La Estratigrafía del Cretácico Superior y Terciario en el Extremo S del Valle Medio del Magdalena

J. DE PORTA (*)

Abstract

RESUMEN.-El límite entre el Valle Medio y el Valle Superior del Magdalena se desplaza desde la población de Honda, donde se venía colocando antiguamente, hasta la latitud de Guataquí-Piedras donde está determinado por la presencia de un accidente estructural: la falla inversa de Cambrás que cruza el Río Magdalena a la altura de Guataquí y queda fosilizada hacia el occidente por los depósitos cuaternarios del Cono de Ibagué. Se aplica una nomenclatura litoestratigráfica a los sedimentos cretácicos de la barrera de Girardot-Guataquí, diferenciándose las siguientes unidades desde el muro al techo: Formacion Hondita, 90 m ; Formación Loma Gorda, 167 m ; Grupo Olini que comprende la Lidita Inferior con 35 m , el Nivel de Lutitas con 65 m y la Lidita Superior con 50 m ; Nivel de Lutitas y Arenas, 75 m ; Formación la Tabla, 91 m . La edad de la sucesión cretácica abarca desde el turoniense hasta el maastrichtiense sin que por el momento el conocimiento de la fauna permita establecer divisiones cronoestratigráficas más precisas. En el borde W de la Cordillera Oriental el cretácico superior está representado por la formación Cimarrona que entra en contacto con el terciario del Valle Medio del Magdalena por la falla de Cambrás, accidente que sirve de límite oriental a este sector S del Valle Medio. La Formación Cimarrona se divide en las siguientes unidades del muro al techo: Miembro La Fría, 157 m ; Nivel de Arenitas y Lutitas, 127 m ; Miembro Zaragoza, 70 m ; Miembro La Primavera, 76 m . La edad de la Formación Cimarrona después de la fauna de foraminíferos correspondería al maastrichtiense. Los sedimentos terciarios se encuentran distribuídos en dos áreas: el Sinclinal de Jerusalén-Guaduas y el Valle Medio del Magdalena. En el Sinclinal de Je-rusalén-Guaduas aflora el terciario más inferior representado por la Formación Seca (antigua Formación Guaduas); Formación Hoyón dividida en los siguientes miembros: Miembro Cambao 200 m , Nivel de Lutitas 130 m , Miembro Aguasclaras 147 m, y Miembro Capira 200 m ; Formación San Juan de Río Seco ($=$ antigua Formación Gualanday) dividida en tres miembros: Miembro Armadillos 235 m ; Miembro Almácigos 299 m y Miembro La Cruz 202 m. Finalmente se encuentra la Formación Santa Teresa ($=$ antigua Formación la Cira) con la que termina la sedimentación terciaria en el Sinclinal. Dentro del Valle Medio del Magdalena el terciario está representado por el Grupo Honda al que se ha dividido en tres formaciones: en la base Formación Cambrás ($=$ antiguo Honda no Andesítico de Butler) que no aflora dentro de la region estudiada; Formación San Antonio ($=$ antiguo Honda Andesítico de Butler) que se subdivide en tres miembros: Miembro Flor Colorada 342 m , Miembro Los Cocos 251 m y Miembro La Ceibita 437 m ; finalmente la Formación Los Limones que representa el techo del Honda. La Formacion Mesa compuesta principalmente por sedimentos procedentes de la erosión de las rocas volcánicas se ha dividido en tres miembros: Miembro Palmas, 80 m ; Miembro Bernal, 204 m y Miembro Lumbí, 61 m . La Formación Mesa se encuentra solamente al W de la falla de Honda donde descansa normalmente sobre el Miembro La Ceibita de la Formacion San Antonio del Grupo Honda. El contacto entre las dos unidades parece normal, no observándose ninguna discor-

[^0]dancia. Máximo se podría aceptar una discordancia progresiva muy débil. Se plantea en este sentido la hipótesis de que la Formación Mesa representa una facies local del Grupo Honda y sea equivalente en parte a la Formación Los Limones. La edad de la sucesión terciaria es dificil de establecer por falta de datos paleontológicos. Debe seguramente abarcar desde el paleoceno hasta el mioceno y quizás hasta el plioceno. Pero establecer divisiones dentro de ella es por el momento imposible. Los datos que en este sentido se han publicado corresponden a la idea de hacer coincidir cada unidad litoestratigráfica con un piso determinado \sin que existan bases paleontológicas. El cuaternario está representado por una serie de conos que descienden de la Cordillera Central y algunos llegan hasta el mismo Río Magdalena. Entre los más importantes están: El Cono de Lérida, El Cono de Ibagué y el Cono de Venadillo. Los demás depósitos cuaternarios corresponden a terrazas y a un manto continuo de derrubios que se extiende por todo el borde de la Cordillera Oriental. Estructuralmente el extremo S del Valle Medio del Magdalena corresponde a una semifosa basculada hacia el oriente. Limita con la Cordillera Oriental por la falla inversa de Cambrás. Mientras que hacia el W los depósitos del Grupo Honda son transgresivos sobre la Cordillera Central. Esta disposición de semifosa basculada hacia el E da lugar a que junto a la falla de Cambrás se encuentren los máximos espesores.

RESUME.-A la suite de cette étude on deplace la limite entre la Vallée moyenne et supérieure du Magdalena, de la ville d'Honda ou était située auparavant, a la latitude de Guataqui-Piedras. La nouvelle limite est definie par la faille inverse de Cambrás qui traverse le Magdalena aux environs de Guataqui restant fossilisé vers l'ouest par les dépots quaternaires du Cono d'Ibagué. On donne une nomenclature litostratigraphique aux sédiments crétaciques de la barrera Girardot-Guataquí. Nous differencions, de bas en haut, les unites suivantes: Formation Hondita, 90 m ; Formation Loma Gorda, 167 m ; Groupe Olini qui comprend la Lidita Superior de 50 m ; Niveau de Lutitas de 65 m , et la Lidita Inferior de 35 m ; Niveau de Lutitas y Arenas, 75 m ; Formation La Tabla, 91 m . L'age de la succesion crétacique comprend depuis le turonien jusqu'au maastrichtien, sans que pour le moment il soit possible par l'étude de la faune d'établir des divisions cronostratigraphiques plus précises. Sur le bord Ouest de la Cordillere Orientale le crétacique supérieur est représenté par la Formation Cimarrona qui se met en contact avec le tertiaire de la Vallée moyenne du Magdalena par la faille inverse de Cambrás qui sert de limite orientale a cette partie S de la Vallée moyenne. La Formation Cimarrona comprend de bas en haut les unités suivantes: Membre La Fría, 157 m ; Niveau de Arenitas y Lutitas, 127 m ; Membre Zaragoza, 70 m ; Membre La Primavera, 76 m . L'age de la formation Cimarrona, determiné d'apres la faune de foraminiferes correspondrait au maastrichtien. Les sédiments tertiaires se trouvent distribués en deu zones: le synclinal de Jerusalén-Guaduas et dans la Vallée moyenne du Magdalena. Dans le synclinal de Jerusalén-Guaduas affleurent le tertiaire plus inférieur représenté par la Formation Seca (anciennement Formation Guaduas); la Formation Hoyón qui se sépare en Membre Cambao, 200 m , Niveau de Lutitas 130 m , Membre Aguasclaras 147 m et Membre Capira 200 m ; la Formation San Juan de Río Seco (anciennement Formation Gualanday) qui se sépare en Membre Armadillos 235 m , Membre Almácigos 299 m et Membre La Cruz 202 m . Finalement on trouve la Formation Santa Teresa (anciennement Formation La Cira) avec qui termine la sédimentation tertiaire dans le synclinal. Dans la Vallée moyenne du Magdalena le tertiaire est représenté par le Groupe Honda, qui a été divisé en trois formations: a la base la formation Cambrás (qui correspond a «Honda no Andesitico» dans la nomenclature de Butler) qui n'affleure pas dans la région érudiée; la Formation San Antonio (correspondant a «Honda Andesitico* dans la nomenclature de Butler) qui se subdivise en trois Membres (Membre Flor Colorada 342 m , Membre Los Cocos 251 m et Membre La Ceibita 437 m). Finalement la Formation los Limones qui représente la partie plus supérieure du Groupe Honda. La Formation Mesa composée principalement par des sédiments provenant de l'érosion de roches volcaniques a été divisé en trois membres; Membre Palmas 80 m , Membre Bernal 204 m et Membre Lumbí 61 m . La Formation Mesa apparait seulement a l'ouest de la faille de Honda ou elle repose normalement sur le Membre La Ceibita de la Formation San Antonio du Groupe Honda. Le contact entre les deux unités parait normal et on n'observe aucune discordance. Tout au plus peut on observer une discordance progresive tres faible. On propose l'hypothese que la Formation Mesa peut représenter un facies local du Groupe Honda et que cette formation soit en partie équivalente a la Formation Los Limones. L'age de la succesion tertiaire est difficile a établir par suite du manque de données paléontologiques. Cet age doit probablement couvrir du paleocene jusqu' au pliocene. Mais établir des divisions dans ces formations est pour le moment impossible. Les données publiées dans ce sens l'ont été en vue de fair coincider chaque unité litostratigraphique avec un étage
determiné sans qu' il existe des bases paléontologiques. Le quaternaire est representé par une serie de cones qui déscendent de la Cordillere Centrale et certains arrivent jus au Magdalena. Parmi les plus importants citons: Le Cono de Lérida, le Cono d' Ibagué et le Cono de Venadillo. Les autres dépots quaternaires corresspondent a des terrasses et a une nappe continue d' éboulis qui s' étend sur tout le bord de la Cordillere Orientale. Du point de vue structural l'extreme S de la Vallée moyenne du Magdalena correspond a un bloc affaissée vers l'orient. La limite avec la Cordillére Orientale est constituée par la faille inverse de Cambrás, tandis que verse l' Ouest cette limite vienne determiné par les dépots du Groupe Honda qui sont transgressifs sur la Cordillere Centrale. Cette disposition de bloc affaisée vers l'est fait que a cet endroit les sédiments tertiaires présentent le plus grand épaisseur.

ABSTRACT.-The limit between the Middle Valley and the Upper Valley of the Magdalena River has been displaced from the city of Honda, where used to be located, to the latitude of Guataqui-Piedras, where is determined by the inverse fault of Cambrás which crosses the Magdalena River at the Guataquí level, and rests fossilized towards the W by the Cuaternarian deposits of the Ibagués Cone. Applying a litostratigraphic nomenclature to the Cretacic sediments of the Girardot-Guataquí barrier, were differentiated from the bottom to the top, the following units: Hondita Formation, 90 m ; Loma Gorda Formation, 167 m ; Olini Group composed by the Lidita Inferior with 35 m , the Lutitas y Arenas level with 65 m , and the Lidita Superior with 50 m ; Lutitas y Arenas Level, 75 m ; La Tabla Formation, 91 m . The age of the Cretacic succession includes from the Turoniense to the Maastrichtien but at the present, the knowledge of the Fauna does not permit stablish more accurate chronoestatigraphic divisions. In the W edge of the Cordillera Oriental the upper Cretacic is represented by the Cimarrona Formation, which contacts the Tertiary of the Middle Magdalena Valley with the Cambrás Fault, being this fault the eastern limit to this section S of the Middle Valley. The Cimarrona Formation is divided from the bottom to the top in the following units: La Fría Member, 157 m ; the Arenitas and Lutitas level, 127 m ; Zaragoza Member, 70 m ; La Primavera Member, 76 m . The age of the Cimarrona Formation according to the foraminiphera should corresponds to the Maastrichtien. The Tertiary sediments are distributed in two areas: the Jerusalén-Guaduas Synclinal and the Middle Magdalena Valley. At the Jerusalén-Guaduas Synclinal outcrops the lowest Tertiary represented by the Seca Formation (ancient Guaduas Formation), Hoyon Formation divides in the following members: Cambao Member, 200 m ; Lutitas level, 130 m ; Aguasclaras Member, 147 m ; and Capira Member, 200 m ; San Juan de Río Seco Formation ($=$ ancient Gualanday Formation) divided in three members: Armadillos Member, 235 m ; Almácigos Member, 299 m ; y La Cruz Member, 202 m . Finally it was found the Santa Teresa Formation ($=$ ancient La Cira Formation) which ends the Tertiary sedimentation in the synclinal. In the Middle Magdalena Valley the Tertiary is represented by the Honda Group divided three formations: at the bottom the Cambrás Formation ($=$ ancient Honda Bütler's) which does not outcrops in the studied region; San Antonio Formation ($=$ ancient Butler's HondaAndesítico) which is divided in three members: Flor Colorada Member, 342 m ; Los Cocos Member, 251 m ; and La Ceibita Member, 437 m . Finally Los Limones Formation which represents the top of the Honda. The Mesa Formation composed mainly by sediments obtained from the erosion of volcanic rocks, is divided in the three members: Palmas Member, 80 m ; Bernal Member, 204 m ; and Lumbí Member, 61 m . The Mesa Formation is found only W of the Honda Fault where it rests normally over La Ceibita Member of the San Antonio Formation from the Honda Group. The contact between the two units seems normal, without any apparent discordance. May be it can be accepted a very weak progressive discordance. It this sense it is discussed the hypothesis that Mesa Formation represents a local facies of the Honda Group, and equivalent in part to Los Limones Formation. The age of the Tertiary sucession is difficult to stablish because there is not paleontological data. May be it embraces from the Paleoncene to the Pliocene, but to stablish divisions between them it is now impossible. Data published in that sense are presented with the idea of coincide each litoestratigrapic unit with a fixed level without paleontological foundations. The Cuaternary is represented by a series of cones which descend from the Cordillera Central and some reach the Magdalena River. Among the more important are: Lérida cone, Ibagué cone, and Venadillo cone. The other Cuaternarian deposits correspond to terraces and to a continuous stratum of alluvium which extend out through the edge of the Cordillera Oriental. Structurally the Middle Magdalena Valley extreme S corresponds to a semigraben sunk towards E. Limits with the Cordillera Oriental by the inverse fault of Cambrás. Meanwhile towards the W the Honda group deposits are transgressors over the Cordillera Central. This arrangement of semigraben sunk towards E produces in the neighborhood of the Cambrás Fault the maximum thickness.

CONTENIDO

INTRODUCCION

el Limite entre el valle medio y el valle superior del MAGDALENA

LA SUCESION CRETACICA EN EL EXTREMO SEPTENTRIONAL DE LA BARRERA GIRARDOT-GUATAQUI

Formación Hondita

Formación Loma Gorda
Grupo Olini
Lidita Inferior
Nivel de Lutitas
Lidita Superior
La extensión de los nombres de Lidita Inferior y Lidita Superior a la Sabana de Bogotá y variaciones en la edad del Nivel de Lutitas

La fauna y la edad del grupo Olini
Nivel de Lutitas y Arenas
Formación La Tabla
LOS SEDIMENTOS CRETACICOS AL ORIENTE DE HONDA
Formación Cimarrona
Breve resumen histórico
El problema estratigráfico que plantea la formación Cimarrona
Divisiones de la formación Cimarrona
Miembro La Fría
Nivel de Arenitas y Lutitas
Miembro Zaragoza
Miembro la Primavera
Diferencias entre los miembros La Fría y La Primavera
Edad de la formación Cimarrona
Correlaciones y extensión geográfica
Formación Seca

OBSERVACIONES SOBRE EL LIMITE CRETACICO-TERCIARIO

Formación Hoyón
Miembro Cambao
Nivel de Lutitas
Miembro Aguasclaras
Miembro Capira
Edad y correlaciones de la formación Hoyón
Formación San Juan de Río Seco
Miembro Armadillos
Miembro Almácigos
Miembro La Cruz
La terminación meridional del sinclinal de Jerusalén-Guaduas
Edad de la formación San Juan de Río Seco
La relación entre la formación San Juan de Río Seco y las forma-
ciones Gualanday y Barzalosa
Formación Santa Teresa
Edad y correlaciones de la formación Santa Teresa
Grupo Honda
Formación Cambrás
Formación San Antonio
Miembro Flor Colorada Miembro Los Cocos
Miembro La Ceibita
Formación Los Limones
Edad del grupo Honda
El Grupo Honda al Occidente de la falla de Honda
Formación Mesa
Miembro Palmas
Miembro Bernal
Miembro Lumbí
Edad de la formación Mesa
La relación entre el grupo Honda y la formación Mesa
LOS DEPOSITOS CUATERNARIOS
PRINCIPALES RASGOS TECTONICOS DEL EXTREMO S DEL VALLE MEDIO DEL MAGDALENA

BIBLIOGRAFIA

INTRODUCCION

El Valle Medio del Magdalena constituye una unidad fisiográfica bien definida. Estratigráficamente existen importantes variaciones de un extremo a otro. Para una mejor comprensión de la estratigrafía y de la estructura del Valle Medio del Magdalena es necesario conocer también sus límites, especialmente su límite oriental, es decir con el borde occidental de la Cordillera Oriental. Es así como hay que considerar en el cretácico superior la existencia de dos áreas: una el extremo septentrional de la barrera de Girardot-Guataquí; otra la región situada al oriente de la población de Honda.

Durante el terciario la sedimentación no se desarrolló exclusivamente en el Valle Medio del Magdalena propiamente dicho, sino que en relación con él se depositaron los sedimentos terciarios que se encuentran en el Sinclinal de Jerusalén-Guaduas.

La extensión excesiva de las unidades litoestratigráficas causa una confusión extraordinaria especialmente en las correlaciones, por cuanto se ha homologado siempre el nombre de la unidad litoestratigráfica con un período determinado de tiempo, lo cual no siempre es válido. En consecuencia al comparar las edades entre dos áreas diferentes las unidades litoestratigráficas se cruzan en todos los sentidos. En estas condiciones se ha preferido en algunos casos prescindir de los nombres empleados y adoptar una nomenclatura nueva libre de estos prejuicios.

Antes de empezar el análisis de las unidades litoestratigráficas es preciso hacer algunas consideraciones acerca de la posición del límite entre el Valle Medio y el Valle Superior del Magdalena.

El presente trabajo constituye un avance de otro más extenso en el que se estudia la región correspondiente al extremo S del Valle Medio del Magdalena comprendida entre las poblaciones de Honda y Guataquí.

EL LIMITE ENTRE EL VALLE MEDIO Y EL VALLE SUPERIOR DEL MAGDALENA

Desde los primeros trabajos geológicos sobre el Valle del Magdalena éste se ha dividido en tres secciones: Valle Inferior que se extiende desde la desembocadura hasta la localidad del Banco. Valle Medio desde el Banco hasta la Dorada, según unos autores, hasta Honda segán otros. El Valle Superior desde esta última localidad hasta el nacimiento del Río. La diversidad de opiniones se centra pues en la localización del límite entre el Valle Medio y el Valle Superior. Las bases para la posición de ese límite radican en la presencia de los llamados «Saltos de Honda» o «Rápidos de Honda» que interrumpen la navegación por el Magdalena. De los datos suministrados por Berger (1925) se deduce que antiguamente algunos barcos llegaron a pasar este obstáculo, y evidentemente existe continuidad geológica y geográfica a ambos lados de los «Saltos de Honda» o "Rápidos de Honda».

Solamente Etherington (1942) coloca el límite entre el Valle Medio y el Valle Superior del Magdalena en la localidad de Guataquí donde la falla de Cambrás, cruza el tío hacia el occidente. En este trabajo se coloca el límite
entre las dos secciones del Valle del Magdalena, en Guataquí de acuerdo con Etherington. Esta nueva posición representa un límite nítido y bien determinado tanto geológica como geográficamente. La falla inversa de Cambrás es un accidente estructural que limita por el S las dos cuencas terciarias del Valle Medio y del Valle Superior. Desde Jerusalén se desprende un ramal de la Cordillera Oriental que se dirige claramente en dirección NE-SW. Este ramal forma una cadena montañosa comprendida entre Girardot y Guataquí a la que llamamos Barrera de Girardot-Guataquí. Geográficamente es un relieve que divide al Valle del Río Magdalena en dos secciones bien marcadas. Geológicamente la falla inversa de Cambrás al tomar en Guataquí una dirección general francamente NE-SW corta todas las estructuras cretácicas de la barrera de Girardot-Guataquí, limitando perfectamente dos cuencas al N y al S de dicha barrera. Es muy posible que la falla de Cambrás siendo una falla antigua hubiera ya desde finales del cretácico separado las dos cuencas terciarias que se desarrollan independientemente en el Valle Medio y en el Valle Superior del Magdalena.

LA SUCESION CRETACICA EN EL EXTREMO SEPTENTRIONAL DE LA BARRERA DE GIRARDOT-GUATAQUI

La falla de Cambrás no permite conocer toda la sucesión cretácica de la que solo aflora aproximadamente a partir del turoniense. Con todo, el espesor de esta sección es mucho más reducida en relación con el cretácico de la Sabana de Bogotá. Hasta el presente no existía en la barrera cretácica de Girardot-Guataquí una nomenclatura litoestratigráfica completa. En algunas partes se venían aplicando nombres correspondientes a la Sabana de Bogotá que no han contribuído al esclarecimiento de la estratigrafía de esta área. Por otra parte el empleo de unidades cronoestratigráficas detalladas \sin disponer de una base paleontológica suficiente ha dado lugar a cambios continuos en los límites cronoestratigráficos. En consecuencia se ha preferido utilizar una nomenclatura litoestratigráfica, prescindiendo por el momento de las divisiones cronoestratigráficas.

En la región comprendida entre Girardot-Nariño y entre Girardot-Melgar, Bürgl y Dumit (1954) publican y describen una sección estratigráfica que dividen en unidades tiempo. Estando de esta manera representados los sedimentos comprendidos entre el turoniense y el maastrichtiense. Esta misma estratigrafía y cronoestratigrafía aparece posteriormente en el mapa Geologico de la República de Colombia, Plancha L 9 (Girardot), publicado por Raasveldt (1956). En él señálanse varios horizontes litológicos bajo una nomenclatura litoestratigráfica informal.

Petters (1955) publica una sucesión de Zonas de foraminíferos en el cretácico superior que aplica desde la región de Ranchería, en el N de Colombia, hasta el Valle Superior del Magdalena en el S. La edad de estas zonas fueron corroboradas por la asociación con otras formas, principalmente cefalópodos. Aunque Petters no señala la relación entre sus zonas de foraminíferos y los niveles litológicos, se puede establecer una primera correlación a través de las edades y faunas que acompañan a la columna litológica publicada por Bürgl y Dumit (1954) y con el mapa de Raasveldt (1956) dentro de la region comprendida entre Girardot y Guataquí. Es evidente que una correlación muy detallada entre las zonas de foraminíferos y los horizontes o unidades litoestra-
tigráficas no se puede establecer por cuanto algunas zonas cortan la línea del tiempo: Conjunto de Globigerina, Gümbelina y Radiolaria (Petters 1955, f. 2). También recientemente Etayo (1964, pp. 16) plantea el problema de que puede ocurrir lo mismo con la Zónula de Anomalina redmondi.

La zonación establecida por Petters es la siguiente, del muro al techo: Conjunto de Globigerina, Gümbelina y Radiolaria; Zónula de Anomalina redmondi; Nivel de Bolivina explicata; Zónula de Marginulina curvisepta; Zona de Siphogenerinoides cretacea; Zona de Siphogenerinoides bramlettei y Zona de Ammobaculites colombianus; esta última estaría ausente o representada por depósitos continentales en esta región de Girardot-Guataquí y en el Valle Superior del Magdalena.

Para todas las unidades litoestratigráficas aplicadas en esta sección del cretácico se propone como sección tipo la que se obtiene por el camino de Piedras a la Tabla, en el Municipio de Piedras (Departamento del Tolima).

FORMACION HONDITA

El nombre de formación Hondita deriva de la Quebrada Hondita en el Municipio de Piedras (Departamento del Tolima). Los sedimentos más inferiores que aparecen corresponden a unas lutitas negras que la poca extensión de afloramiento no permite obtener una serie estratigráfica. La base de la formación Hondita se coloca donde aparece el primer banco de calizas arenosas en contacto normal con las lutitas negras subyacentes. El conjunto de la formación se caracteriza por la alternancia de calizas arenosas, dispuestas en bancos cuyo espesor oscila entre unos centímetros y un metro, con lutitas y shales. Son frecuentes las concreciones calcáreas de forma discoidal cuyo diámetro máximo llega a 2 m . El espesor de los sedimentos es aproximadamente de 90 m . El techo de la formación limita con la formación Loma Gorda y está determinado por la aparición de lutitas y shales grises que no presentan intercalaciones de calizas arenosas. La formación Hondita se presenta en general poco fosilifera. En los niveles de lutitas y shales se han encontrado varias impresiones de Inoceramus sp. De las calizas arenosas se ha podido determinar una fauna no muy bien conservada de foraminíferos en la que abundan los géneros Globigerina y Gümbelina.

Tal como se ha definido aquí, la formación Hondita se extiende por toda la barrera de Girardot-Guataquí. De la sección estratigráfica que aflora entre Girardot-Nariño, Bürgl y Dumit (1954) citan la presencia de Coilopoceras, Thomasites e Inoceramus sp., fauna que dichos autores consideran como turoniense. En líneas generales la formación Hondita sería equivalente al horizonte K_{7} de Raasveldt (1956). El limite entre la formación Hondita y la formación Loma Gorda coincidiría con el límite turoniense-coniaciense de estos autores. Sin embargo, la falta de una sucesión faunística completa no permite por el momento actual precisar estos límites. Si bien la presencia de una fauna de cefalópodos citada por Bürgl y Dumit en los sedimentos litológicamente equivalentes a la formación Hondita hablarían en favor de una edad turoniense para esta formación.

FORMACION LOMA GORDA

Encima de las calizas arenosas de la formación Hondita descansan en posición normal unos 20 m de shales y lutitas grises que contienen grandes y abundantes concreciones calcáreas de forma discoidal. A continuación viene una alternancia de shales y lutitas con intercalaciones de cherts dispuestos en bancos que oscilan entre 2 y 10 cm de espesor. Siguen 8 m de arenitas bien estratificadas en bancos de 2 m y una sucesión de shales y lutitas negras que en la base contienen grandes concreciones calcáreas. A partir de aquí empieza una alternancia de lutitas con bancos de arenitas. Hacia el techo de la formación aparecen con más frecuencia las concreciones calcáreas. El límite superior de la formación Loma Gorda con la Lidita Inferior del grupo Olini es muy nítido. Se ha colocado donde empiezan los bancos de cherts alternando regularmente con lutitas y shales negras. El conjunto de los sedimentos descritos aquí tiene un espesor de 167 m .

Para esta sucesión descrita se aplica el nombre de formación Loma Gorda derivado del nombre de la misma Loma situada entre los caminos de Loma Gorda y La Tabla que desde el Municipio de Piedras conducen al Caserío de la Tabla (Departamento del Tolima).

Teniendo en cuenta la estratigrafía ; la cartografía de Raasveldt (1956) la formación Loma Gorda correspondería en parte al llamado Horizonte de «Ruedas de Carreta». Bürgl (1961a) se refiere también a esta sección estratigráfica con grandes concreciones calcáreas bajo el nombre de Wagon Wheel Formation, indicando que fue descrito anteriormente en otro trabajo (Bürgl y Dumit, 1954). Sin embargo al describir estos autores la sección de Girardot-Nariño señalan la existencia de grandes concreciones calcáreas pero sin asignarles ninguna nomenclatura. Así pues es Raasveldt quien introduce por primera vez el nombre de Horizonte de «Ruedas de Carreta», aunque sin proponerlo formalmente ni señalando explícitamente que sucesión estratigráfica se incluía bajo esta denominación.

Por otra parte la presencia de las grandes concreciones calcáreas no es suficiente para caracterizar una unidad litoestratigráfica en esta área ya que éstas aparecen también en la formación Hondita y se extienden por encima de la Lidita Superior del grupo Olini. En relación con los datos de Raasveldt la formación Loma Gorda correspondería a los sedimentos llamados K6 por este autor.

En la sección estudiada la formación Loma Gorda no es muy fosilifera. De la parte media de la formación se han determinado: Inoceramus peruanus Brueggen, Monotis sp. y Peroniceras (Gautbiericeras) bajuvaricum Redtenbacher. Del techo de la formación se describió anteriormente un fragmento de maxilar que puede pertenecer a las familias Mixosauridae o Shastasauridae (Hernández y Porta, 1963).

Si se parte de la estratigrafía dada por Bürgl y Dumit (1954, pl. 1-2, pp. 33) la formación Loma Gorda correspondería a los sedimentos $k_{6 a}$ y $k_{6 b}$ de estos autores y en consecuencia dentro de la formación quedaría englobada la fauna que citan Bürgl y Dumit (7954, pp. 33). La presencia de esta fauna indicaría una edad coniaciense inferior. Cabe tener en cuenta que Bürgl (1961a,

Pp. 26-27) cita en el Valle Superior del Magdalena la asociación de Inoceramus peruanus e Inoceramus labiatus. Por lo tanto no es posible con base a estas dos formas establecer la separación entre el coniaciense y el turoniense. De la misma manera la pobreza de la fauna dentro de la sección estudiada no permite por el momento continuar admitiendo las divisiones entre el coniaciense inferior y superior. En consecuencia la formación Loma Gorda correspondería en líneas generales al coniaciense sin mayor precisión. La formación Loma Gorda después de la fauna citada debe contener también el conjunto de Globigerina, Gümbelina y Radiolaria de Petters (1955).

Con pequeñas variaciones en la estatigrafía descrita anteriormente, la formación Loma Gorda se extiende por toda la barrera de Girardot-Guataquí. En la región de Gualanday-Coello, Téllez y Navas (1962) señalan la presencia de un «Conjunto Calizo» que consideran equivalente al Nivel de «Ruedas de Carreta".

GRUPO OLINI

El nombre de grupo Olini fue introducido por Petters (1954) en una publicación en la que describe varias especies nuevas de foraminíferos, aunque sin dar ninguna descripción litológica del mismo. De la publicación del mismo autor se deduce que el grupo Olini comprende las siguientes unidades del muro al techo: el Upper Sandstone member y el Upper chert member. Posteriormente Hubach (1957, pp. 44) vuelve a emplear el nombre de grupo Olini en el mismo sentido de Petters. En ninguna otra publicación aparece el nombre de grupo Olini, pero sí se continúan empleando los nombres de sus miembros ya en lengua inglesa ya en lengua española, bajo la denominación de Lidita Inferior y Lidita Superior. Evidentemente el primer nombre no fue citado por Petters en su publicación, pero viene a completar la descripción del grupo Olini.

Partiendo de la literatura geológica de la región situada entre Girardot y Guataquí y de la estratigrafía que se da en la figura 2, es evidente que el conjunto de los niveles silíceos y los sedimentos comprendidos entre ellos forman una unidad litoestratigráfica bien definida y que en definitiva se correlaciona con las unidades y el sentido que le dió Petters al grupo Olini en su publicación, aunque no llegó a definirlo completamente. En este trabajo se mantiene el nombre de grupo Olini y se da una redefinición del mismo haciendo notar que los nombres de Lidita Superior y Lidita Inferior corresponden a nombres litoestratigráficos y no a nombres petrográficos.

El grupo Olini consta de dos niveles silíceos con una intercalación de lutitas que los separa. Queda limitado en la base por la formación Loma Gorda y en el techo por el Nivel de Lutitas y Arenas. Los dos límites son nítidos y vienen determinados por la aparición de las primeras capas de chert correspondientes a la Lidita Inferior en la base y por la desaparición de las capas de chert que corresponden a la Lidita Superior en el techo. En el presente trabajo se tratarán por separado cada una de las unidades del grupo Olini y al final se discutirá la edad del grupo como una sola unidad.

Lidita Inferior-Bürgl y Dumit (1954) se refieren a esta sucesión de capas de chert con lutitas con el nombre de Segunda Lidita. Raasveldt (1956)
emplea la misma nomenclatura. Bürgl (1961a) la modifica tomando la nueva acepción de Lidita Inferior.

En este trabajo la Lidita Inferior representa la base del grupo Olini. Tanto el límite inferior con la formación Loma Gorda, como el límite superior con el Nivel de Lutitas, son límites nítidos y se colocan donde empiezan y terminan respectivamente las capas de chert.

La sucesión estratigráfica (figura 2) consta de una alternancia de chert de tipo porcelanita y cherts carbonáceos, en capas delgadas de 2 a 20 cm , con lutitas y shales negros cuyos espesores oscilan entre 2 y 10 cm . El espesor de la Lidita Inferior es en esta sección de unos $30-35 \mathrm{~m}$, aunque Bürgl y Dumit le asignan en la sección de Girardot-Nariño unos 70 m , de espesor. Téllez y Navas (1962) le dan un espesor de 30 m en la región de Gualanday Coello.

Dentro de las secciones estratigráficas estudiadas la fauna es pobre y está representada por foraminíferos: Globigerina cretacea y Globigerina sp. En las capas de lutitas son abundantes las escamas de peces. De la sección entre Girardot y Nariño Bürgl y Dumit (1954, pp.33) citaron Texanites aff. serratomarginatus, asignando la Lidita Inferior al coniaciense superior.

Nivel de Lutitas.-Queda perfectamente determinado por estar intercalado entre la Lidita Inferior y la Lidita Superior. Sus límites son muy nítidos por el cambio litológico que tiene lugar. En la base del Nivel aparecen unas lutitas grises, localmente arenosas. Hacia la parte media se intercalan entre las lutitas algunos bancos de chert, pero siempre se encuentra un predominio de las capas de lutitas. El techo de la sucesión presenta unas shales muy estratificadas. El espesor de la sección es de 65 m .

Este nivel se extiende por toda la barrera de Girardot-Guataquí y presenta algunas variaciones de facies. Según Petters debe ser bastante arenoso a juzgar por el nombre que le asignó. La potencia es también otro carácter que se presenta muy variable: Téllez y Navas (1962) le dan una potencia de 40 m , en la región de Gualanday-Coello; Bürgl y Dumit (1954, le asignan un espesor de 120 m , entre Girardot-Nariño.

Dentro de la sección descrita no se encontraron fósiles, pero en otras localidades los mismos sedimentos son bastante fosiliferos. Del Upper Member Sandstone, Petters (1954) cita Wheelerella magdalanaensis y Anomalina redmondi. En la sección de Girardot-Nariño Bürgl y Dumit (1954, pp. 33 y pl. 1) citan foraminíferos. Dividen el nivel comprendido entre las dos Liditas en tres horizontes litológicos, haciendo corresponder a cada uno una Zona de foraminíferos. La edad correspondería segín los mismos autores al santoniense.

En relación con los datos de Petters (1955) el Nivel de Lutitas debe contener la Zónula de Anomalina redmondi y el Nivel de Bolivina explicata ya que en la Quebrada Gallina se encuentra esta fauna debajo de la Lidita Supetior. Segán se desprende del Mapa de Téllez y Navas (1962) y confirmado personalmente por los mismos.

Lidita Superior.-La Lidita Superior representa el techo del grupo Olini. A ella se refirió Petters (1954) bajo el nombre de Upper Chert. Bürgl y Du-
mit (1954) la denominan Primera Lidita, pero Bürgl (1961a) cambia esta nomenclatura por la de Lidita Superior. El limite inferior con el Nivel de Lutitas es nítido y está representado por la aparición de las capas de chert que alternan con lutitas y shales. Los chert están representados por porcelanitas y cherts carbonáceos en bancos que pueden alcanzar hasta $\operatorname{los} 40 \mathrm{~cm}$ de espesor. Intercaladas entre las capas de lutitas y shales son frecuentes las láminas de yeso que a veces llegan a tener un espesor de dos cm . Por término medio la Lidita Superior tiene una potencia de 60 m , aunque este valor varía de unas localidades a otras. Así para Bürgl y Dumit (1954) alcanza los 110 m en la sección de Girardot-Nariño, mientras que Téllez y Navas (1962) encuentran un espesor de 50 m en el área de Gualanday-Coello.

La fauna citada en la Lidita Superior está representada por foraminíferos, principalmente Siphogenerinoides. Las escamas de peces son muy frecuentes en algunas capas de lutitas. Petters (1954) determinó Siphogenerinoides ubli. Bürgl y Dumit (1954, pl. 1) dan la lista de las especies halladas en la sección de Girardot-Nariño. Es importante señalar que toda la fauna aparece por primera vez a unos 20 m del muro de la Lidita Superior. Con base en la microfauna Bürgl y Dumit determinan la Lidita Superior como campaniense y la misma cronoestratigrafía sigue posteriormente Raasveldt (1956).

La extensión de los nombres de Lidita Inferior y Lidita Superior a la Sabana de Bogotá y variaciones en la edad del Nivel de Lutitas. La edad del Nivel de Lutitas y de la Lidita Superior va intimamente relacionado con las correlaciones establecidas con la Sabana de Bogotá y con la presencia y ausencia del santoniense. Todas estas variaciones fueron ya tratadas a grandes rasgos por Hernández y Porta (1962) y por Etayo (1964). La importancia del problema que se ha extendido a escala regional, merece analizar más profundamente sus causas.

La aparición de la fauna en la Lidita Superior tiene lugar a unos 20 m de la base de esta unidad. Sin embargo, con base en la idea preconcebida de la existencia de ciclos sedimentarios en el cretácico de la Cordillera Oriental, se hace coincidir la base del campaniense con la base de la Lidita Superior. Es precisamente de aquí que arrancan todas las confusiones en la cronoestratigrafía y correlaciones del cretácico superior al hacer encajar la fauna con las unidades tiempo y adaptando ambas a las variaciones litologicas.

Bürgl y Dumit (1954) colocan los sedimentos comprendidos entre las dos liditas dentro del santoniense apoyándose en la presencia de Bulimina compressa y Ammobaculites alenxanderi que según dichos autores «son conocidos exclusivamente del santoniano". En el mismo trabajo dan una columna estratigráfica de la sección de Tabio-Chía (Plancha 6) y una comparación entre las secciones de Girardot-Nariño, Girardot-Melgar y Tabio-Chía (Plancha 7). Si se comparan las equivalencias entre las columnas de Tabio-Chía en la publicación de 1954 (Plancha 7) y la publicación de Bürgl (1955, pl. 5) se deduce que existe una interpretación diferente como se señala en el cuadro. En la primera correlación con la Sabana de Bogotá se toman como Lidita Inferior (Segunda Lidita) las capas señaladas como $\mathrm{L}_{1} \mathrm{~L}_{2}$, quedando colocado el límite coniacien-se-santoniense en el techo de la Lidita Inferior (muestra 419). La Lidita Superior (Primera Lidita) comprende los bancos señalados con L_{3} (muestra 427 a 437). Así las dos Liditas quedan separadas en la sección de Tabio-Chía por un espesor de 110 m .

En la interpretación de Bürgl (1955) se hace desaparecer el santoniense quedando en contacto el coniaciense con el campaniense, límite que viene colocado dentro de los sedimentos que anteriormente fueron considerados como equivalentes de la Lidita Inferior (Segunda Lidita). Esta variación da lugar a que el campaniense se haga más potente pasando de 30 m a 180 m . La diferencia de 150 m en el espesor del campaniense se explica de la siguiente manera: 110 m corresponden al antiguo santoniense y 40 m al coniaciense. Con esta interpretación el campaniense no empieza en la base de lo que primeramente se tomó como Lidita Superior y en consecuencia se toma como base del campaniense los sedimentos señalados como L_{2} (muestras 418 a 419). De esta manera la Lidita Inferior queda muy reducida y bien determinada por unos 10 m de espesor. Así en la sección de Tabio-Chía las dos Liditas quedan separadas por un conjunto de sedimentos menos potentes en relación con la interpretación de Bürgl y Dumit (1954). Esta nueva interpretación se ha mantenido hasta los últimos trabajos con la excepción de ascender la base del campaniense que ahora viene colocada en la base de Lidita Superior. Ya a partir de 1959 Bürgl vuelve a considerar que los depósitos situados entre las dos Liditas, es decir el Nivel de Lutitas, correspondería al coniaciense. Todas estas variaciones están representadas en la figura 3. Posteriormente la Col. Soc. Petr. Geol. Geoph. (1961) ha contribuído a nuevas confusiones con el empleo de los nombres de Upper Chert y Lower Chert en la Sabana de Bogotá, ya que sitúa el Upper Chert dentro del Nivel de Plaeners Inferiores y el Lower Chert por debajo del Raizal member (antigua Arenisca Dura). Es evidente que estas unidades no guardan ninguna relación en cuanto a su posición estratigráfica, con la interpretación hecha por Bürgl respecto a las mismas unidades en la Sabana de Bogotá.

Debemos añadir además de acuerdo con Julivert (1962, pp. 12) que las Liditas del Valle del Magdalena no guardan ninguna relación en cuanto a unidades litoestratigráficas se refiere, con los niveles de porcelanitas que se encuentran en el Guadalupe de la Sabana de Bogotá. Todas estas correlaciones del Valle del Magdalena con la Sabana de Bogotá se han sintetizado en la figura 3.

La fauna y la edad del grupo Olini.-En todas las unidades que componen el grupo Olini se han encontrado fósiles que corresponden a foraminíferos y a cefalópodos. La Lidita Inferior es en general pobre en fauna. De ella se ha citado Globigerina cretacea y Texanites aff. serratomarginatus. Con base en la presencia de T. serratomarginatus, Bürgl y Dumit (1954) determinaron que la Lidita Inferior era de edad coniaciense.

En el Nivel de Lutitas se encontró un conjunto de foraminíferos que corresponden a la Zona de Anomalina redmondi que segán Petters (1954 y 1955) representaría el coniaciense. Para Bürgl y Dumit (1954) los sedimentos comprendidos entre las dos Liditas representarían el santoniense. Posteriormente Bürgl (1955) al extender los nombres de Lidita Inferior v Lidita Superior a la Sabana de Bogotá reconoce que la Zona de Anomalina redmondi pertenece todavía al coniaciense por la presencia de Barroisiceras y Peroniceras y señala además: «la presencia de Texanites hablaría en favor de una edad santoniana, pero que las amonitas mejor conservadas y que han sido determinadas con mayor seguridad indican que esta zona pertenece todavía al coniaciense».

Raasveldt (1956) sigue la misma cronoestratigrafía de Bürgl y Dumit
(1954). Hubach (1957) considera la Segunda Lidita como coniaciense. Bürg (1957) continúa admitiendo que el coniaciense se extiende hasta la base de la Lidita Superior. A partir de 1957 encontramos un cambio notorio en la cronoestratigrafía del grupo Olini. Bürgl (1961 a) hace descender el techo del coniaciense hasta la base de la Lidita Inferior admitiendo de nuevo la presencia del santoniense. Las bases paleontológicas para este nuevo cambio no se conocen, aunque el mismo autor señala que obedecen al hallazgo de cefalópodos que son indicadores del santoniense (Bürgl 1961, pp. 27 nota al pie de página). No obstante ni en este trabajo ni en ningún informe se conocen cuales son estos nuevos hallazgos paleontológicos que permiten datar la Lidita Inferior y las lutitas que se le superponen como santonienses.

La Lidita Superior contiene una abundante fauna de Siphogenerinoides que indicaría la presencia de la Zona de Siphogenerinoides cretacea que tanto para Bürgl y Dumit como para Petters determinaría el campaniense.

Es pues evidente que la edad del Nivel de Lutitas y que en general la edad del grupo Olini ha girado siempre alrededor de la presencia o ausencia del santoniense. Lo curioso es que desde 1954 no se ha encontrado ninguna fauna nueva que justifique todas esta oscilaciones. Siempre ha sido la misma fauna que unas veces es coniaciense mientras que otras, la misma fauna se considera santoniense. (Bürgl 1955; Perters 1955; Bürgl 1957; Bürgl y Dumit 1954; Bürgl 1961a). En la figura 4 se da una representación gráfica de las edades de toda la sección cretácica.

De todos estos datos se pueden sacar las siguientes conclusiones:

1) Parece segura la existencia de una fauna coniacience por debajo de la Lidita Superior, de tal manera que la mayor parte del grupo Olini tendría posiblemente una edad coniaciense.
2) Por el momento no es posible establecer divisiones. Se ignora completamente la presencia o ausencia del santoniense. Por lo menos no hay una fauna que pueda considerarse como típicamente santoniense. En consecuencia como y donde trazar la base del campaniense?
3) Es preferible en el estado actual dejar la sección como turoniensemaastrichtiense que en definitiva evitará por lo menos nuevas confusiones.

NIVEL DE LUTITAS Y ARENAS

Por encima de la Lidita Superior aparecen un conjunto de lutitas alternando con bancos de arenitas. El límite con la Lidita Superior es muy nítido y se coloca donde desaparecen las capas de chert y aparecen los primeros bancos de arenitas. La parte basal de este Nivel está formada por una alternancia de lutititas grises y amarillentas con bancos de arenitas. Esta parte tiene un espesor de unos 40 m . Siguen hacia la mitad de la serie unos bancos de arenitas y hacia el techo vuelve a presentarse una alternancia de lutitas grises con ban\cos de arenitas. En esta parte aparecen entre las lutitas concreciones calcáreas que pueden alcanzar hasta 1 m de diámetro. Es pues notorio que las concreciones calcáreas no se encuentran restringidas al antiguo Nivel de Ruedas de

3ürg

de la cro, del esen-

FIGURA 1.-Localización del área estudiada.

Carreta o a la formación Loma Gorda, sino que aparecen distribuídas ampliamente por toda la columna estratigráfica. El techo del Nivel de Lutitas y Arenas está determinado por la aparición de un banco masivo de arenas que representa la base de la formación La Tabla (figura 2). El espesor total del Nivel de Lutitas y Arenas es de 75 m .

Dentro de la sección estudiada no se encontraron fósiles. Sin embargo, en la sección de Girardot-Nariño, Bürgl y Dumit (1954, pl. 2) citan de los horizontes denominados $K_{2 c}$ y $K_{2 b}$ un conjunto de foraminíferos asociados con Stantonoceras y Nostoceras. Ambos horizontes litológicos por su posición estratigráfica y por su descripción litológica corresponderían de una manera general al nivel de Lutitas y Arenas.

Basándose en la fauna Bürgl y Dumit asignaron a estos depósitos una edad campaniense medio y campaniense superior. Aún considerando la fauna citada por estos autores, evidentemente ésta no es suficiente para establecer divisiones tan detalladas dentro del campaniense. Aún el límite campaniense-maastrichtiense es defícil de establecer con base en los foraminíferos como se verá más adelante.

El Nivel de Lutitas y Arenas se extiende por toda la barrera de GirardotGuataquí y también en las regiones aledañas a Gualanday Coello (Téllez y Navas, 1962).

FORMACION LA TABLA

Se propone el nombre de formación La Tabla para todos aquellos sedimentos que se encuentran por encima del Nivel de Lutitas y Arenas en la sección tipo de Piedras-La Tabla. El nombre corresponde al Caserío La Tabla.

La formación que tiene un espesor de unos 91 m está representada por dos niveles de arenitas separados por un conjunto intermedio de latitas grises que alternan con pequeños bancos de arenitas. En la base de la formación las arenas constituyen un banco masivo con intercalaciones delgadas de lutitas, pero siempre con predominio absoluto de las arenitas. Esta parte tiene un espesor de 21 m . La parte media de la formación que es predominantemente lutítica, tiene una potencia de 14 m y contiene algunos moluscos. La parte superior consta de bancos masivos de arenitas de grano medio, que en el techo de la formación pasan a gravas arenosas y conglomerados con cantos de cuarzo y chert representado por lidita y porcelanita. El conjunto de arenitas y conglomerados suele presentar un cemento calcáreo, a veces mezclado con cemento ferruginoso. Aunque no se ha realizado un estudio completo de todos los bancos de arenitas, éstas en su mayoría corresponden a ortocuarcitas y los conglomerados son de tipo oligomíctico. En la parte superior son frecuentes las concreciones de arenitas que pueden alcanzar un tamaño de $30-40 \mathrm{~cm}$.

En la sección tipo, la sedimentación termina con la formación La Tabla, pero al N de Tocaima por encima de los conglomerados oligomícticos continúan unas lutitas rojas con intercalaciones de ortocuarcitas que corresponden a la formación Seca (= antigua formación Guaduas). Así pues la formación La Tabla queda limitada en la base por el Nivel de Lutitas y Arenas y en el techo por la formación Seca.

FIGURA 2,-Sucesión estratigráfica en el cretácico del extremo septentrional de la barrera de Girardot-Guataqui.

Al N de Tocaima, en la parte superior de la formación La Tabla se observan algunos cambios de facies introducidos por la aparición de algunos mantos de carbón que han sido objeto de explotación. La presencia de algunos pequeños mantos de carbón dio lugar a que estos sedimentos de la parte superior de la formación La Tabla se interpretaran como pertenecientes a la formación Guaduas en relación con la Sabana de Bogotá, donde los sedimentos que contienen carbón y se encuentran en una posición estratigráfica semejante, corresponden ya a la formación Guaduas. Esta fue la interpretación que hizo Scheibe de los sedimentos localizados en los alrededores de Tocaima y Jerusalén.

La naturaleza del contacto entre la formación La Tabla y la formación Seca está íntimamente ligada a la estructura de la región. A veces es normal, pero principalmente en los flancos de los anticlinales suele ser claramente discordante llegando a recubrir gran parte y a veces toda la formación La Tabla.

Desde antiguo se había extendido hasta la región de Girardot-Guataquí el nombre de formación Guadalupe o grupo Guadalupe en relación con la Sabana de Bogotá (Scheibe 1933 a y b, Hubach 1957; Van der Hammen 1958, y Otros). En realidad existe aquí una facies muy diferente para que se pueda aplicar la misma nomenclatura litoestratigráfica. Variación de facies que ya en parte señaló Hubach (1957) refiriéndose a la ausencia de un nivel detrítico en el techo del Guadalupe en los alrededores de Jerusalén. En gran parte esta ausencia del nivel detrítico se debe a la estructura tectónica y no tiene por lo tanto un origen sedimentario, no pudiendo en consecuencia interpretarse como un verdadero cambio de facies. Aún en este sentido la formación La Tabla es más detrítica que el techo del Guadalupe en la Sabana de Bogotá, ya que allí la Arenisca Tierna corresponde a una arenisca de grano medio a grueso (Julivert, 1962a) mientras que la formación La Tabla presenta gravas y conglomerados. Las variaciones en la parte alta del cretácico entre el área de Girardot-Guataquí y la Sabana de Bogotá estriban en la mayor abundancia de niveles de areniscas que se encuentran en esta última región.

En la sección tipo se encontraron hacia la parte media de la sucesión estratigráfica, restos de moluscos: Pecten sp., Ostraea sp., Cardium sp. y Natica sp. Junto al Río Opia, en el cemento calcáreo de los conglomerados correspondientes al techo de la formación se encontraron restos de Lepidorbitoides sp.

De la sección de Girardot-Nariño, Bürgl y Dumit (1954, pp. 37-38 y pp. 40), citan varias especies de foraminíferos y moluscos en sedimentos que pueden litoestratigráficamente incluírse dentro de la formación La Tabla. Con base en esta fauna Bürgl y Dumit (1954) determinaron la presencia del maastrichtiense. Raasveldt (1956) sigue la misma cronoestratigrafía que estos autores. Ambos sitúan el límite campaniense-maestrichtiense en el límite entre los depósitos que consideramos equivalentes al Nivel de Lutitas y Arenas y a la formación La Tabla. Aún según Bürgl (1957) la presencia de Siphogenerinoides bramlettei representaría la existencia de la Zona de Siphogenerinoides bramlettei e indicaría una edad maastrichtiense inferior. No obstante la Zona de Siphogenerinoides cretácea y la Zona de S. bramleteei no son muy seguras para establecer este límite por cuanto ambas zonas se superponen (Etayo 1964, pp. 71).

La formación La Tabla se extiende por toda la barrera de Girardot-Gua-
taquí y por el flanco oriental de la Cordillera Central, aunque en esta última área pueden ya presentarse algunos cambios en la estratigrafía de detalle.

Dentro del área estudiada la formación la Tabla es equivalente a la llamada Arenisca Superior del Guadalupe (Van der Hammen, 1958) y se puede correlacionar con el "Conjunto Cuarzoso" de Téllez y Navas (1962) en la región de Gualanday-Coello. También se puede correlacionar en líneas generales con la formación Cimarrona en la vertiente W de la Cordillera Oriental (al E de Honda), pero por el momento no es posible una correlación con los diferentes miembios de esta última formación.

Bürgl y Dumit (1954, pp. 32 y pl. 2) señalan la existencia de una discordancia entre el campaniense y el maastrichtiense (horizonte $\mathrm{K}_{2 \mathrm{a}}$) deducido de la presencia de cantos rodados del campaniense en la base del maastrichtiense. Estos cantos corresponden a concreciones y son por lo tanto estructuras que se dan simultáneamente con la sedimentación de las capas que las rodean. En la región de Tabio y Chía Bürgl también señaló esta discordancia que ha sido refutada de la misma manera por Julivert (1962b). Por lo tanto se trata de una sucesión completamente normal.

LOS SEDIMENTOS CRETACICOS AL ORIENTE DE HONDA

En el borde occidental de la Cordillera Oriental la falla inversa de Cambrás da lugar a que afloren los sedimentos del cretácico superior que se disponen formando una franja de orientación general N-S y se extiende desde la Quebrada Guacamayas hasta más al N de la Estación de Ferrocarril de Cambrás. A partir de la Quebrada Guacamayas hacia el S los sedimentos cretácicos han desaparecido a consecuencia de la disminución del salto de falla en esta misma dirección.

Todos los sedimentos que corresponden a la formación Cimarrona son fuertemente detríticos y están formados principalmente por arenitas, conglomerados y gravas.

FORMACION CIMARRONA

Breve resumen bistórico.-El nombre de formación Cimarrona aparece por primera vez en una columna estratigráfica del distrito de Honda (Wahsburne y White 1922, figura 2). Aunque los autores no señalan el origen del nombre, ni la sección tipo, este debe corresponder a la Vereda Cimarrona (en la publicación original aparece bajo el nombre de Cimarrona, posiblemente por error ortográfico). Wahsburne y White denominan formación Cimarrona a un conjunto de areniscas de grano grueso y conglomerados calcáreos con un espesor de 400 pies. En su columna estratigráfica esta formación descansa sobre unos shales bituminosos del cretácico medio y está superpuesta por las lutitas de la "Coal-Bearing Series" en la nomenclatura de estos autores.

Caudri (1948) denomina a la parte alta de este conjunto detrítico «Guaduas limestone» considerándolo como parte de la formación Guaduas. Por su fauna de Lepidorbotoides le asigna una edad eocénica. Más tarde Caudri (1950) rectifica el nombre anterior sustituyéndolo por el de "Cimarrona limestone" y colocándolo en el maestrichtiense.

Raasveldt y Carvajal (1957) describen la sucesión que pertenece a la formación Cimarrona en el sentido de Wahsburne y White bajo el nombre de Conglomerado de Menal con las siguientes características: «Las facies de Menal (guijarros de cuarzo incrustados en una matriz calcárea) es típica para la región al E de Honda, no encontrándose en ningán otro lugar. El estudio de los afloramientos a lo largo de la carretera Guaduas-Honda y de la región adyacente al N (La Paz, Plancha K 10) indica, que en la parte superior del Maestrichtiano hay una transicion representada por: conglomerados con matriz arenosa y cuarzosa que varían a conglomerados con matriz calcárea, calizas, margas y finalmente a arcillas y a areniscas, en parte epicontinentales, lo cual se deduce por las intercalaciones de los mantos de carbón explotados en Caparrapí (Plancha K 10)".

En relación con la cartografia y estratigrafía dadas por Raasveldt y Carvajal, el Conglomerado de Menal queda limitado en la base por un nivel de margas y liditas impuras y en el techo por las arcillas de la formación Guaduas.

Van der Hammen (1958) considera que son equivalentes la formación Cimarrona y el Conglomerado de Menal. Estando limitada dicha formación en la base por arcillas de tipo Umir y en el techo por las arcillas de tipo Guaduas.

El problema estratigráfico que plantea la formación Cimarrona.-No existe ninguna duda que Wahsburne y White (1922) consideran que la formación Cimarrona está formada por un solo nivel detrítico. La misma interpretación siguen Raasveldt y Carvajal (1957) que consideran el Conglomerado de Menal repetido dos veces por fallas de tipo inverso. Por la carretera de Hon-da-Guaduas, Raasveldt y Carvajal hacen la siguiente interpretación de los sedimentos cretácicos: En la base un nivel de margas y liditas impuras $\left(\mathrm{K}_{4}^{3}\right)$ superpuesto por el Conglomerado de Menal (K_{2}^{1}). Sigue un complejo de arcillas y areniscas (T_{1}) que consideran como formación Guaduas (en el presente trabajo este conjunto corresponde al Nivel de Arenitas y Lutitas). Por falla inversa se repite sobre T_{1}, el Conglomerado de Menal (en realidad hay aquí dos niveles: uno inferior que representa el miembro Zaragoza y un conglomerado que representa el miembro La Primavera). Aún repetido por otra falla inversa aparece otra vez el nivel de margas y lutitas $\left(\mathrm{K}_{3-4}\right)$ seguido por el Conglomerado de Menal. De la interpretación de Raasaveldt y Carvajal se desprende que existe un solo nivel de conglomerados que se repite tres veces por fallas de tipo inverso.

En este trabajo se plantea la hipótesis de que existen dos niveles diferentes de conglomerados. La estratigrafía detallada, los espesores y los caracteres petrográficos demuestran que existen importantes diferencias entre los dos niveles y que el nivel inferior y el nivel superior pueden considerarse como unidades litoestratigráficas diferentes.

Divisiones de la formación Cimarrona. Con esta nueva interpretación de la formación Cimarrona ésta queda dividida en las siguientes unidades, del muro al techo: Miembro La Fría ($=$ nivel K_{2}^{1} de Raasveldt y Carvajal); Nivel de Arenitas y Latitas ($=\mathrm{T}^{1}$, formación Guaduas de Raasveldt y Carvajal); Miembro Zaragoza (este nivel en la cartografía y estratigrafía de Raasveldt y Carva-
jal queda subestimado e incluído dentro del Conglomerado de Menal); Miembro La Primavera ($=$ Nivel K_{2}^{1} de Raasveldt y Carvajal que consideran como Conglomerado de Menal).

A continuación se describen cada una de las unidades en que se ha dividido la formación Cimarrona. Se considera como sección tipo la que aparece por la carretera Honda-Guaduas y como sección de referencia la que se puede obtener por la Quebrada La Fría. La sucesión estratigráfica se da en la figura 5.

Miembro La Fría. La base del miembro La Fría se puede observar por 1a Quebrada del mismo nombre. Se coloca donde aparece el primer banco de gravas o de conglomerados cuarzosos que descansan sobre unas lutitas negras margosas. El nombre de La Fría procede de la Quebrada La Fría en la Vereda La Paz (Municipio de Guaduas, Departamento de Cundinamarca). Dentro de la sección estratigráfica se pueden distinguir dos partes: una inferior con un espesor de unos 72 m , en la que son frecuentes las intercalaciones de lutitas entre bancos bastante masivos de arenitas, gravas y conglomerados. Estos ban\cos de lutitas pueden alcanzar un espesor de hasta 8 m . En el resto de la sección, con un espesor de 89 m , predominan los bancos de arenitas y gravas, mientras que las lutitas quedan reducidas prácticamente a interbancos. Es frecuente que entre dos bancos masivos de gravas o conglomerados se presenten unidades en las que alternan los bancos de lutitas con bancos de arenitas.

El límite superior con el Nivel de Arenitas y Lutitas presenta un contacto normal y se coloca donde terminan los bancos de gravas y conglomerados cuarzosos y empieza una sucesión de lutitas con bancos muy delgados de limos ferruginosos.

El grano medio de los sedimentos corresponde en general a valores elevados. Las arenitas normalmente presentan valores que se sitúan dentro de las arenas de grano medio. Hacia la parte superior de la serie los valores son más altos. Petrográficamente las arenitas corresponden a subgrauvacas y a ortocuar citas. El cemento de las arenitas es de hierro y calcita, siempre con un pre dominio general del cemento ferruginoso sobre la calcita. Tanto las arenita como las gravas y los conglomerados presentan buenos calibrados.

Las gravas y los conglomerados constan de cantos de cuarzo, lidita porcelanita, es decir que corresponden a gravas y conglomerados de tipo ol gomíctico (${ }^{*}$). Entre las estructuras más frecuentes se encuentran la estratigr ficación oblicua y la presencia en algunos bancos de ritmos sedimentarios unos $20-30 \mathrm{~cm}$. En estos ritmos el valor del grano medio aumenta desde base hasta el techo; corresponde esta estructura a una polaridad de tipo invers

Dentro de la sección tipo son frecuentes los foraminíferos y ostrácod principalmente en los niveles lutíticos. De este miembro se han determinado (* Textularia semicomplanata Carsey, Gaudryina aff. quadrans Cushman, Astaco pseupomarki (Cushman), Astacolus sp., Discorbis sp. Gavelinella cf. brotzeni Said Kenay, Gavelinella cf. planulina texana Cushman, Planulina multipunctata Ban Cibicides harperi (Sand), Reusella cf. R. (?) buliminoides Brotzen, Gümbelina co
(*) Se ha utilizado la nomenclatura de Pettijohn, 1957.
(*) La fauna de foraminíferos ha sido determinada por el Dr. J. Sigal y los ostrácodos por el Dr. Ap leuscu del Instituto Francés del Petróleo, a quienes doy mis más expresivas gracias.

lata (Cushman), Gümbelina striata (Ehr), Gümbelina planata Cushman, Gümbelina aff. globulosa striatula Bronn, Gümbelina moremani Cushman, Gümbelina reussi Cushman, Rugoglobigerina macrocephala ornata Bronn, Rugoglobigerina reicheli pustulata Bronn, Rugoglobigerina rugosa rugosa (Plumer), Rugoglobigerina rugosa penny Bronn, Rugoglobigerina aff. bexacamerata subbexacamerata Gand, Trinitella scotti Bronn, Globigerinella sp., Globotruncana bulloides Vogler, Globotruncana globigerinoides Brotzen, Globotruncana fornicata Plumer, Globotruncana fornicata cesarensis Gand, Globotruncana fornicata ackermanni Gand, Globotruncana thalmanni Gand, Globotruncana cf. ventricosa (white), Siphogenerinoides bramlettei Cushman, Siphogenerinoides clarki Cushman, Siphogenerionoides aff. dentata Chen, Siphogenerinoides parva Cushman. Siphogenerinoides plummeri Cushman, Siphogenerinoides sp., Cytherella sp., Cythereis sp., Veenia? sp., Paracypris sp., Cytherelloidea sp., Buntonia sp., Cophinia sp., Brachycythere sp., Cytheroptheron sp.

Nivel de Arenitas y Lutitas. El límite inferior de este nivel se trató ya al hablar del miembro La Fría. La parte basal de este nivel consta de una alternancia de lutitas de color gris con limos compactos muy ferruginosos. Las arenitas se encuentran distribuídas hacia la base de la sucesión y forman dos crestas que resaltan morfológicamente y están separadas por lutitas con pequeñas intercalaciones de arenitas. Hacia el techo se presenta otro conjunto de arenitas con un espesor de $7,60 \mathrm{~m}$. El límite superior con el miembro Zaragoza es nítido y se ha colocado donde empiezan las lutitas oscuras con intercalaciones de ortocuarcitas.

Las arenitas presentan un valor del grano medio que oscila entre las arenas de grano muy fino y las arenas de grano medio. Petrográficamente corresponden a ortocuarcitas y protocuarcitas y solo en el techo de la serie se encuentran unas capas de subgrauvacas. El cemento es ferruginoso y calcáreo. Aunque no existe una variación gradual a través de la serie el cemento ferruginoso se localiza principalmente en la parte inferior, mientras que en la parte alta tiende a predominar el cemento de calcita. El aumento de calcita se correlaciona con el aumento del tamaño del grano medio y con la pérdida de la estructura cuarcítica.

Paleontologicamente el Nivel de Arenitas y Lutitas se presenta hasta el momento completamente estéril.

Miembro Zaragoza. El nombre se ha tomado de la Quebrada Zaragoza que cruza la carretera de Honda-Guaduas. Se caracteriza por el predominio de lutitas oscuras cuyo contenido en carbonato cálcico las sitúa en el límite con las margas. A pocos metros de la base aparece un banco de caliza arenosa con una gran cantidad de foraminíferos y restos de moluscos. A partir de este banco empieza una alternancia de lutitas oscuras con ortocuarcitas de grano muy fino y de pequeño espesor, que progresivamente se hacen más numerosos y su espesor se iguala al de los bancos de lutitas. Ya en el techo de este miembro vuelven a predominar las lutitas y los bancos de cortuarcitas presentan gran abundancia de oolitos calcáreos.

En las lutitas son frecuentes las láminas de yeso que se disponen ya siguiendo los planos de estratificación, ya rellenando grietas.

Todos los bancos de arenitas corresponden a ortocuarcitas con un predominio total del cemento de calcita sobre el cemento ferruginoso. El espesor
total del miembro Zaragoza es de unos 70 m . Paleontológicamente es el nivel más importante de la formación Cimarrona por su abundancia en fósiles. El grupo predominante es el de los faraminíferos. De aquí se han determinado: Textularia semicomplanata Carsey, Textularia cf. faujasi Reuss, Gaudryina aff. quadrans Cushman, Milioles, Lenticulina sp., Discorbis sp., Gyroidina depressa (Alth), Gavelinella cf. planulina texana Cushman, Planulina austiniana Cushman, Planulina nacatochensis Cushman, Planulina correcta (Carsey), Cibicides subcarinatus Cushman and Parker, Cibicides cf. arteagi Vess, Cibicides semiumbilicata Toutk, Epistomina aff. fax Nauss, Bulimina cf. reusst Morrow, Bulimina prolixa Cushman and Parker, Gümbelina costulata (Cushman), Gümbelina striata (Ehr), Gümbelina moremani Cushman, Gumbelina globulosa (Ehr), Rugoglobigerina macrocephala ornata Bronn, Rugoglobigerina rugosa rugosa (Plummer), Rugoglobigerina rugosa subrugosa Gand, Globigerinella sp., Globotruncana fornicata Plummer, Globotruncana fornicata cesarensis Gand, Globotruncana fornicata ackermanni Gand. Globotruncana stuartiformis Dalbiez, Globotruncana gr. gansseri Bolli, Globotruncana aff. cretacea Cushman, Globotruncana arca (Cushman), Siphogenerionoides bramlettei Cushman, Siphogenerinoides clarki Cushman, Siphogenerinoides parva Cushman, Sipbogenerinoides sp. (grupo de S. parva). Siphogenerinoides sp. 1, Cytherella sp., Cithereis sp., Veenia sp., Copbinia sp., Brachycythere sp., Protobuntonia sp., Antichytereis sp., Bairdia sp., Cardium sp., Pecten sp., Ostrea sp., Corbula sp., Nuculana sp., Natica sp, Turritella sp., y Solenoceras sp.

En los sedimentos que corresponden a este mismo miembro y que afloran en la Quebrada Zaragoza, gracias a la existencia de una falla de tipo inverso que repite este miembro y el miembro La Primavera, se han determinado varios moluscos que estratigráficamente se sitúan en el techo de la sucesión: Natica sp., Turritella sp., Corbula sp., y fragmentos de Solenoceras sp.

Miembro La Primavera. Representa el techo de la formación Cimarrona. Constituye una unidad detrítica con predominio de gravas arenosas, conglomerados y arenitas, con un espesor total de 76 m . Su nombre procede de la Quebrada La Primavera, en la Vereda La Cimarrona (Municipio de Guaduas, Departamento de Cundinamarca). El límite inferior con el miembro Zaragoza es brusco y muy nítido.

Se coloca donde desaparecen los bancos de lutitas y empiezan los primeros bancos de gravas arenosas y conglomerados, separados por una alternancia de bancos de lutitas con bancos de arenitas. Hacia la parte superior aumentan los niveles de lutitas con intercalaciones laminares de arenitas. En los niveles más superiores de gravas se intercalan lentejones de conglomerados con una gran cantidad de cemento calcáreo. A veces los cantos son muy escasos de tal manera que dentro de los conglomerados se forman pequeñas intercalaciones lenticulares de calizas.

En el techo del miembro La Primavera existe un banco de conglomerado en el cual hacia el techo del mismo los cantos van desapareciendo gradualmente hasta que se pasa a una caliza cuyo espesor varía de $0,50 \mathrm{~m}$ a 1 m . Más al N del área estudiada estas calizas aumentan considerablemente de espesor. El límite superior del miembro La Primavera viene determinado por el último banco de calizas y la aparición de lutitas de color rojizo con intercalaciones de arenitas pertenecientes a la formación Seca. El contacto es a veces normal, pero normalmente tiene un carácter transgresivo.

El valor del grano medio sufre un cambio brusco al pasar del miembro Zaragoza al miembro La Primavera. En general este valor se mantiene dentro de la fracción cantos.

Las arenitas son del tipo ortocuacitas, aunque hacia el techo del miembro aparece algún banco de subgrauvacas. Tanto las ortocuarcitas como los conglomerados presentan un predominio de cemento calcáreo sobre el cemento ferruginoso. La composición de las gravas y conglomerados pertenece a un sedimento maduro, oligomíctico, con cantos de cuarzo, lidita y porcelanita. Tanto las ortocuarcitas como las gravas presentan un buen calibrado.

En el miembro La Primavera se han encontrado pocos fósiles. A unos 24 m del techo aparece un nivel lutítico arenoso con restos de plantas y con Solenoceras sp. En el techo del miembro son frecuentes los foraminíferos que aparecen en el cemento calcáreo de los conglomerados. Se ha determinado: Sulcoperculina globosa de Cizancourt, Sulcoperculina vermunti Thiadens, Pseudorbitoides cf. rutteni Bronn, Pseudorbitoides sp., Rotalia sp., y Litbotamniun sp.

Diferencias entre los miembros La Fría y La Primavera.-Entre las dos unidades detrítucas existen una serie de diferencias suficientemente importantes para poder considerarlas como dos miembros diferentes y no como una sola unidad litoestratigráfica que se repite por falla según la interpretación de Raasveldt y Carvajal (1957). Estas diferencias son las siguientes:

En primer lugar la estatigrafía y la litología son bastante diferentes. El espesor es mucho más grande en el miembro La Fría (167 m) que en el miembro La Prımavera (76 m).

Las intercalaciones lutíticas son mucho más importantes en el miembro La Fría que en el miembro La Primavera.

Los valores del grano medio son en general más elevados en el miembro La Fría, tanto para las arenitas como para las gravas y conglomerados. El calibrado si bien es normal en ambos miembros, en el miembro La Primavera se encuentran valures algo más elevados.

Petrográficamente en el miembro La Fría predominan las subgrauvacas, mientras que en el miembro La Primavera dominan las ortocuarcitas. El cemento es también otro carácter distinto. En el miembro La Fría abunda el cemento ferruginoso, en el miembro La Primavera el cemento calcáreo.

La fauna si bien nada indica en cuanto a la edad es también muy diferente en ambos miembros. En el inferior abundan los foraminíferos como Globigerina, Rugoglobigerina y Siphogenerinoides. En el miembro La Primavera solo aparecen Pseudolepidorbitoides y Sulcoperculina. Ambas faunas están controladas por las facies.

Edad de la formación Cimarrona. - Wahsburne y White (1922) no citan fósiles de la formación Cimarrona y colocan a ésta dentro del terciario. Caudri con base de la fauna de Lepidorbitoides le asigna primero una edad eoceno y después rectifica para colocarla en el maastrichtiense. La fauna citada por Caudri corresponde estratigráficamente al miembro La Primavera. Petters (1955) cita Siphogenerionoides bramlettei y Solenoceras meekanum pero no se conoce la posición estratigráfica de esta fauna. Le atribuye una edad maastrichtiense. Bürgl
(1957) y Van der Hammen (1958) por la presencia de S. bramlettei consideran la formación Cimarrona como maastrichtiense inferior. Vemos pues que en general la edad viene determinada por S. bramlettei. El valor de S. bramlettei, ya ha sido discutido por Etayo (1965) y aún por el mismo Petters (1955). Los datos paleontológicos aportados por la nueva fauna permiten situar la formación Cimarrona dentro del maastrichtiense sin que sea posible establecer subdivisiones.

Es evidente que si la zona de S. bramlettei viene determinada por la presencia de esta fósil, la zona abarcaría desde el miembro La Fría hasta la mayor parte del Miembro Zaragoza. El miembro La Primavera correspondería ya a otra zona más superior, pero la ausencia de S. bramlettei en el miembro La Primavera se debe posiblemente a unas condiciones de facies.

Extensión geográfica y correlaciones. La formación Cimarrona en el sentido que se le da en este trabajo se extiende desde algo más al N de Cambao hasta unos 45 km , y aún más, pero no se conocen datos concretos en cuanto a su estratigrafía. Según Raasveldt y Carvajal (1957) hacia el E pasa lateralmente a una facies lutítica con una posición estratigráfica más alta y la coloca en el maastrichtiense superior. Es evidente que en el techo del cretácico superior existen variaciones laterales de facies con intercalaciones de carbones. Ya señalamos también en este sentido las variaciones que se encuentran en el techo de la formación La Tabla. Se puede deducir que todas estas variaciones aparecen en los sedimentos situados en el borde occidental de la Cordillera Oriental y deben estar en relación con la regresión del final del cretáceo.

Al tratar de cada una de las divisiones de la formación Cimarrona se dió ya la correlación con la interpretación de Raasveldt y Carvajal (1957) de tal suerte que ahora solo se tratarán las correlaciones con otras áreas de la Cordillera Oriental. Bürgl (1957) correlaciona una parte del miembro La Primavera (caliza de Menal) con la Arenisca Tierna de la Sabana de Bogotá. Van der Hammen (1957) correlaciona la formación Cimarrona con el techo de la formación Guadalupe y con la parte inferior de la formación Guaduas. El mismo autor en 1958 correlaciona el miembro La Primavera ($=$ Conglomerado de Menal) con la Arenisca Tierna de la Sabana de Bogotá.

Es posible que la formación Cimarrona corresponda a una parte de la formación Guadalupe, pero por el momento no es posible una correlación detallada. La formación Cimarrona debe también correlacionarse con una parte de la formación Umir en el Valle Medio del Magdalena. Un resumen gráfico de las nomeclaturas y correlaciones de la formación Cimarrona estarán representadas en la figura 6.

FORMACION SECA

Se incluyen bajo este nombre todos los sedimentos que se encuentran entre la formación Cimarrona y la formación Hoyón. El nombre procede de la Quebrada Seca que desemboca directamente al Río Magdalena, al S. de Cambao, en la Vereda del mismo nombre. Como sección tipo se propone la carretera Cambao-San Juan de Río Seco y como sección de referencia la que se encuentra por la carretera de Honda-Guaduas, a continuación de la formación Cimarrona. Por la carretera de Cambao no aparece la base de la formación que viene cortada por la falla de Cambrás que la pone en contacto con las lutitas
rojas de la formación Los Limones. El contacto entre la formación Seca y la formación Cimarrona a veces es normal, pero generalmente se manifiesta discordante.

Tanto en la sección tipo como en la sección de referencia la base de la formación Seca está formada por una alternancia de bancos de ortocuarcitas con bancos de lutitas generalmeute rojas. En la sección tipo sigue después una zona de 50 m formada predominantemente por lutitas rojas. Luego aparece otro conjunto alternando los bancos de arcosas con lutitas rojas. El techo de la formación Seca está determinado por la aparición del primer banco de gravas arenosas con cantos de cuarzo y rocas metamórficas que corresponden al miembro Cambao de la formación Hoyón. El espesor de la formación Seca varía en conjunto de 250 a 300 m .

En su conjunto la formación Seca presenta sedimentos finos. Aún los bancos de areniscas corresponden a unas arenas que varían de grano medio a grano grueso. Dentro de la formación tiene lugar un cambio importante ya que se pasa de unas ortocuarcitas a unas arcosas. Todavía en la base de la formación las condiciones de sedimentación son de origen marino, pero pronto se dejan sentir las influencias de los aportes continentales y el dominio completo de la sedimentación de tipo continental que perdurará durante todo el terciario.

Los afloramientos de la formación Seca se distribuyen formando una franja que se extiende por todo el borde W de la Cordillera Oriental. Al N de Tocaima, en las Quebradas Acuatá y Seca, Apauta y Tabaco, por encima de los sedimentos que se han referido a la formación La Tabla se encuentran unas lutitas rojas con algunas intercalaciones de ortocuarcitas en la base. Por su similitud con la formación Seca se les aplica el mismo nombre. El contacto con la formación La Tabla se presenta discordante casi siempre en esta región, especialmente en los flancos de los anticlinales debido a la existencia de fenómenos de inversión. En estas lutitas rojas son frecuentes las vetas y pequeños mantos de carbón.

Precisamente por la presencia de las lutitas rojas conteniendo carbón, desde antiguo se atribuyeron estos sedimentos a la formación Guaduas por comparación con la formación Guaduas de la Sabana de Bogotá.

Ni en la sección tipo ni en la sección de referencia se han encontrado fósiles. En la Quebrada Seca, al N de Tocaima, las lutitas grises de la base de la formación contienen Siphogenerinoides. La edad de la formación queda aún indeterminada. La mayor parte de autores, la consideran como maastrichtiense y teniendo en cuenta que la formación Hoyón que se le superpone representa el oligoceno, es probable que contenga el límite cretácico-terciario. Sin embargo la posición de dicho límite que da completamente indefinido.

En relación con las demás nomenclaturas la formación Seca es equivalente a la formación Guaduas de esta región en el sentido empleado por Raasveldt (1956), Raasveldt y Carvajal (1957) y Van der Hammen (1958). Correlaciones con áreas externas a la región estudiada, como por ejemplo con la Sabana de Bogotá fueron establecidas por Van der Hammen (1958) quien considera que estos sedimentos son equivalentes al Guaduas de la Sabana excluyendo la parte alta del conjunto superior. El mismo autor las correlaciona con la parte alta de la formación Umir en el Valle Medio del Magdalena.

OBSERVACIONES SOBRE EL LIMITE CRETACICO-TERCIARIO

Dentro del área estudiada, la formación Cimarrona y la formación La Tabla presentan un régimen claramente marino que todavía se conserva en la base de la formación Seca que se le superpone. Dentro de la formación Seca se pasa a condiciones que indican una sedimentación continental. Hasta el momento no se dispone de datos que permitan señalar paleontológicamente la presencia de sedimentos que correspondan a la base del terciario. De esta manera se ha hecho coincidir el límite cretácico-terciario con el cambio en las condiciones de sedimentación. Por comparación con la Sabana de Bogotá y con el extremo N del Valle Medio del Magdalena, Van der Hammen (1958) coloca la base del terciario en sedimentos que corresponden a la base de la formación Hoyón. Pues considera que también está representada en esta sección la formación lisama que según el mismo autor (Van der Hammen, 1958) fue incluída en la formación Hoyón por Raasveldt y Carvajal (1957). Es evidente que los sedimentos que se encuentran por encima de la formación Cimarrona y formación La Tabla no guardan como unidades litoestratigráficas, ninguna relación con la formación Lisama ni con la formación Guaduas. Aplicar estos nombres representa aceptar a priori un conjunto de datos que conducen a notables confusiones. Por este motivo es aconsejable desde todo punto de vista mantener una nomenclatura litoestratigráfica independiente.

Cabe señalar también que en gran parte la posición del límite cretácicoterciario ha sido determinada por la nomenclatura litoestratigráfica más que por los datos paleontológicos. Tengamos en cuenta que se aplicó el nombre de formación Guaduas (=formación Seca en este trabajo) a los sedimentos que se encuentran por encima de la formación Cimarrona. En la Sabana de Bogotá el Guaduas inferior y medio corresponderían al maastrichtiense según Van der Hammen (1957) y el Guaduas superior representaría la base del Terciatio.

En el Valle Medio del Magdalena la edad paleocena de la formación Lisama fue establecida por correlaciones con otras formaciones de la Guajira y estas a su vez por correlaciones con la parte oriental de Venezuela. Existen por lo tanto una serie de correlaciones en cadena a través de todo Colombia que como se demostró a propósito de la formación Hoyón y Gualanday (Porta y Solé de Porta, 1962) adolecen de muchos errores. Por otra parte estas correlaciones implicarían que los límites palinológicos fueran constantes a través de grandes extensiones y hasta el momento se han planteado una serie de observaciones que señalan desplazamientos muy importantes (Porta y Solé de Porta 1962 y Porta 1962).

El límite cretácico-terciario viene determinando según Van der Hammen (1958) por un cambio importante en la flora, con la desaparición de la flora antigua y la aparición de grupos nuevos. Por el momento en Colombia solo se han publicado datos esporopolínicos que cubren parte del maastrichtiense, ignorándose que tipo de flora se encuentra en los sedimentos más antiguos (*).

[^1]

Por todos estos motivos el límite cretácico-terciario queda impreciso, aunque es mus posible que venga situado dentro de la formación Seca.

FORMACION HOYON

Se aplica el nombre de formación Hoyón en el sentido dado por Raasveldt y Carvajal (1957) a este término. El nombre fue introducido por Hubach en un informe inédito de la Compañía Shell. Así aparece publicado por primera vez por Raasveldt y Carvajal (1957). Van der Hammen (1958) señala como localidad tipo la Quebrada Chaguaní arriba y abajo de la Quebrada Hoyón.

Consideramos como secciones de referencia las que se obtienen por la carretera de Cambao-San Juan de Río Seco y Honda-Guaduas. Se divide la formación Hoyón en las siguientes unidades litoestratigráficas del muro al techo: Miembro Cambao, Nivel de Lutitas, Miembro Aguasclaras y Miembro Capira.

Miembro Cambao. Corresponde a la parte inferior de la formación. Su nombre procede de la Vereda Cambao (Departamento de Cundinamarca). En la sección que ofrece la carretera de Cambao a San Juan de Río Seco el contacto con la formación Seca está ligeramente mecanizado. Se caracteriza este miembro por la abundancia de sedimentos gruesos dispuestos en bancos masivos de $5-6 \mathrm{~m}$ que alternan con bancos de lutitas de color rojo o rojo vinoso. Las gravas arenosas son de naturaleza polimíctica con cantos de cuarzo, rocas metamórficas, rocas ígneas y rocas sedimentarias. Siempre predominan las rocas metamórficas sobre las restantes. Las rocas sedimentarias están formadas por cantos de liditas y un chert de color rojo. En conjunto el miembro Camsro tiene un espesor de 200 m .

El miembro Cambao en la sección de la carretera Honda-Guaduas presenta una potencia de unos 190 m y está formado por una alternancia de bancos de gravas arenosas, arenas y lutitas. El tamaño del grano en general es más pequeño en esta sección y la composición de las gravas es también de tipo polimíctico.

Las areniscas corresponden a unas arcosas con los feldespatos alterados, completamente cuarcificados que le dan un aspecto de chert. En algunos bancos son notables las areniscas micáceas.

Nivel de Lutitas. Constituye una unidad bien definida litológicamente y situada entre dos unidades de gravas: en la base el miembro Cambao y en el techo el miembro Aguasclaras. Los dos límites son nítidos y bruscos. La sucesión estratigráfica consta predominantemente de lutitas rojas en bancos potentes. En la base del Nivel se encuentran dos bancos lutíticos de 35 y 15 m separados por 1 m de arenas arcósicas. Siguen luego unas arcosas en bancos de $5-30 \mathrm{~cm}$ que alternan con lutitas. Hacia el techo aparece una intercalación de gravas arenosas y la serie termina con unos 27 m de lutitas rojas.

En los bancos de lutitas aparecen unos nódulos con granos de cuarzo muy fino unidos por un cemento calcáreo-ferruginoso. En el centro de los nódulos aparece normalmente un núcleo formado por cristales de calcita. El espesor del Nivel de Lutitas es de 130 m en la sección de la carretera de Cambao y de 107 m aproximadamente en la sección obtenida por la carretera de Henda.

Miembro Aguasclaras. Empieza con un banco de gravas arenosas al que sigue otro banco con intercalaciones irregulares de arenas y lutitas. Toda la sucesión estratigráfica se caracteriza por la alternancia de gravas arenosas, arenas y lutitas. Aunque los bancos de lutitas son muy escasos, lo que da al miembro un carácter más masivo. En el techo aparecen unas lutitas de color rojo sobre las que se apoya una masa de gravas arenosas que corresponden a la base del miembro Capira.

Las gravas arenosas son de naturaleza polimíctica y presentan una composición muy homogénea a través de la sucesión, encontrándose los mismos tipos de rocas que en el miembro Cambao. Todos los niveles de arenas corresponden a una arcosa. El espesor del miembro Aguasclaras es de 149 m en la carretera de Honda.

El nombre se ha tomado de la Quebrada Aguasclaras que desemboca en la Quebrada Chaguaní.

Miembro Capira. El límite con el miembro Aguasclaras se coloca donde empieza un banco masivo de gravas arenosas, sin estratificación y que presenta intercalaciones irregulares de arenas y lutitas. Sigue a continuación otro banco de gravas arenosas, con un espesor de 5 m , separado de otra masa de gravas (con un espesor de 87 m) por lutitas rojas, dispuestas en un banco de 8 m .

Ya en el techo del miembro aparecen nuevamente unas lutitas rojas con un espesor de unos $10-15 \mathrm{~m}$, que limitan con los bancos de arenitas bien estratificados que corresponden a la formación San Juan de Río Seco. El nombre del miembro corresponde a la Vereda Capira en el Municipio de Chaguaní. La composición de las gravas es polimíctica con los mismos tipos de cantos que se encuentran en los miembros Armadillos y Aguasclaras de la misma formación. Merece señalarse que en el miembro Capira hay un aumento en la proporción de rocas ígneas en relación con los demás miembros y que éstos se encuenttan completamente alterados. En conjunto el miembro Capira es el más detrítico y el menos estratificado de toda la formación Hoyón. Su espesor es de unos 200 m en la sección de Cambao-San Juan de Río Seco.

Edad y correlaciones de la formación Hoyón. La eded de esta formación fue ya discutida en un trabajo anterior (Porta y Solé de Porta, 1962) con base en los datos esporopolínicos que se obtuvieron del miembro Cambao en la sección de la carretera Honda-Guaduas. Señalamos únicamente que correspondería según estos datos al oligoceno y según Van der Hammen (1958) al eoceno inferior.

La formación Hoyón se extiende por todo el flanco occidental de la Cordillera Oriental donde forma parte del Sinclinal de Jerusalén-Guaduas. En el extremo meridional de este sinclinal, la formación Hoyón va perdiendo potencia y desaparecen sucesivamente los diferentes miembros dando lugar a una serie de discordancias hasta que por último la base de la formación San Juan de Río Seco se apoya directamente sobre las lutitas rojas de la formación Seca. Un resumen de las diferentes edades y nomenclaturas se encuentra en la figura 13. Con respecto a las correlaciones con otras regiones de Colombia remitimos a Van der Hammen (1958, pl. 1 y 6), anotando que si la edad de la formación Hoyón es oligocena, dichas correlaciones deben sufrir un desplazamiento importante.

```
        Aubgrauraceg aus torman पA bance mestve Habta ol techo gusden
        Lutifas fojas, 14 m
        Groves argnasas can eantos do guerzo, roces mstamóricas,
        igneas y Eherf, Pueden presentarse intercolegiones Irfegulares de
        gr8098 , 87 m.
        Greves arenoses con contos de guerzo, recos metomórlices,ignegs
            y Ghert,Gontienga tronces siligifigodos muy olforgdos, 52 m
        Graves arenosas con cantes de cuarzo, rocos metamórficos, la-
        nees y eheft Intercalecienes de ercesesy lutitas, 40 m
        Lutites rofos, 1.5 m,
        Arenas foflzes con egates gisledes, 3 m
        Gravas areneses con centes de
        Grovas orenosos con suetzo, reses metamboticos, ghort sh bongos
        que varion de 2 0 6 m., 22 m.
            Gravas erenesas, en la base hay bances is grenos argezicas
            Gravos arenosas cen eugrto, rocas meromb́rfices f ehert, 10 m
            Arano areósieo, colize Im
            Gravas afanosos con cugrzo, rasas matamónficas y chert, 10 m
            Arenes con contes olilados,9 m.
            Luflitag rofoa. 5 m.
            Aranga orcóalcas rojos con egatos: 2 5m
            Gravos arenosas rofizas con cuarzo, rocos merambrficos y chert.
                con bancos de orenas conglomerálisos que fisnden a formor bencos
                do 0-0 1 m
                Gravas arenosoa con cuerzo, rocas metamórilicas y chert Hacla ol
                muro pueden lormaraen bancos, $S m.
                Lutitas rolos; 1.30 m
                    Grovas aranosos con cuarzo, rocas matamóflicas y chert; 16 m
                        Gravos arenosas con cuorzo, rocos motomorfigas y chert. 4m
```



```
                        Arena: orcósicas rojos, 3 m.
                        Lutlias rojas: 20m.
                -Gravos arenosas rojas con guarzo, rocas motamórilcas y chert, 15m
                        Luflras rojas con un bonce do arenas arcósicas rojas de 2m. en el muro,
                        Arenas arcósicas en bonces de 5 50m. con interbancos lutificas: 7 m
                        Lufiras rolas con nódulas, is m
            -Arenos arcósicas rolos. im.
        Lutitas rolas con lómlnas de orenes rolas muy finas con nódulos de
            limo guarzoso con gemento geledreo ferruginoso: 35 m.
                _Zana cublerto, 15m.
                    Gravas aranosas rojas con cuarzo, rogas mepomórlicas alteradas ,
                    chert, con Intercotaciongs do argnas arcósicas: 36 m
                        Zona cublerta;20 m
                                    Graves arenosas rolas con infercaleciones Irragulores de lutires; 15 m
                            Lutitaa rolas }3\textrm{mm}\mathrm{ .
                            Groves arenosas con cuarxo, metamorticas; lgnees y chert, 5 m.
                            Luriras rojovinosos; 5 m.galoclones Irregulares de arenas; llm
                            Gravas arenosas con infercalaclones Irregulares da arenas; llm
                            Lutlras rojovinosas; 2 m.
                            Gravos arenosas con la mismo compozición que en bancos superlo-
                                    ras , 4 m.
            Lupisas rolovinesas ; 5 m.
            Graves arenosas con cuarzo, roces natamortlgas, ignsos y cheft, son
                        inzarcalaciones de arenge; i0 m.
                        Luficas rolovinosas ; 5 m.
                        Graves arenosas con cuarzo, metamórficasy chert, intercalactones
                Gravos arenosas con cuapzo,
                Luritos rolovinosog; 4 m.
            Luritas rojovinosog, 4
            Gravas granosas:9
            Aronas gliornando con grayas gpanosas; 12 m.
```

FO日MACION SECA

La formación Hoyón representa por su composición litológica un importante aporte de materiales situados al W del Magdalena que proceden probablemente de la Cordillera Central.

FORMACION SAN JUAN DE RIO SECO

Se aplica este nombre a los sedimentos comprendidos entre la formación Hoyon y la formación Santa Teresa (=antigua formación La Cira en el Sinclinal de Jerusalén-Guaduas). La formación San Juan de Río Seco es equivalente a la formación Gualanday aplicada por Raasveldt y Carvajal (1957) a esta misma región. Sin embargo, la formación Gualanday, que tiene su área tipo en la región de Gualanday, se extendió hasta este sector del Sinclinal de Je-rusalén-Guaduas por presentar los mismos rasgos fotogeológicos, sin que se tuviera en cuenta la sucesión litoestratigráfica. Por otro lado la edad de la formación Hoyón y la ausencia de esta formación en el área de Gualanday (donde la formación Gualanday descansa directamente sobre la formación Guaduas) plantea numerosos problemas y aconseja el empleo de una nomenclatura diferente en la región de Jerusalén-Guaduas.

La formación San Juan de Río Seco se ha dividido del muro al techo en tres miembros: Miembro Armadillos, Miembro Almácigos y Miembro La Cruz. Se propone como sección tipo para esta formación y para cada uno de los tres miembros, la sección que ofrece la carretera de Cambao-San Juan de Río Seco desde las proximidades del Boquerón de Capira hasta La Rioja donde se desvía la troncal a la población de San Juan.

Miembro Armadillos.-La base del miembro está representada por una sucesión de bancos de areniscas con lutitas rojas y tiene un espesor máximo de 36 m . Sigue una masa de lutitas rojas de 25 m y a continuación se desarro$1 l a$ un banco masivo, sin estratificación de conglomerados y gravas arenosas de unos 90 m de espesor, que destaca morfológicamente. Termina la sucesión con un conjunto de lutitas que alternan con areniscas. El límite superior está determinado por la aparición de una importante masa de lutitas rojas que representa ya el miembro Almácigos.

La composición de las gravas y conglomerados corresponde a un sedimento maduro con cantos de cuatzo, lidita y un chert de color blanco, amarillento, de tipo porcelanita. En la mayoría de las muestras los cantos de porcelanita dominan sobre los de lidita. El tamaño de los cantos es variable pudiendo llegar hasta los 25 cm . Los bancos de arenisca corresponden a subgrauvacas a veces con cemento ferruginoso. En algunos bancos son abundantes las laminitas de mica.

El espesor del miembro Armadillos es de 235 m . Su nombre procede de la Quebrada Armadillos.

Miembro Almácigos.-Su nombre deriva de la Quebrada Almácigos que desemboca en el Río Seco de las Palmas en el Municipio de San Juan de Río Seco. Limita en su base con el miembro Armadillos y empieza con un nivel importante de lutitas rojas. Morfológicamente dentro de este miembro se distinguen tres niveles que fueron ya señalados por Raasveldt y Carvajal (1957) y a ellos se refiere también Van der Hammen (1958).

En la parte basal del miembro predominan las lutitas rojas con algunas intercalaciones de areniscas cuyo espesor máximo es de $1-2 \mathrm{~m}$, mientras que los bancos de lutitas tienen espesores comprendidos entre 6 y 28 m . Las lutitas pueden localmente contener yeso.

La parte media del miembro destaca morfológicamente. Las areniscas en general son compactas y se disponen en bancos más potentes que en la parte inferior. Aún dentro de estos bancos es frecuente que aparezca una alternancia de areniscas con lutitas rojas en bancos delgados de $10-30 \mathrm{~cm}$.

En la parte superior del miembro Almácigos aparece de nuevo un mayor predominio de lutitas sobre las areniscas. El limite con el miembro La Cruz es muy gradual y se presenta con una alternancia muy apretada de lutitas que alternan con areniscas. Las areniscas de la base del miembro corresponden a unas areniscas de grano medio y fino. En la parte media en general el grano es más grueso pudiendo alcanzar hasta el tamaño de la arena e incluso llegar hasta los gránulos. En el techo las areniscas vuelven a ser de grano fino y muy fino.

Petrográficamente todas las areniscas corresponden a subgrauvacas y en su composición son muy semejantes a las del miembro Armadillos. Los fragmentos de roca son después del cuarzo el constituyente más importante. Los feldespatos son muy pobres. Algunos bancos de areniscas son muy ricos en mica.

Considerado en su conjunto el miembro Almácigos tiene una potencia de 249 m .

Miembro La Cruz.-En él se pueden diferenciar dos partes. La inferior en la que alternan las arenas con bancos de lutitas y a medida que se asciende en la sucesión aumenta progresivamente el espesor de lutitas. En la parte superior del miembro encontramos un neto predominio de las areniscas y gravas arenosas. Los bancos de lutitas han perdido toda su importancia. Los valores del grano medio señalan claramente las dos partes. La inferior con arenas de grano medio a fino; la superior con arenas de grano muy grueso e incluso cantos. Las gravas arenosas se componen de cantos de cuarzo, lidita y porcelanita. En algunos bancos son frecuentes los cantos de lutitas.

El techo del miembro La Cruz y de la formación San Juan de Río Seco queda determinado por la aparición del primer banco de lutitas rojizas que señala la base de la formación Santa Teresa.

El espesor total del miembro es de 202 m y su nombre se ha tomado del Cerro La Cruz.

La terminación meridional del Sinclinal de Jerusalén-Guaduas. Al hablar de la formación Hoyón en esta parte del Sinclinal ya se indicó que existían una serie de discordancias y que finalmente desaparecería completamente la formación Hoyón. Raasveldt y Carvajal (1957) señalan en su mapa que incluso llegan a faltar los dos miembros de la formación San Juan de Río Seco (miembro Armadillos $=$ Gualanday inferior y miembro Almácigos $=$ Gualanday medio) y que sólo se encuentra representada la parte más alta de la formación (miembro La Cruz $=$ Gualanday superior). Sin embargo un estudio detallado de la composición litológica de las gravas y conglomerados de estos afloramientos

FIGURA 9.-Estratigrafia de la formación San Juan de Rio Seco en el flaneo oceidental del Sinclinal de Jerusalén-Guaduas (Carretera Cambao-San Juan de Rio Seco),
permite poner de manifiesto que la formación San Juan se encuentra completa con todos sus miembros. No obstante la falta de afloramientos nítidos y la densidad de la vegetación no permite obtener una cartografía de cada uno de sus miembros.

Desde la terminación meridional del Sinclinal, junto a Jerusalén, hasta la altura de La Virgen, aparecen sobre las lutitas rojas de la formación Seca unos afloramientos aislados correspondientes a conglomerados y gravas que Raasveldt y Carvajal interpretan como la parte superior de la formación San Juan de Río Seco. La composición de las gravas de estos afloramientos señala una mayor proporción de cantos de rocas sedimentarias, representadas principalmente por cantos de chert, sobre los demás tipos de rocas. También es importante señalar que entre los cherts se encuentran cantos de un chert rojizo. Esta misma composición y proporciones entre los diferentes tipos de rocas coinciden con las que se presentan en el miembro Armadillos. El tamaño de los cantos es otra característica que coincide con el miembro Armadillos donde los cantos alcanzan un tamaño mayor que los cantos del miembro La Cruz.

Evidentemente la formación San Juan presenta aquí una potencia menor que en la sección tipo y por otra parte los caracteres morfológicos son mucho menos nítidos, lo que da lugar a confusiones si solo se atiende a los caracteres fotogeológicos. ,Sin duda en este extremo del sinclinal la cuenca de sedimentación empieza a elevarse durante la sedimentación de la formación San Juan dando lugar a estos cambios y a la presencia de todas estas discordancias que se manifiestan ya ampliamente desde la formación Hoyón.

La elevada proporción de cantos de cherts que presenta en los alrededores de Jerusalén la formación San Juan de Río Seco, dió lugar a que Sheibe (1933, pp. 236) interpretara estos depósitos como pertenecientes a la formación Barzalosa. En este sentido podríamos decir que la base de la formación Barzalosa presenta una composición litológica prácticamente igual a la que se encuentra en el miembro Armadillos de la formación San Juan. Ya el resto de la sucesion estratigráfica es algo distinta, por lo menos no se distinguen en la localidad tipo de la formación o Piso Barzalosa, las tres unidades en que se divide la formación San Juan.

Edad de la formación San Juan de Río Seco. Muy pocos son los datos paleontológicos que se conocen sobre la formación San Juan en el área del Sinclinal de Jerusalén-Guaduas. Van der Hammen (1957) considera como sincrónicas la formación Gualanday en su región tipo con la formación que tratamos aquí a la que aplica en consecuencia el nombre de formación Gualanday. Subdivide la edad de esta formación de la siguiente manera: miembro Armadilios (= Gualanday inferior) de edad de eoceno medio, pero donde falta la formación Hoyón la edad es eoceno inferior y medio. El miembro Almácigos (= Gualanday medio) abarcaría desde el eoceno superior al oligoceno medio distribuído así: el Nivel de Lutitas eoceno superior, el Nivel de Areniscas oligoceno inferior y el Nivel de Lutitas oligoceno medio. El miembro La Cruz (= Gualanday superior) corresponde por lo menos al oligoceno superior.

Porta y Solé de Porta (1962) ya señalaron en otro trabajo que no existía ninguna determinación palinológica de estos sedimentos ni en la región de Gualanday ni en la región del Sinclinal de Jerusalén-Guaduas. Las edades se
basaron exclusivamente en la posición estratigráfica y en la idea de los ciclos sedimentarios, haciendo coincidir las unidades litoestratigráficas con períodos de tiempo. De la Quebrada Almácigos y correspondiendo al Nivel de Lutitas que se encuentra por debajo del Nivel de Areniscas del miembro Almácigos, se determinó una muestra que correspondía al oligoceno. Este dato está de acuerdo con la edad oligocénica que presenta la formación Hoyón que se encuentra debajo de la formación San Juan.

De esta manera se asigna provisionalmente una edad oligocena a la formación San Juan de Río Seco, aunque hay que hacer resaltar que los datos esporopolínicos que se tienen en la actualidad son muy escasos. En un espesor de 1.504 m que corresponden a la formación Hoyón y a la formación San Juan, solo se dispone de dos análisis esporopolínicos y aún ambos se encuentran aislados por 804 m de sedimentos hasta el presente estériles.

La relación entre la formación San Juan de Río Seco y las formaciones Gualanday y Barzalosa. La semejanza que existe entre la formación Gualanday en su área tipo (Gualanday, Departamento del Tolima) y la formación San Juan de Río Seco es bastante notoria por cuanto en las dos formaciones se pueden diferenciar a grandes rasgos las mismas unidades morfológicas. Precisamente este ha sido el criterio de algunos autores para aplicar el nombre de formación Gualanday a los sedimentos que se encuentran por encima de la formación Hoyón y por debajo de la formación Santa Teresa (= antigua formación La Cira) en el Sinclinal de Jerusalén-Guaduas. Incluso dentro de ciertos límites existe bastante analogía en la composición litologica ya que ambas unidades presentan sedimentos de carácter más bien maduro.

Condiciones análogas se encuentran también entre los depósitos de la formación San Juan de Río Seco (especialmente en los alrededores de Jerusalén, en la terminación meridional del sinclinal) y la parte basal de la formación Barzalosa descrita por Lleras Codazzi (1933a) y Jiménez (1933) en el borde suroriental de la barrera cretácica de Girardot-Guataquí.

La base de la formación Barzalosa consta de unos 100 m de gravas de cantos de cuarzo y porcelanitas. Estos últimos constituyen más de un 80% de la fracción cantos. Esta composición presenta una gran analogía con la del miembro Armadillos de la formación San Juan de Río Seco. Semejanza que ya señaló Scheibe al dar el nombre de formación Barzalosa a los depósitos que se encuentran en los alrededores de Jesuralén.

En el Caserío de Barzalosa, las gravas están recubiertas por un conjunto de lutitas con yeso a las que Lleras Codazzi (1933, pp. 267-268) denominó: "Zona de Yeso", la cual se encuentra superpuesta por lutitas violáceas, grises y amarillentas con intercalaciones de areniscas ferruginosas. A este conjunto Lleras Codazzi lo denominó «Zona de Capas Distintas».

Raasveldt (1956) aplicó el nombre de formación La Cira a todos los sedimentos que corresponden a la formación Barzalosa o Piso de Barzalosa.

Si se compara la formación Barzalosa o la formación La Cira de Raasveldt en el borde suroriental de la barrera Girardot-Guataquí, con la formación San Juan de Río Seco, se observa que hay muchas diferencias entre sí. Diferencias que se manifiestan también si la comparación se hace con la formación Santa

Teresa (= antigua formación La Cira de Raasveldt) que se encuentra en el Sinclinal de Jerusalén-Guaduas. También la semejanza entre la formación Santa Teresa y la formación La Cira del Valle Medio del Magdalena es muy remota.

Teniendo en cuenta que no existen datos paleontologicos que permitan relacionar las tres áreas entre sí y que los datos litoestratigráficos son muy confusos es aconsejable mantener una nomenclatura independiente para cada una de las tres áreas que venimos considerando. Aún suponiendo que se pudiera aplicar la misma nomenclatura entre dos de ellas, es evidente que cruzan la línea del tiempo, pero se desconoce completamente en qué sentido. Para ello basta observar que la base de los sedimentos denominados Gualanday no se apoyan sobre la misma unidad en el área de Gualanday y en el Sinclinal de jerusalén. En Gualanday falta la formación Hoyón. Se trata de un cambio de facies o de una serie comprimida? En cualquiera de los dos casos no es posible asigear la misma edad a los sedimentos de las dos áreas. Estos hechos y problemas fueron ya planteados por Téllez y Navas (1962) y por Porta y Solé de Porta (1962) a raíz de los nuevos datos palinológicos sobre la formación Hoyón. Análogas consideraciones se pueden hacer para los depósitos que Raasveldt y Carvajal (1957) y Raasveldt (1956) Ilamaron formación La Cira en el Sinclinal de Jerusalén y en el extremo suroriental de la barrera cretácica de Girardot-Guataquí, ya que en esta áltima área faltan los sedimentos que podrían representar la formación Hoyón y la formación San Juan de Río Seco o formación Gualanday. Existe aquí una discordancia bien marcada cuya importancia en el tiempo se desconoce.

FORMACION SANTA TERESA

La formación Santa Teresa corresponde a los sedimentos más superiores que se encuentran en el Sinclinal de Jerusalén-Guaduas. El nombre se ha tomado de la Vereda Santa Teresa en el Municipio de San Juan de Río Seco (Departamento de Cundinamarca). La formación se encuentra limitada en el muro por las gravas del miembro La Cruz de la formación San Juan de Río Seco. En este sentido los sedimentos de la formación Santa Teresa son equivalentes a los denominados por Raasveldt y Carvajal (1957) bajo el nombre de La Cira. El nombre de formación La Cira fue aplicado con anterioridad en el extremo N del Valle Medio del Magdalena donde ha tenido aplicaciones diferentes de las que es indispensable hacer un breve resumen.

El nombre La Cira lo introducen simultáneamente Pilsbry y Olsson (1935) y Wheeler (1935) para designar los 350 pies más superiores de la «Colorado Series». La sucesión está representada por shales de color oscuro a negro con intercalaciones de areniscas, de pocos pies de espesor, de grano medio y de color ligeramente verdoso. Moluscos de aguas dulces y salobres se encuentran en varias capas. Posteriormente el nombre de La Cira ha quedado reducido a la determinación del horizonte fosilífero que se encuentra en la parte superior de la "Colorado Series».

En el Sinclinal de Jerusalén-Guaduas, Anderson (1929) encuentra una fauna de moluscos de agua dulce en capas semejantes a las del Río Colorado en el curso inferior del Río Sogamoso y las considera como parte de la formación Guaduas.

Butler (1939) aplica el nombre de "Horizonte de Corbula bettneri» a las capas que contienen la fauna descrita por Anderson junto a San Juan de Río Seco y sitúa este horizonte en el techo de la formación Barzalosa de Scheibe.

Raasveldt y Carvajal (1957) Ilaman formación La Cira al complejo de arcillas con areniscas que se encuentran en el Sinclinal de Jerusalén-Guaduas por encima del Gualanday superior. La Cira contiene según estos autores varios horizontes de moluscos en capas margosas o calizas de agua dulce. De esta manera la formación La Cira según Raasveldt y Carvajal (1957) queda determinada en la base por el Gualanday superior y en el techo por los sedimentos de la formación Honda.

Posteriormente el nombre de formación La Cira se ha aplicado por todo el Valle Superior del Magdalena pero siempre con criterios muy distintos: Stirton (1946) señala la presencia de una fauna de Vertebrados dentro de unas arcillas gris azulosas que llama La Cira y considera que forman parte de la Serie de Gualanday. En el mismo horizonte se encontró una fauna de invertebrados de agua dulce que fueron referidos a la fauna de La Cira en el Valle Medio del Magdalena. Sin embargo, por la fauna de Vertebrados este horizonte segán Stirton se relacionaría más bien con la fauna de Mugrosa.

La formación Santa Teresa es principalmente lutítica. Consta de bancos de areniscas con espesores que oscilan entre 1 y 10 metros, que alternan con bancos de lutitas rojizas de mayor espesor. En general las arenas son más frecuentes hacia la base de la formación, mientras que las lutitas dominan de una manera más acusada en la parte alta. Más bien hacia el techo de la formación Santa Teresa y por la carretera de Bogotá a Cambao se encuentran restos de plantas y escamas de peces.

Edad y correlaciones de la formación Santa Teresa. Escasos son los datos paleontológicos que se conocen. Por la presencia de Corbula betineri Anderson que hacia la parte inferior de la sucesión puede a veces formar casi una lumaquela, se dató la formación Santa Teresa como oligoceno y más concretamente como oligoceno superior, en relación con la semejanza con el nivel de muluscos de agua dulce que presenta la formación La Cira en el Valle Medio del Magdalena. Posteriormente Porta y Solé de Porta (1962) citan la presencia de Anodontites laciramus Pilsbry y Olsson, Diplodon (Rhipidodonta) oponcitonis Pilsbry y Olsson, Hemisinus (Longiverena) waringi Pilsbry y Olsson. Además de esta fauna de moluscos se ha reconocido una asociación esporopolínica representada por: Verrucatosporites usmensis (Ven der Hammen). Cicatricosisporites susannae (Van der Hammen), Cicatricosisporites sp. y Mauritia sp. Posteriormente Solé de Porta (1963) describió una asociación más completa; Laevigatosporites sp., Triplanosporites sp., Cyatheaceae indet., Concavisporites sp., Lygodium sp., Pteridophyta indet., Polypodiisporites sp., Verrucatosporites sp., Polypodiaceae indet., Cicatricosisporites cirae Kedves y Solé de Porta, Cicatricosisporites tabacensis Kedves y Solé de Porta, Cicatricosisporites cundinamarcensis Kedves y Solé de Porta, Cicatricosisporites sp., Palmaepollenites sp., cf. Orbignya cuatrecasana Dugand, Palmaepollenites medius (Van der Hammen), Palmaepollenites sp., Mauritia sp., Tricolpopollenites sp., Monocolpopollenites sp., Isoberlinia ?, Triporopollenites sp., Stigmaphyllon sp., Sapotaceae ident., Angiosperma ident., Podocarpus sp., Hongo ident.

Respecto a la edad de la formación Santa Teresa ya se hicieron algunos
comentarios en relación con el poco valor que tenían los moluscos de agua dulce tanto por tratarse de especies nuevas como por señalar más bien unas condiciones ecológicas. Por otra parte dentro del Valle Medio del Magdalena la posición de éste horizonte parece que no ocupa siempre la misma posición estratigráfica. Las correlaciones de la formación Santa Teresa (= antigua formación La Cira) pueden verse en Van der Hammen (1958) pero deben tomarse con cierta reserva por los problemas que se han planteado acerca de las correlaciones entre los sedimentos marinos y continentales Porta (1962). Señalemos aquí que Butler (1939, pp. 99) hace corresponder el «Horizonte de Corbula bettnerion (encontrado aproximadamente en el Km 106 de la carretera Bogotá Cambao) con el horizonte de La Cira en el Valle Medio del Magdalena y lo sitúa en el techo de la serie de Barzalosa en el sentido de Scheibe, indicando así que considera estos depósitos como equivalentes a los de Barzalosa.

GRUPO HONDA

El término Honda ha sido objeto de numerosas interpretaciones desde que fue creado por Hettner (1895). Un excelente resumen de estas variaciones se encuentran en Butler (1942) y por este motivo se omite en el presente trabajo.

Consideramos aquí el término Honda con la categoría de grupo el cual comprende desde el muro al techo las siguientes unidades litoestratigráficas: Formación Cambrás, Formación San Antonio con tres miembros (Miembro Flor Colorada, Miembro Los Cocos y Miembro La Ceibita) y Formación Los Limones.

La base del grupo Honda descansa sobre los sedimentos que según Butler pueden referirse a la Serie de Colorado. El techo viene determinado por la falla inversa de Cambrás que pone en contacto las lutitas rojas de la formación Los Limones con las gravas y conglomerados de la Formación Cimarrona. En este sentido el límite superior del Honda se aparta de las demás interpretaciones que lo sitúan en contacto con la formación Mesa. No obstante la sucesión estratigráfica del Honda que aflora al occidente y al oriente de la falla de Honda no es la misma. Este aspecto se tratará nuevamente a propósito de la relación entre el grupo Honda y la formación Mesa.

Formación Cambrás. No aflora dentro del área estudiada. Su nombre deriva de la estación Cambrás en el ferrocarril de Cundinamarca. En el sentido que se le da en este trabajo corresponde con el Honda Inferior de Butler (1942). De acuerdo con este autor consta aproximadamente de unos 1.600 m de gravas, areniscas y lutitas de color rojo y marrón. La característica más importante es la ausencia de cantos de rocas andesíticas y dacíticas en la composición de las gravas. El límite inferior viene presentado según Butler (1942, pp. 818) por el techo de la formación La Cira de la Serie de Colorado.

Formación San Antonio. Está muy bien expuesta por la carretera de Honda a Guaduas, la que se propone como sección tipo. Una sección de referencia se encuentra por la carretera de Armero a Méndez. El nombre se ha tomado de la Cordillera San Antonio al oriente de la población de Honda. La formación San Antonio consta de gravas polimícticas que alternan con bancos de arenas arcósicas y lutitas rojas y grises. Las gravas están formadas por cantos de cuarzo, rocas ígneas, rocas metamórficas y rocas sedimentarias a las que se
unen por primera vez los cantos de dacitas y andesitas. Este tipo de rocas aumenta en general de la base al techo de la formación. Esta formación es equivalente al Honda Superior de Bluter. Segán este autor el límite con la formación Cambrás puede ser gradual y viene colocado donde hacen su primera aparición los cantos de dacita y andesita. Por la carretera de Honda la base de la formación no aparece por encontrarse cortada por la falla de Honda.

Miembro Fior Colorada. Se caracteriza por una alternancia de gravas y gravas arenosas con bancos de arenas y lutitas. A partir de los 90 m inferiores los bancos de lutitas se hacen cada vez más numerosos y más potentes. Esta disposición se traduce morfológicamente en un sistema de graderías muy característico. Las gravas están formadas por cantos de rocas metamórficas, sedimentarias, ígneas y volcánicas en una proporción muy pequeña. Se presentan dentro de las arenas concreciones arenosas de tipo arcósico con gran cantidad de cemento calcáreo. Los minerales pesados más importantes están representados por hornblenda, que en algunas muestras puede alcanzar valores superiores al 75%, magnetita, ilmenita y todo el cortejo propio de las rocas metamórficas: estaurolita, granate, silimanita y epidota. Acompañan también en menor cantidad zircón y rutilo.

El nombre se ha tomado de la Cordillera Flor Colorada al oriente de Honda. El espesor total del miembro es de 342 m .

Miembro los Cocos. Está formado por bancos masivos de gravas polimícticas con un espesor de 271 m . Está limitado en la base por el miembro Flor Colorada y el límite se coloca donde empieza el primer banco masivo de gravas. El techo queda determinado por el miembro La Ceibita. El gran espesor de los bancos y las escasas intercalaciones lutíticas que contiene son factores que contribuyen a dar un carácter muy masivo a este miembro. Entre las capas arenosas son frecuentes las concreciones arenosas de tamaño y forma variada, aunque casi siempre predomina la forma redondeada. Los cantos que forman las gravas corresponden a rocas ígneas, metamórficas y sedimentarias. Estas últimas son muy abundantes y pueden alcanzar valores superiores al 50% de la fracción cantos. Están representadas exclusivamente por chert en el que se distingue un tipo de lidita y otro que corresponde a un chert blanco-amarillento parecido a la porcelanita. Las rocas volcánicas están representadas por dacita y andesita y se encuentran en proporciones pequeñas, solamente en dos muestras se encontraron valores superiores al 10%. Las arenas corresponden también a unas arcosas y los minerales pesados corresponden también a los determinados y señalados en el miembro Flor Colorada.

El nombre de este miembro deriva de la Quebrada Los Cocos que vierte sus aguas al Río Seco en la Vereda Puerto Bogotá.

Miembro La Ceibita. La sucesión litológica en este miembro permite distinguir dos partes. Una basal con un carácter detrítico muy grueso y formada por una sedimentación de carácter torrencial que da lugar a bancos masivos de hasta 84 m , con estratificación cruzada y en bolsadas. La parte superior se caracteriza por una alternancia de bancos de gravas y gravas arenosas con bancos de arenas. También aparecen algunos bancos de lutitas amarillentas. Las gravas presentan el mismo carácter polimíctico que caracteriza a los miembros anteriores.

FIGURA 11.-Columna estratigráfica dol grupo Honda en la carretera Honda-Bogotá.

La base del miembro La Ceibita limita con el miembro Los Cocos y se coloca donde se hace notorio el aumento de cantos de andesita y dacita. Aún dentro del miembro se aprecia una marcada tendencia al aumento de este tipo de cantos desde la base hacia el techo, donde alcanza los valores máximos de toda la formación San Antonio (34%). El techo del miembro es también muy nítido y se coloca donde desaparecen completamente los cantos de dacita y andesita lo mismo que los cantos de rocas ígneas. Esta desaparición coincide con la aparición del primer banco de arenas rojas que representa la base de la formación Los Limones.

El miembro La Ceibita tiene un espesor de 437 m . Su nombre se ha tomado de la Vereda La Ceibita en el Municipio de Guaduas.

Formación Los Limones.-Bajo este nombre, que procede de la Quebrada Los Limones que desemboca en el Río Seco (Municipio de Guaduas), se incluyen todos los sedimentos rojos que se encuentran entre la formación San Antonio y la falla de Cambrás. Su límite inferior es muy nítido y se puede seguir fácilmente en el campo casi exclusivamente por la coloración roja de sus sedimentos. El techo está también bien determinado por la falla de Cambrás que pone en contacto las arenas y lutitas rojas con las gravas de la formaciôn Cimarrona. Más al S de la sección tipo la misma falla pone en contacto la formación Los Limones con la formación Seca.

La sucesión litológica consta de una alternancia de lutitas y arenas rojas con un espesor visible de 231 m en la sección tipo. En la base de la sucesión tanto los bancos de arenas como los bancos de lutitas son de poco espesor (1 a 5 m) pero hacia la parte alta de la misma formación los bancos de arenas se van espaciando cada vez más al mismo tiempo que se hacen más delgados lo cual da lugar a un mayor predominio de las lutitas. Es notorio que al pasar de la formación San Antonio a la formación Los Limones han cambiado por completo las condiciones de sedimentación. No solamente el valor del grano se ha reducido considerablemente ya que siempre se mantiene dentro de la fracción arena, sino que ha cambiado la composición. Desaparecen completamente las rocas volcánicas e ígneas incluso en la fracción gránulos y las arenas adquieren un catácter maduro. Entre los cantos que se encuentran predomina siempre el cuarzo y aparece ahora un nuevo componente entre las rocas sedimentarias que corresponde a pequeños fragmentos de arenitas. A todo este cambio tan notable hay que añadir la presencia de una coloración roja que afecta a todos los sedimentos.

La composición de los minerales pesados ha cambiado fundamentalmente. La hornblenda ha desaparecido casi por completo y son frecuentes los minerales opacos como la ilmenita, magnetita, leucoxeno y aparecen también rutilo y zircón. Toda esta asociación está en relación con el carácter maduro que presentan las arenitas. La mayor parte de las muestras se presentan además con una proporción de carbonato cálcico.

Edad del grupo Honda.-Los datos paleontológicos del grupo Honda en el extremo S del Valle Medio del Magdalena son muy escasos. Se refieren únicamente a la flora descrita por Berry (1925) procedente de los afloramientos de Falan situados sobre la Cordillera Central. Con base en estos datos se determinó la edad del Honda como mioceno. Sin embargo han sido quizás
otras las fuentes que han tenido sino mayor influencia que esta, por lo menos han servido para corraborar la edad miocénica. En primer lugar la posición estratigráfica del Honda que se encuentra encima de la Serie de Colorado datada como oligoceno. En segundo lugar la fauna de Vertebrados hallada en el Valle Superior del Magdalena (yacimientos de La Venta, en el Municipio de Villavieja) dentro de sedimentos correspondientes al Honda.

La edad oligocena del techo de la Serie de Colorado (formación La Cira) ya se discutió al tratar de la formación Santa Teresa. La discordancia entre el Real y la Serie de Colorado o entre el Honda y la Serie de Colorado no se puede considerar definitiva para separar dos unidades litoestratigráficas y tratarlas como unidades tiempo. Ya Wheeler (1935), Morales y Otros (1958) señalaron el carácter local o regional de esta discordancia. De la misma manera que Butler (1942) indica que el contacto entre el Honda Inferior y la Serie de Colorado es normal a cuatro kilómetros de Puerto Liévano.

La flora de Falan se encuentra en unos sedimentos que, de acuerdo a Raasveldt y Carvajal (1957), por su composición litológica deben corresponder a la formación Mesa y no al Honda. Aún el valor de esta flora merece una revisión de acuerdo con las modificaciones que han tenido otras floras de América del Sur.

La fauna de mamíferos que se han encontrado en el Valle Superior del Magdalena no corresponde exclusivamente al terciario. Stirton (1953) señala que la fauna de Coyaima, de edad oligoceno superior, se encuentra en sedimentos que contienen capas de gravas con abundantes cantos de rocas volcánicas y por consiguiente deberían corresponder por definición no solamente a la formación San Antonio (Honda Superior o bien Honda Andesítico). En consecuencia todo parece indicar que el grupo Honda debe ser por lo menos oligoceno y aún es posible que corte la línea del tiempo. Por el momento aún se plantean numerosos problemas de correlaciones entre el Valle Medio y el Valle Superior. Si se considera que la formación San Antonio (Honda Superior o bien Honda Andesítico) está determinada por la aparición de cantos de dacita y andesita cabe preguntar: A que formaciones corresponde la formación Cambrás (Honda Inferior o Honda no Andesítico) en el Valle Superior del Magdalena?

EL GRUPO HONDA AL OCCIDENTE DE LA FALLA DE HONDA

Los afloramientos más occidentales del grupo Honda se encuentran ya sobre la Cordillera Central presentándose claramente transgresivos. Forman una franja de dirección general norte-sur que queda limitada entre las estribaciones orientales de la Cordillera Central y una línea que se extiende desde el Cerro Penagos (al E de la población de Mariquita) hasta el Cerro El Farallón al oriente de Armero. Límite que coincide con los afloramientos de la formación Mesa.

El grapo Honda está formado aquí por un conjunto de arenas arcósicas y bancos de gravas polimícticas. A medida que se asciende en la sucesión estratigráfica se aprecia un aumento en la proporción de los cantos de dacita y andesita. Este aumento se hace máximo en aquellas capas que están en contacto con la formación Mesa. Por la composición petrográfica deben corresponder al miembro La Ceibita de la formación San Antonio. Los afloramien-
tos que se encuentran sobre la Cordillera Central presentan una composición de las gravas que se asemeja más al miembro Los Cocos, pero se observa una disminución en la proporción de las rocas sedimentarias. Entre los sedimentos que se consideran pertenecientes al miembro La Ceibita y los que corresponden a la formación Mesa, faltan las capas rojas que representan la formación Los Limones. De tal suerte que ésta se encuentra únicamente al oriente de la falla de Honda.

El contacto entre los depósitos que por su composición petrográfica deben pertenecer al miembro La Ceibita de la formación San Antonio y aquellos que representan ya la formación Mesa, es completamente normal. Sobre este contacto se insistirá más adelante al tratar la relación entre el grupo Honda y la formación Mesa.

FORMACION MESA

La formación Mesa que fue creada por Hettner (1895) ha sido interpretada erróneamente por diversos autores. Un resumen de estas interpretaciones fue dado por Butler (1942) y también se encuentran representadas en la figura 13.

Su área tipo se encuentra en el extremo S del Valle Medio del Magdalena y concretamente en los alrededores de la población de Honda. Posteriormente su nombre se ha extendido tanto al Valle Medio propiamente dicho como al Valle Superior del Magdalena y aplicado a sedimentos que nada tienen que ver con la verdadera formación Mesa. Así se ha aplicado a terrazas del Magdalena que solo tienen de común con la formación Mesa su disposición tabular.

La formación Mesa se caracteriza según Hettner por una sucesión de capas tobáceas que se encuentran discordantes sobre el Honda. Butler (1942) da una descripción más completa de la formación Mesa y señala los Cerros situados al occidente de Honda como sección tipo.

Una de las características más importantes de la formación Mesa es su distribución. Ella aparece solamente al occidente de la falla de Honda. Siguiendo el criterio de Hettner y Butler se compone de una alternancia de gravas de rocas metamórficas, cuarzo y principalmente rocas de tipo volcánico: dacita y andesita; en algunos niveles existe gran cantidad de piedra pómez. Las rocas ígneas y las rocas sedimentarias si bien están presentes revisten en general poca importancia por su pequeña proporción. Son también frecuentes los bancos de arenas tobáceas y pequeñas capas de lutitas blancas. La sucesión estratigráfica que se representa en la figura 12 fue levantada en el camino que desde la población de Mariquita conduce al Cerro Lumbí y que se propone como sección de referencia. Aquí la sección tiene un espesor de 350 m . Puede dividirse en tres miembros que del muro al techo son:

Miembro Palmas.-Representa la unidad más inferior de la formación Mesa. Su nombre se ha tomado de la Quebrada Palmas que desciende de la Cordillera Lumbí y desemboca a la Quebrada Seca al NW de la Hacienda Hato Grande. El miembro Palmas descansa sobre el miembro La Ceibita de la Formación San Antonio. El contacto es normal y -viene determinado por un aumento connsiderable de cantos de rocas volcánicas. En general las muestras
con valores superiores al 60% de estas rocas corresponden a capas que se consideran pertenecientes a la formación Mesa. Bajo este criterio existe pues una diferenciación nítida con los sedimentos del Honda y constituye una separación litológica entre ambas unidades sin necesidad de determinar la separación entre ellas tomando caracteres morfológicos o estructurales que han dado lugar a confusiones englobando sedimentos de la formación Mesa dentro del Honda y viceversa.

La sucesión estratigráfica está formada por una serie de bancos de gravas formadas por cantos de rocas ígneas, volcánicas, metamórficas y sedimentarias representadas por cantos de liditas. Las arenas tobáceas son en esta parte poco frecuentes lo mismo que los bancos de lutitas blancas y amarillentas. En la parte superior del miembro Palmas se encuentra un nivel de gravas de unos 30 m , en el que las rocas volcánicas presentan un descenso importantísimo y pasan a dominar las rocas metamórficas y el cuarzo. Contienen troncos silicificados y concreciones de arenas arcósicas. Por encima vuelven a encontrarse gravas con la misma composición petrográfica que en la base. El espesor total del miembro es de 80 m .

Miembro Bernal.-Toma su nombre de la quebrada Bernal. Es el miembro más potente de la formación Mesa con 204 m . La sucesión estratigráfica consta de gravas y gravas arenosas en las que predominan los cantos de las rocas volcánicas. Aparece aquí un nuevo elemento que es la piedra pómez. Algunos bancos están formados exclusivamente por este tipo de roca. Son también frecuentes los bancos de arenas tobáceas y las capas de lutitas blancas, muy finas, que en la base del miembro contienen restos de plantas.

Miembro Lumbí.-Corresponde al techo de la formación Mesa y es con sus 61 m de espesor el miembro menos potente de la formación. Se caracteriza por presentar los bancos bien delimitados. La composición litológica es parecida a la del miembro Bernal. El límite inferior se coloca en el primer banco donde se combinan la presencia de rocas volcánicas con bancos bien delimitados. Por lo observado en otras secciones es posible que se trate de un límite de tipo transicional. No obstante la diferencia en la estratificación da lugar a una diferencia morfológica entre ambos miembrus. La estratigrafía más detallada se puede observar en la figura 12.

Edad de la formación Mesa.-Los datos paleontológicos que se tienen de la formación Mesa son muy escasos. Hasta el presente solo se pueden referir a ella las plantas descritas por Berry del yacimiento de Falan (antiguamente Santa Ana) y que estratigráficamente corresponden posiblemente al miembro Bernal. En el miembro Palmas se han encontrado nuevos yacimientos de plantas todavía inéditas que se sitúan en la Hacienda Hato Grande y en el Cerro Penagos. También de la base del miembro Bernal se ha recogido bastante flora que se encuentra en estudio.

Así pues los datos que han servido para datar a la formación Mesa son exclusivamente de orden estratigráfico basándose en el caracter discordante que presenta la formación Mesa sobre el Honda. En este sentido como el Honda se ha determinado como mioceno superior, lógicamente la formación debería ser plioceno o cuaternario según todos los autores. Un resumen de las edades asignadas en esta parte del Valle Medio del Magdalena se encuentran en la figura 13.

FORMACION
SAN ANTONIO

FORMACION

MIEMBRO
MIEMERO PALMAS
M ESA
FORMACION MESA

de grano fino; 3 m .

 tobaceas can gravas de rocas valcánicas. 14 , m.
de rocas volcánicas con un banco de arena tobáced en 10 parie superior: 4 m .
 de rocas con canios de roces efusivas

$$
\begin{aligned}
& \text { tobáceos de gránica; } 2 \text { m. } \mathrm{m} \text {. } \\
& \text { blanca coelinífos efusivas ; } 3 \mathrm{~m} \text {. } \\
& \text { de rocas con contos }
\end{aligned}
$$

 gravas orenosas con contos. de rocas voleanicas jo. 6 morzo, chert, lidita y róas mefomóricas
 Gravas
Arenas
Areill

+ obáceas con gravas de rocas volcainicas ; 2.50 m
obaceas con bolsedas de rocas volcanicas ;
50 m. wos.

$$
40 \rightarrow!011019 n 0
$$

$$
\text { wか6w } 01 \text { O Op sooudq sost }
$$

Uno de los aspectos que llama más la atención en el terciario de los alrededores de la población de Honda es la distribución de la formación Los Limones y la formación Mesa. La primera se halla entre la falla de Honda y la falla de Cambrás. La segunda entre la falla de Honda y la Cordillera Central. Es decir, que ambas formaciones no entran en contacto y que están localizadas a ambos lados de la falla de Honda.

Por otro lado es evidente que entre la falla de Honda y la formación Mesa existe una estrecha relación que se pone en evidencia por los siguientes hechos. Hacia el S la falla de Honda desaparece conjuntamente con la formación Mesa. De S a N el salto de falla y el espesor de la formación Mesa aumentan correlativamente. Esto indicaría que la falla ha jugado simultáneamente con la sedimentación de la formación Mesa limitando su localización al occidente de la misma. Por otra parte al pasar de la formación San Antonio a la formación Los Limones ya señalamos la existencia de un cambio brusco en las condiciones de sedimentación. Todos los aportes procedentes del occidente, y concretamente de la Cordillera Central, se interrumpen al empezar la sedimentación de la formación Los Limones. Esto puede ser un indicio de que existía una barrera entre la Cordillera Central y la cuenca donde se depositaba dicha formación. Esta barrera podría muy bien ser la falla de Honda que actuaría como un umbral separando las dos cuencas. Elevando el labio oriental y hundiendo el occidental. Si además se pone de manifiesto que en el occidente de la falla de Honda el contacto entre los sedimentos del Honda, representados por el miembro La Ceibita, y la formación Mesa es un contacto normal, no discordante, nos indicaría que, en esta cuenca occidental respecto a la falla de Honda, la sedimentación se ha mantenido contínua. En consecuencia la formación Mesa podría representar una facies del Honda superior y ser equivalente a una parte del Miembro La Ceibita y a la formación Los Limones. Evidentemente esta equivalencia no es más que una hipotesis y con ella solo se ha querido plantear el problema de la distribución de ambas formaciones basándose en hechos completamente objetivos.

En ningún caso se puede observar una discordancia angular o erosiva entre el Honda y la formación Mesa. En algunos afloramientos como los que se encuentran en los Cerros del Buen Retiro, el miembro Palmas tiene buzamientos de $6-8^{\circ}$ en la base y máximo de unos 4° en el techo. Todo parece indicar que se trata de una discordancia progresiva muy tenue dentro de la formación Mesa, pero en ningún caso hay discordancia angular ni erosiva entre Mesa y Honda. Precisamente por presentar un buzamiento más pronunciado Raasveldt y Carvajal (1957) colocan estos afloramientos de los Cerros del Buen Retiro dentro del Honda cuando, por su composición petrográfica, deben colocarse dentro de la formación Mesa tal como dichos autores la han interpretado.

LOS DEPOSITOS CUATERNARIOS

Los depósitos cuaternarios ocupan una gran extensión y tienen origen muy variado. En el borde de la Cordillera Oriental se encuentran conos de derrubios que descienden de las principales alturas. En la base de la Cordillera las ramas de estos conos se han fusionado y han dado lugar a un manto contínuo de de-
rrubios que en algunas localidades puede llegar hasta el mismo Río Magdalena. La relación con las terrazas del Magdalena no se ha podido observar por falta de cortes nítidos. Este manto de derrubios fosiliza en gran parte la falla inversa de Cambrás.

En los alrededores de la población de Honda aparecen unos depósitos que Butler (1942, pp. 824-825) denominó depósitos lagunares o «Lake Hettner» y que relaciona con la parte superior de la formación Mesa. Estos depósitos están representados por una gran cantidad de cantos de rocas volcánicas principalmente cantos de piedra pómez. En todos los afloramientos se presentan horizontales y muy bien estratificados. Por la carretera de Honda se observan varios afloramientos que están encajados dentro de la formación San Antonio. Por su análoga composición con la formación Mesa fueron atribuídos a esta formación los depósitos que se encuentras en Bodegüitas.

En la actualidad estos sedimentos se encuentran junto al Río Magdalena, pero no se conoce completamente su extensión y por el momento es difícil conocer que origen tuvieron.

Butler (1942, pp. 825-828) denominó formación Gualí a unos 30 m de sedimentos que están formados por materiales volcánicos que se extienden ampliamente entre las poblaciones de Honda y Mariquita. Estos depósitos corresponden a terrazas en las que se pueden observar varios retoques de erosión que a veces dan la impresión de que se puede tratar de dos niveles diferentes de terrazas. Estos niveles se observan muy bien por la carretera de Honda a Mariquita. En conjunto estos depósitos presentan una inclinación hacia el Magdalena y deben estar en relación con los ríos que descienden de la Cordillera Central.

Estos mismos depósitos se encuentran más al S de Mariquita de tal manera que tienen una extensión considerable. Etherington (1942) interpretó como formación Gualí toda una serie de Conos que descienden de la Cordillera Central y a los que dió diferentes nombres geográficos. Entre los principales están los Conos de Mariquita, Lérida e Ibagué. Según el mismo autor esta formación se continúa por el Valle Superior del Magdalena dando lugar a los Conos de Ortega y Chaparral. Es difícil saber exactamente si se trata de la misma formación o no ya que intervienen constantes cambios de facies que están en relación con la fuente de los materiales. Es evidente que la composición de todos estos conos es muy parecida y consta de rocas volcánicas. Sin duda están en relación con los grandes ríos que descienden de la Cordillera Central y que estos conos se han formado al desembocar los mismos en la planicie del Magdalena.

En el Cono de Lérida parece que se puede distinguir dos partes. Una inferior representada por sedimentos bien estratificados que podrían corresponder a terrazas y una parte superior que representaría el verdadero cono y estaría formada por grandes cantos y bloques de rocas volcánicas. Los materiales de estos conos tienen gran extensión y algunos llegan hasta las mismas orillas del Mag. dalena. El curso de este río puede estar incluso influenciado en el sentido de que los aportes de estos conos pueden haber desplazado paulatinamente su curso hacia el oriente.

En Venadillo aparece otro cono de menor extensión y que parece enca-

jado dentro del Cono de Lérida. Raasveldt y Carvajal (1957) consideran que este cono es más reciente. Aunque por el momento es imposible de dar una cronología de todos estos depósitos.

Por último cabe señalar que existen varios sistemas de terrazas dentro del Río Magdalena. Algunos de los resaltes morfológicos que aparecen corresponden a retoques morfológicos dentro de un mismo nivel en relación con los desplazamientos laterales del río. La relación de estas terrazas con los conos no se conoce por el momento.

PRINCIPALES RASGOS TECTONICOS DEL EXTREMO S DEL VALLE MEDIO DEL MAGDALENA

El Valle Medio del Magdalena corresponde en su totalidad a una semifosa basculada hacia el oriente. Los sedimentos terciarios son transgresivos sobre la Cordillera Central y entran en contacto con la Cordillera Oriental por una falla de tipo inverso que al mismo tiempo sirve de límite entre el Valle y la Cordillera. Al norte corresponde a la falla de La Salina que hacia el S es relevada por la falla de Cambrás, y que en Guataquí al cruzar el Río Magdalena sirve de límite estructural entre el Valle Medio y el Valle Superior del Magdalena. Por la misma disposición de semifosa basculada hacia el oriente el máximo espesor de sedimentos se encuentra junto a la falla.

En el cretácico de la barrera de Girardot-Guataquí se desarrolla una estructura apretada de anticlinales y sinclinales. Los anticlinales suelen ir acompañados por una falla que corre paralela al eje, ligeramente desplazada bacia el flanco occidental dando lugar a la aparición de fenómenos de inversión.

Ya sobre la Cordillera Oriental se desarrolla una estructura sinclinal, el Sinclinal de Jerusalén-Guaduas, limitada entre dos fallas. Al occidente por la falla de Cambrás. Al oriente por la falla inversa del Alto del Trigo. El Sinclinal de Jerusalén-Guaduas corresponde a una estructura amplia, asimétrica, con el eje desplazado hacia el flanco oriental. En ella se desarrolla un flanco occidental suave mientras que el oriental se manifiesta mucho más abrupto con buzamientos próximos a los 80°. La tectónica de la cobertera parece que está controlada por la tectónica del zócalo y que las principales fallas son fallas antiguas que han jugado varias veces en el tiempo.

BIBLIOGRAFIA

ANDERSON, F. M., 1926.-Original source of oil in Colombia, Bull. Amer. Ass. Petr. Geol., v. 10, pp. 382-404, 8 fs.
ANDERSON, F. M., 1927.-Nonmarine Tertiary Deposits of Colombia, Bull. Geol. Soc. America, v. 38, pp. 591-644, 15 fs.
ANDERSON, J. L., 1945.-Petroleum geology of Colombia, South America, Bull. Amer. Ass. Petr. Geol., v. 29, pp. 1065-1140.
BERGER, J. (KONSORTIUM), 1925.-Memoria detallada de los estudios del río Magdalena, obras proyectadas para su arreglo y resumen del presupuesto, Rev. Min. Obras Publ. Colombia, t. 2, ns. 17-24, pp. 45-380, Bogotá.

BERRY, E. W., 1920.-Miocene fossil plants from Northern Peru, U. S. Nat. Mus. Proc., 55, pp. 279-294, 4 pls.

BERRY, E. W., 1937.-Plantas miocénicas de Colombia, Bol. de Petróleos, ns. 97 a 102, pp. 221-241, 13 fs., Bogotá. (Traducción de Bull. of the Torrey Bot. Club, n. 63, pp. 5366, 2 1s., 1936).

BURGL, H., 1955.-El Guadalupe entre Tabio y Chía, Bol. Geol., Inst. Geol. Nal., t. 3, n. 2, pp. 23-55, 4 1s., Bogotá.

BURGL, H., 1957.-Biostratigrafía de la Sabana de Bogotá y sus alrededores, Boletín Geológico, v. 5, n. 2, pp. 117-147, 20 1s., Bogotá.

BURGL, H., 1958. - Estratigrafia y estructura de la region entre Chía y Tenjo, Cundinamarca, Serv. Geol. Nal., Informe n. 1299, pp. Bogotá (Inédito).
BURGL, H., 1959.-Estratigrafía y estructura de la región entre Chía y Tenjo. (Revisión del Informe n. 1229), Serv. Geolg. Nal., Informe n. 1331, pp. Bogotá (Inédito).
BURGL, H., 1961.-Geología de los alrededores de Ortega, Tolima, Bol. Geol., Univ. Ind. de Stder., no. 8, pp. 21-38, 2 fs., Bucaramanga.
BURGL, H., 1961. - Sedimentación cíclica en el geosinclinal de la Cordillera Oriental de Colombia, Bol. Geol. v. 7, ns. 1-3, pp. 85-118, 9 fs., Bogotá.
BURGL, H., 1961.-Historia Geológica de Colombia, Rev. Acad. Colom. de Cienc. E. Fis. y Nat., v. 11, n. 43, pp. 137-191, 41 fs., 4 tab., Bogotá.
BURGL, H. y DUMIT TOBON, Y., 1954.-El cretáceo superior en la región de Girardot, Bol. Geol., Serv. Geol. Nal., v. 2, n. 1, pp. 23-48, 12 fs., 8 pls., Bogotã.

BUTLER, J. W., Jr., 1939.-Geology of Middle and Upper Magdalena ${ }_{4}^{5}$ Valley, World Petroleum, v. 10, n. 3, pp. 95-100.

BUTLER, J. W., Jr., 1942.-Geology of Honda district, Colombia, Bull. Amer. Assoc. Petr. Geol., v. 26, n. 5, pp. 793-837, 14 fs., Tulsa.

CAUDRI, C. M. B., 1948. - Note on the Stratigraphic Distribucion of Lepidorbitoides. Apendix, Age of the Guaduas Formation in Colombia, Journal Paleontology, v. 22, n. 4, pp. 473-481, 21 s., Tuisa.
CAUDRI, C. M. B., 1950.-The age of the Guaduas Formation in Colombia, Journal Paleontology, v. 24, n. 3, pp. 388-389, Tulsa.

GOLOMBIAN SOCIETY OF PETROLEUM GEOLOGISTS AND GEOPHYSISTS, 1961. Second Annual Field Conference. Cundinamarca-Boyacá-Muzo, Emeral Mines, 29 pp., 10 fs., Bogotá.
CHAMPETIER DE RIVES, G., MECCKSTEEN, G. y QUINTERO, R., 1961.-Mapa Geológico de la Repáblica de Colombia, Plancha K 10 (Villeta), E. 1:200.000, Servicio Geológico Naciona!, Bogotá.

ENGELHARDT, H., 1895.-Uber Tertiarpflanzen sud Amerikas, Abh. Scenck. Nat. Ges., 19, n. 1, pp. 1-47.

ETAYO, F, 1964.- Posición de las Faunas en los Depósitos cretácicos colombianos y su valor en la subdivisión cronológica de los mismos, Boletín de Geología, Univ. Ind. de Stder., ns. 16-17, 142 pp., 8 fs., Bucaramanga.

FIELDS, R. W., 1959.-Geology of the La Venta badlands Colombia, South America, Univ. Calif. Publ. Geol. Scien., v. 32, n. 6, pp. 405-444, 2 fs., 2 mapas, 4 1s., Berkeley.
HAMMEN, VAN DER, Th., 1954.-El desarrollo de la flora colombiana en los períodos Geológicos, Boletín Geológico, t. 2, n. 1, pp. 49-106, 7 pls., 21 pls., Bogotá.
HAMMEN, VAN DER, Th., 1957.-Periodicidad climática y evolución de floras suramericanas del Maestrichtiano y del Terciario, Bol. Geol., Serv. Geol. Nal., v. S, n. 2, pp. 5-48, 9 fs., 11 láminas, Bogotá.

HAMMEN, VAN DER, Th., 1957.-Estratigrafía palinologica de la Sabana de Bogotá (Cordillera Oriental de Colombia), Bol. Geol., Serv. Geol. Nal., v. 5, n. 2, pp. 189-203, 3 Is., Bogotá.
HAMMEN, VAN DER, Th., 1958.-Estratigrafia del Terciario y Maestrichtiano Continentales y Tectogénesis de los Andes Colombianos, Bol. Geol., Serv. Geol. Nal., v. 6, ns. 1-3, pp. 67-128, 7 ls., Bogotá.

HARRISON, J. V., 1930.-The Magdalena Valley, Colombia, South America, Compt. Rend., 15 th Int. Geol. Congr., v. 2, pp. 399-409.

HATFIELD, W. C., 1944.-Ensayo de correlación estratigráfica de Colombia, Valle medio del Magdalena (Honda-El Banco), Inst. Col. de Petr., Estudio Técnico, n. 7, 1 cuadro, Bogotá.
HETTNER, A., 1892.-Die Kordillere von Bogotá, Petermanns Mittell, Erg., v. 22, pp. 1-131.
HUBACH, E., 1957.-Estratigrafía de la Sabana de Bogotá y alrededores, Bol. Geol., Serv. Geolg. Nal., v. 5, n. 2, pp. 93-112, 1 f, 1 mp , Bogotá.
HUBACH, E., 1957.-Contribución a las unidades estratigráficas de Colombia (Inédito), Bogotá.
IRISARRI, A. DE M., 1929.-Tertiary Geology of Colombia, Pan-American Geolg., v. 52 pp. 35-37.
JIMENEZ JARAMILLO, J., 1933 (escrito en 1918).-Informe sobre la Región carbonífera de Barzalosa, Presidente, Goloso, y Pubenza del Municipio de Girardot, Comp. Est. Geol. Ofic. en Colombia, t. 1, pp. 249-263, 1 fs., 1 mapa, Bogoté.

JULIVERT, M., 1961.-Las Estructuras del Valle Medio del Magdalena y su significación, Boletín de Geologia, Univ. Ind. de Stder., n. 6, pp. 33-52, 4 fs., 2 cuadros, Bucaramanga.
JULIVERT, M., 1962 a.-Estudio Sedimentológico de la parte alta de la formación Guadalupe al este de Bogotá (Cretácico Superior), Boletín de Geología. Univ. Ind. de Stder., n. 10, pp. 25-54, 12 fs., 6 Iáminas, Bucaramanga.

JULIVERT, M., 1962 b.-La Estratigrafía de la formación Guadalupe y las Estructuras por gravedad en la Serranía de Chía (Sabana de Bogotá), Boletín de Geología, Univ. Ind. de Stder., n. 11, pp. 5-21, 4 fs., Bucaramanga.

JLERAS CODAZZI, R., 1933 a (escrito en 1918). - Informe relativo a las Regiones de Barzalosa y Guavinal, Comp. Est. Geol. Ofic. en Colombia, t. 1, pp. 265-271, 1 mapa, Bogotá.

LLERAS CODAZZI, R., 1933 b (escrito en 1918). -Informe relativo a la Composición Geológica comprendida entre la Hacienda de Pubenza y el Río Acuatá, Comp. Est. Geol. Ofic. en Colombia, t. 1, pp. 273-275, 1 mapa, Bogotá.

MORALES, L. G. y otros, 1958.-General Geology and Oil occurrences of Middle Magdalena Valley, Colombia, Habitat of Oil, Symposium, Am. Ass. Petr. Geol., pp. 641-695, 29 fs., Tulsa.
OLSSON, W. S., 1954.-Source Bed problem in Velasquez Field, Colombia, Bull, Amer. Ass. Petr. Geol., v. 38, n. 8, pp. 1645-1652, 3 fs., Tulsa.

PETTERS, V., 1954.-Tertiary and Upper Cretaceous Foraminifera from Colombia, S. A., Contr. Cush. Found. Foram. Res., v. 5, part. 1, pp. 37-41, 1 lam.
PETTERS, V., 1955.-Development of upper Cretaceous foraminiferal faunas in Colombia, Journal Paleontology, v. 29, n. 2, pp. 212-225, 7 fs., Tulsa.

PORTA, J. DE, 1962.-Consideraciones sobre el estado actual de la estratigrafía del terciario en Colombia, Boletín de Geología, Univ. Ind. de Stder., n. 9, pp. 5-43, 1 fg., 5 tablas, Bucaramanga.

PORTA, J. DE, y SOLE DE PORTA, N., 1962.-Discusión sobre las edades de las formaciones Hoyón, Gualanday y La Cira en la Región de Honda-San Juan de Río Seco (Valle del Magdalena), Boletín de Geologia, Univ. Ind. de Stder., n. 9, pp. 69-58, 1 fs., 1 1., Bucaramanga.
RAASVELDT, H., 1956.-Mapa Geológico de la República de Colombia, Serv. Geol. Nal., Plancha L9 (Girardot), E. 1:200.000, Bogotá.
RAASVELDT, H. C. y CARVAJAL, J. M., 1957.-Mapa Geologico de la República de Colombia, pl. K 9 (Armero), E. 1:200.000, Servicio Geológico Nacional, Bogotá.
SCHEIBE, E. A., 1933 (escrito en 1918).-Las relaciones entre los pisos de Honda, Gualanday y Barzalosa, Comp. Est. Geol. Ofic. Colombia, t. 1, PB. 63-65, Bogotá.
SCHEIBE, R., 1933 (escrito en 1918).-Informe sobre una exploración geológica preliminar en la regín de Jerusalén y Andorra, Comp. Est. Geol. Ofic. en Colombia, t. 1, pp. 229-248, 1 fs., 1 mapa, Bogotá.
SCHEIBE, R., 1933 (escrito en 1918).-Informe Geológico sobre la región situada al norte de Tocaima, Cundinamaṛca, Comp. Est. Geol. Ofic. en Colombia, t. 1, pp. 287-313, 1 mapa, Bogotá.
STILLE, H., 1938.-Estudios geológicos de la región del río Magdalena, Comp. Est. Geol. Ofic. en Colombia, t. IV, 1a. parte, pp. 125-182, 8 fgs., 1 pl., Bogotá.
STIRTON, R. A., 1946.-The first oligocene Mammalian Fauna from Northern South America, Bull. Amer. Ass. Petr. Geol., The Ass. Round Tabla, v. 36, n. 1, pp. 131, Tulsa.
STIRTON, R. A., 1953.-Vertebrate paleontology and continental stratigraphy in Colombia, Bull. Soc. Amer., v. 64, pp. 603-622, 13 fs., New York.
SUESCUN, D. y TABORDA, B., 1949.-Estudio Geologico preliminar de la Formación Honda, Serv. Geol. Nal., Informe n. 678, pp. 1-25, 2 fs., Bogotá (Inédito).
TELLEZ, N. y NAVAS, J., 1962.-Interferencia de direcciones en los plieguẹs cretácico-terciarios entre Coello y Gualanday, Boletín de Geología, Univ. Ind. de Stder., n. 9, pp. 45-61, 3 fs., 1 map. f. t., Bucaramanga.
WASHBURNE, C. W. and WHITE, K. D., 1922.-Oil Possibilities of Colombia, Trans. Am. Inst. Min. Metal. Eng., 68, pp. 1023-1031, 2 fs.
WHEELER, O. C., 1935.-Tertiary Stratigraphy of the Middle Magdalena Valley, Proc. Acad. Nat. Sci., Philadelphia, v. 87, Pp. 7-39, Philadelphia.

[^0]: (') Universidad Industrial de Santander, Bucaramanga.

[^1]: (') Datos inéditos que aparecerán en un trabajo próximo señalan que el cambio más importante en la flora se encuentra en sedimentos que estratigráficamente están por debajo de la formación Guaduas o formaciones equivalentes y que posiblemente existen varios géneros recurrentes.

