PEF is not directly affected by 
porosity, it is a function of lithology which is related to 
grain density, thus it is involved in the relation between 
porosity and bulk density (RHOB). Including PEF in 
the prediction allows defining changes in the relation 
between RHOB and porosity when lithology changes.

Proposed methodology for porosity prediction 

In this study, data from drilling cores from a Colombian 
oilfield is used, over 100 ft of rock were scanned at 0.625 
mm interslice resolution (vertical resolution of 0.002 
ft) using a CT medical scanner, RHOB and PEF data 
were estimated for every image using the methodology 
mentioned above to obtain high resolution-logs. 62 
samples were taken from different depths to RCAL, 
Boyle helium porosity, air permeability, and Dean-
Stark saturation data were obtained for all of them.

A Matlab script is developed to identifying RHOB 
and PEF values for every sample from the high-
resolution logs. Subsequently, another script is made 
for generating and training feedforward ANNs using 
the known data and the Matlab training tools. This 
script allows the user to select topology for creating 
and training new ANNs, in each case, it shows 
regression plots of predicted data versus real data so 
the user can evaluate performance of the ANN. The 
created nets use hyperbolic tangent sigmoid transfer 
functions ant they are trained using Levenberg-
Marquardt backpropagation, detailed information 
about parameters used in training is shown in Table 1. 

Table 1. ANNs Training Parameters.
Maximum number of epochs to train 1000
Maximum validation failures 6
Minimum performance gradient 1.00*10-7

Initial mu 0.001
mu decrease factor 0.1
mu increase factor 10
Maximum mu 1.00*1010

Different scenarios and ANN topologies are studied to 
evaluate the quality of the result. In the first scenario, a 
single-layer ten neurons ANN (ANN 1) is trained using 
all the available data. Figure 1 shows the regression 
plots for predicted porosity vs real porosity when 
using training, validation, and test data and all data. 

As it can be seen results obtained are good as slopes 
and R squared coefficients are close enough to 1 in all 
cases and intercepts tend to 0, but it is important to 
note that, as training data is selected randomly, results 
may change on every application, a quick inspection is 
made running the training algorithm a couple of times 
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more, results are shown in Table 2, note that quality of 
the results obtained using this topology are acceptable, 
as R squared values are greater than 0.5, but no close 

enough to 1 and they change strongly over different 
runs.

Figure 1. Regression Plots for Artificial Neural Network 1 – 10 neurons 1 hidden layer.

Table 2. Artificial Neural Network 1 regression parameters for three different runs.

Run Neu. Hidden 
Layers Training Validation Test All

# # # R2 Slope Interc. R2 Slope Interc. R2 Slope Interc. R2 Slope Interc.

1 10 1 0.951 0.95 0.0021 0.649 0.55 0.0320 0.795 0.92 0.012 0.898 0.92 0.0069

2 10 1 0.929 0.89 0.0039 0.797 0.70 0.0220 0.895 0.73 0.019 0.887 0.83 0.0091

3 10 1 0.956 0.96 0.0018 0.655 0.67 0.0140 0.636 1.10 0.007 0.919 0.95 0.0021
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Over 20 runs are made increasing the neurons amount 
(5 neurons steps) while searching the best topology for 
this problem, one-layer ANNs with a higher number of 
neurons (up to 50) are tried, it is found that even when 
regression values are good in general, overfit problems 
appear as some predicted porosities are less than zero. 

Finally, it is found that an ANN topology of 3 hidden 
layers with 10 neurons each layer is appropriated 
for this case, the regression values obtained in three 
different runs for this topology are shown in Table 3, 
while regression plots for the last run are shown in 
Figure 2.

Table 3. Artificial Neural Network 2 regression parameters for three different runs.

Run Neu. Hidden 
Layers Training Validation Test All

# # # R2 Slope Interc. R2 Slope Interc. R2 Slope Interc. R2 Slope Interc.

1 10 3 0.923 0.92 0.0041 0.941 0.96 0.0039 0.878 1.1 0.012 0.912 0.95 0.0016

2 10 3 0.922 0.88 0.0045 0.904 0.81 0.0013 0.898 0.93 0.002 0.921 0.88 0.0045

3 10 3 0.817 0.95 0.0086 0.990 1.00 0.0043 0.838 0.90 0.014 0.870 0.96 0.0085

Figure 2. Regression Plots for ANN 2 – 10 neurons 3 hidden layers.



146

Porosity prediction from X-ray computed tomography logs (RHOB and PEF) using Artificial Neural Networks (ANN)

Boletín de Geología - Vol. 42  Num. 3

The obtained regression plots show that good 
correlation exists between porosity and CT logs so, 
it could be possible to obtain a predicted porosity log 
from the use of the appropriated ANN, as it can be seen 
in Figure 2, where predicted values on validation and 
test plots are close enough from the real ones. 

The proposed algorithm is improved so the user can 
run the ANN training several times (changing topology 

if necessary) while checking quality in every case. 
When a good performance ANN is found, the user can 
save its configuration and apply it to predict porosity 
over the whole well. Later, the algorithm generates a 
report where shows predicted porosity logs linked to 
CT logs (RHOB and PEF) and CT images, as shown in 
Figure 3, where it can be seen a good match between 
predicted and real data and consistent results with CT 
images.

Figure 3. Predicted porosity log compared with real porosity data linked to a CT image of a 3 feet long core section.
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Artificial neural network application

Porosity prediction is made for every core section of 
the well, using three hidden layers and ten neurons 
ANN that showed a good performance on regression 
plots (the third one showed in Table 2). Porosity plots 
are obtained for every core section and in all of them 
predicted values are close to the real ones and show 
a good concordance with CT images. Figure 3 shows 

prediction on 3 feet core section composed mainly 
of Sublitharenites, note that predicted values (green 
line) match properly the known values (red circles). 
In CT images lighter colors correspond to high x-ray 
attenuation materials, this means high RHOB, high 
PEF, or a combination of both. In this figure, high PEF 
occurs due to the presence of siderite (according to the 
core description).

Figure 4. Comparison of predicted porosity logs with real porosity data linked to CT images for four three-feet core sections.
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Figure 4 shows more examples where predicted values 
have consistent behavior and match properly the 
known values, upper left example (Figure 4) shows 
Sublitharenites with limestone cement, upper right 
example shows Sublitharenites, lower left example 
shows fine-grained sandstone with siderite laminations 
that increase PEF and lower right example shows 
mudstones and very fine-grained sandstone, in this 
case, white sections on CT image correspond to 
siderite. Note that known porosity values decrease 
when RHOB or PEF increases (when X-ray attenuation 
increases), predicted values show the same behavior.

Discussion

As shown in Figure 3 and Figure 4, predicted porosity 
logs have a good match with laboratory measurement 
porosities. On the other hand, higher values of RHOB 
or PEF generate lower porosity, which is expected 
according to the theoretical knowledge where higher 
bulk density values mean less porous space when grain 
density is constant. Note that porosity is affected by PEF 
even when RHOB keeps constant, this is theoretical 
consistent as PEF changes indicate lithology changes 
and therefore, variations on grain density. If grain 
density changes, porosity has to change in order to 
keep RHOB constant according to Equation 1.

Where, ρg is grain density, ρf  is fluid density and φ is 
porosity.

The good agreement between the predicted and the 
measured data is a sign that the response of these two 
logs provides enough information to find an acceptable 
prediction. However, it is important to note that, if one 
wishes to include the effect of fluid saturation on the 
relationship between the CT logs and porosity, neutron 
or resistive logs must be included in the ANN training 
and prediction, which is a challenge considering the 
difference of scales.

Conclusions

The values ​​of the regression plots obtained from ANNs 
training show that there is a relationship between CT 
logs and porosity, good enough to use these ANNs to 
obtain high-resolution porosity logs for the entire well, 
linked to the CT images of the core.

A Matlab algorithm was implemented which facilitates 
the generation, training, and use of these ANNs, 
allowing the user to test different topologies and 
evaluate the quality obtained. The algorithm also 
generates automatic reports where predicted porosity 
logs are linked to the CT images of every core section. 
It is found that, in this case, a topology of three hidden 
layers with ten neurons in each one gives good results. 

In the studied well it was found that porosity decrees 
when RHOB or PEF values increase. When RHOB 
is constant, changes on porosity could be related to 
changes on grain density and therefore changes on 
lithology, affecting PEF values, this behavior was 
observed for this well.

When comparing predicted porosities with the 
measured ones, it is found that the performance 
of the ANN generated was mainly good. High-
resolution porosity models were obtained for the cores 
which can contribute to improve their petrophysical 
characterization and to identify new intervals of 
interest.
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