Vol. 47 Núm. 2 (2025): Boletín de Geología
Artículos científicos

Historia termal de cuerpos intrusivos mediante geotermocronología cuantitativa: Aplicaciones a la Cordillera Central de Colombia

Yanidth Fernanda Garzón-Castro
Universidad Pedagógica y Tecnológica de Colombia
Mauricio Alberto Bermúdez-Cella
Universidad Pedagógica y Tecnológica de Colombia
Andres Felipe Alarcón-Bonilla
Universidad Pedagógica y Tecnológica de Colombia
Biografía

Publicado 2025-09-16

Palabras clave

  • Magmático,
  • Post-magmático,
  • Erosión,
  • Enfriamiento,
  • Modelamiento numérico de historias termales,
  • Datos geotermocronológicos
  • ...Más
    Menos

Cómo citar

Garzón-Castro, Y. F., Bermúdez-Cella, M. A., Hernández-Vargas, K. D., & Alarcón-Bonilla, A. F. (2025). Historia termal de cuerpos intrusivos mediante geotermocronología cuantitativa: Aplicaciones a la Cordillera Central de Colombia. Boletín De Geología, 47(2), 13–41. https://doi.org/10.18273/revbol.v47n2-2025001

Altmetrics

Resumen

Se presenta la historia termal de cinco cuerpos ígneos intrusivos representativos de los principales eventos tectono-magmáticos del Mesozoico en la Cordillera Central de Colombia, ubicados al norte de la falla de Ibagué. Se integraron datos geotermocronológicos previos mediante modelado numérico inverso con el código 4DTherm, considerando las propiedades térmicas de las rocas. Los resultados revelan un primer pulso de enfriamiento magmático en el Cretácico superior, con una duración de cientos de miles de años, seguido por un enfriamiento post-magmático más prolongado después del Paleoceno, excepto en el batolito de Ibagué, que muestra exhumación significativa desde el Jurásico superior. Las tasas más altas de enfriamiento (5,67°C/km) y exhumación (0,13 km/Ma) se registran en el stock de Córdoba, asociado al sistema de fallas de Romeral. La tasa promedio de exhumación (0,1 km/Ma) es coherente con valores en el norte de la cordillera, lo que sugiere un control tectónico regional desde finales del Cretácico. La tasa de enfriamiento por exhumación (~4,2°C/km) es mayor que estimaciones previas basadas en temperaturas más bajas. Los flujos de calor (~100 mW/m²) y gradientes geotérmicos superficiales (31–40°C/km) coinciden con zonas magmáticamente activas, resaltando el potencial geotérmico de la región.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Abbey, A.L.; Randolph-Flagg, N.; de Villa, K.; Kim, S.L.; Shuster, D.L. (2024). Tracing short-lived hydrothermal circulation systems and water–rock interactions around small-scale intrusions. Geochimica et Cosmochimica Acta, 366, 113-127. https://doi.org/10.1016/j.gca.2023.12.009
  2. Aguilar, V.; Mendoza, D. (2002). Aproximación a un modelo de susceptibilidad a movimientos de masa en el eje cafetero, Colombia. Trabajo de Grado, Universidad del Valle.
  3. Alfaro, C.; Alvarado, I.; Quintero, W.; Vargas, C.; Briceño, L.A. (2009). Mapa preliminar de gradientes geotérmicos de Colombia. INGEOMINAS y ANH.
  4. Álvarez, A.J. (1983). Geología de la Cordillera Central y el occidente colombiano y petroquímica de los intrusivos granitoides Mesocenozóicos. Boletín Geológico, 26(2), 1-175. https://doi.org/10.32685/0120-1425/bolgeol26.2.1983.53
  5. Bayona, G.; García, D.; Mora, G. (1994). La Formación Saldaña: producto de la actividad de estratovolcanes continentales en un dominio de retroarco. En: F. Etayo-Serna (eds.). Estudios Geológicos del Valle Superior del Magdalena (pp. 1-21). Universidad Nacional de Colombia.
  6. Bayona, G.; Cardona, A.; Jaramillo, C.; Mora, A.; Montes, C.; Valencia, V.; Ayala, C.; Montenegro, O.; Ibáñez-Mejía, M. (2012). Early Paleogene magmatism in the northern Andes: Insights on the effects of Oceanic Plateau–continent convergence. Earth and Planetary Science Letters, 331-332, 97- 111. https://doi.org/10.1016/j.epsl.2012.03.015
  7. Biralvand, M.; Ballato, P.; Balestrieri, M.L.; Mohajjel, M.; Sobel, E.R.; Dunkl, I.; Montegrossi, G.; Ghassemi, M.R.; Glodny, J.; Strecker, M. (2023). Low-temperature thermochronologic response to magmatic reheating: Insights from the Takab metallogenic district of NW Iran, (Arabia-Eurasia collision zone). Geochemistry, Geophysics, Geosystems, 24(1), e2022GC010561. https://doi.org/10.1029/2022GC010561
  8. Blanco-Quintero, I.F.; García-Casco, A.; Toro, L.M.; Moreno, M.; Ruiz, E.C.; Vinasco, C.; Cardona, A.; Lázaro, C.; Morata, D. (2014). Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia). International Geology Review, 56(15), 1852-1872. https://doi.org/10.1080/00206814.2014.963710
  9. Braun, J. (2002). Estimating exhumation rate and relief evolution by spectral analysis of age–elevation datasets. Terra Nova, 14(3), 210-214. https://doi.org/10.1046/j.1365-3121.2002.00409.x
  10. Braun, J. (2003). Pecube: a new finite-element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, 29(6), 787-794. https://doi.org/10.1016/S0098-3004(03)00052-9
  11. Braun, J.; Van Der Beek, P.; Batt, G. (2006). Quantitative thermochronology: Numerical methods for the interpretation of thermochronological data. Cambridge University Press. https://doi.org/10.1017/CBO9780511616433
  12. Braun, J.; van der Beek, P.; Valla, P.; Robert, X.; Herman, F.; Glotzbach, C.; Pedersen, V.; Perry, C.; Simon-Labric, T.; Prigent, C. (2012). Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, 524-525, 1-28. https://doi.org/10.1016/j.tecto.2011.12.035
  13. Brichau, S.; Witt, C.; Bermúdez, M.A.; Fillon, C.; Gautheron, C.; Carter, A. (2023). Exhumation and topographic evolution of the Chiapas Massif Complex (southern Mexico) constrained by thermochronologic data modeling along vertical profiles. Global and Planetary Change, 227, 104159. https://doi.org/10.1016/j.gloplacha.2023.104159
  14. Bustamante, C.; Archanjo, C.; Cardona, A.; Vervoort, J.D. (2016). Late Jurassic to Early Cretaceous plutonism in the Colombian Andes: A record of long-term arc maturity. GSA Bulletin, 128(11-12), 1762-1779. https://doi.org/10.1130/B31307.1
  15. Bustamante, C.; Archanjo, C.; Cardona, A.; Bustamante, A.; Valencia, V. (2017). U-Pb ages and Hf isotopes in zircons from Parautochthonous Mesozoic Terranes in the Western Margin of Pangea: Implications for the Terrane configurations in the Northern Andes. Journal of Geology, 125(5). https://doi.org/10.1086/693014
  16. Bustos, X.; Bermúdez, M.A.; Toro, G.M.; Bernet, M.; Rojas, O.; Marín, M. (2013). Caracterización de superficies de erosión mediante geomorfología cuantitativa, Altiplano Antioqueño, Cordillera Central de Colombia. Terra. Nueva Etapa, 29(46), 43-67.
  17. Bustos, X.; Bermúdez, M. (2015). Caracterización de las superficies de erosión en los Andes del Norte a través de métodos numéricos termocinemáticos y geomáticos. Universidad Central de Venezuela.
  18. Cardona, A.; León, S.; Jaramillo, J.S.; Montes, C.; Valencia, V.; Vanegas, J.; Bustamante, C.; Echeverri, S. (2018). The Paleogene arcs of the northern Andes of Colombia and Panama: Insights on plate kinematic implications from new and existing geochemical, geochronological and isotopic data. Tectonophysics, 749, 88-103. https://doi.org/10.1016/j.tecto.2018.10.032
  19. Castrillón, A. (2003). El Stock Granodiorítico de Córdoba, un intrusivo en el flanco occidental de la Cordillera Central de los Andes colombianos (Departamento del Quindío). Geología Colombiana, 28, 63-77.
  20. Cathles, L.M. (1977). An analysis of the cooling of intrusives by ground-water convection which includes boiling. Economic Geology, 72(5), 804- 826. https://doi.org/10.2113/gsecongeo.72.5.804
  21. Cetina, L.M.; López-Isaza, J.A.; Cuéllar-Cárdenas, M.A.; Forero-Ortega, A.J. (2020). Review of geothermochronological and thermobarometric techniques for the construction of cooling and exhumation curves or paths for intrusive igneous rocks. Boletín Geológico, 47, 85-105. https://doi.org/10.32685/0120-1425/boletingeo.47.2020.527
  22. Chavarría, L.; Bustamante, C.; Cardona, A.; Bayona, G. (2022). Quantifying crustal thickness and magmatic temperatures of the Jurassic to Early Cretaceous North-Andean arc. International Geology Review, 64(18), 2544-2564. https://doi.org/10.1080/00206814.2021.1992301
  23. Chicangana, G. (2005). The Romeral Fault System: a shear and deformed extinct subduction zone between oceanic and continental lithospheres in Northwestern South America. Earth Sciences Research Journal, 9(1), 51-66.
  24. Davies, J.H. (2013). Global map of solid Earth surface heat flow. Geochemistry, Geophysics, Geosystems, 14(10), 4608-4622. https://doi.org/10.1002/ggge.20271
  25. Duque-Caro, H. (1990). Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and the evolution of the Panama seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 77(3-4), 203-234. https://doi.org/10.1016/0031-0182(90)90178-A
  26. Duque-Palacio, S.; Seward, D.; Restrepo-Moreno, S.A.; García-Ramos, D. (2021). Timing and rates of morpho-tectonic events in a segment of the Central and Western Cordilleras of Colombia revealed through low-temperature thermochronology. Journal of South American Earth Sciences, 106, 103085. https://doi.org/10.1016/j.jsames.2020.103085
  27. Duque-Trujillo, J.; Bustamante, C.; Solari, L.; Gómez-Mafla, Á.; Toro-Villegas, G.; Hoyos, S. (2019). Reviewing the Antioquia batholith and satellite bodies: a record of Late Cretaceous to Eocene syn-to post-collisional arc magmatism in the Central Cordillera of Colombia. Andean Geology, 46(1), 82-101. https://doi.org/10.5027/andgeoV46n1-3120
  28. Ehlers, T.A. (2005). Crustal thermal processes and the interpretation of thermochronometer data. Reviews in Mineralogy and Geochemistry, 58(1), 315-350. https://doi.org/10.2138/rmg.2005.58.12
  29. Espinosa-Baquero, A. (2020). A model of the Quindío and Risaralda Quaternary deposits. En: J. Gómez, A.O. Pinilla-Pachón (eds.). The Geology of Colombia (pp. 333-352). Vol. 4, Chapter 9. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.38.2019.09
  30. Farris, D.W.; Jaramillo, C.; Bayona, G.; Restrepo-Moreno, S.A.; Montes, C.; Cardona, A.; Mora, A.; Speakman, R.J.; Glascock, M.D.; Valencia, V. (2011). Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39(11), 1007-1010. https://doi.org/10.1130/G32237.1
  31. Feininger, T.; Botero, G. (1982). The Antioquian Batholith, Colombia. Publicación Geológica Especial INGEOMINAS.
  32. Fu, F.Q. (2006). Reconstruction of thermal and exhumation histories of magmatic ore deposits: Inverse modeling of U-Pb-He thermochronology. PhD thesis, University of Sydney, Australia.
  33. Fu, F.Q.; McInnes, B.I.A.; Evans, N.J.; Davies, P.J. (2010). Numerical modeling of magmatic-hydrothermal systems constrained by U-Th-Pb-He time-temperature histories. Journal of Geochemical Exploration, 106(1-3), 90-109. https://doi.org/10.1016/j.gexplo.2009.09.001
  34. García-Delgado, H.; Villamizar-Escalante, N.; Bermúdez, M.A.; Bernet, M.; Velandia, F. (2021). Climate or tectonics? What controls the spatial-temporal variations in erosion rates across the Eastern Cordillera of Colombia? Global and Planetary Change, 203, 103541. https://doi.org/10.1016/j.gloplacha.2021.103541
  35. Gerya, T. (2019). Introduction to Numerical Geodynamic Modelling. Second Edition, Cambridge University Press. https://doi.org/10.1017/9781316534243
  36. Gómez, J.; Montes, N.; Marín, E. (2023). Mapa geológico de Colombia-Escala 1:1 500 000. Servicio Geológico Colombiano.
  37. González, J.; Zambra, C.E.; González, L.; Clausen, B.; Vasco, D.A. (2022). Simulation of cooling in a magma chamber: Implications for geothermal fields of southern Peru. Geothermics, 105, 102515. https://doi.org/10.1016/j.geothermics.2022.102515
  38. Harrison, T.; Clarke, G. K. (1979). A model of the thermal effects of igneous intrusion and uplift as applied to Quottoon pluton, British Columbia. Canadian Journal of Earth Sciences, 16(3), 411-420. https://doi.org/10.1139/e79-039
  39. Kerr, A.C.; Marriner, G.F.; Tarney, J.; Nivia, A.; Saunders, A.D.; Thirlwall, M.F.; Sinton, C.W. (1997). Cretaceous basaltic terranes in Western Colombia: elemental chronological and Sr-Nd isotopic constraints on petrogenesis. Journal of Petrology, 38(6), 677-702. https://doi.org/10.1093/petroj/38.6.677
  40. Ketcham, R.A. (2024). Thermal history inversion from thermochronometric data and complementary information: New methods and recommended practices. Chemical Geology, 653, 122042. https://doi.org/10.1016/j.chemgeo.2024.122042
  41. Lagardère, C.; Vargas, C.A. (2021). Earthquake distribution and lithospheric rheology beneath the Northwestern Andes, Colombia. Geodesy and Geodynamics, 12(1), 1-10. https://doi.org/10.1016/j.geog.2020.12.002
  42. Leal-Mejía, H.; Shaw, R.P.; Melgarejo, J.C. (2019). Spatial-temporal migration of granitoid magmatism and the Phanerozoic tectono-magmatic evolution of the Colombian Andes. En: F. Cediel, R.P. Shaw (eds). Geology and tectonics of Northwestern South America (pp. 253-410). Springer. https://doi.org/10.1007/978-3-319-76132-9_5
  43. López-Isaza, J.A.; Zuluaga, C.A. (2020). Late Triassic to Jurassic Magmatism in Colombia: Implications for the evolution of the Northern Margin of South America. En: J. Gómez-Tapias, A. Pinilla-Pachón (eds.). The Geology of Colombia (pp. 77-116). Vol. 2, Chapter 3. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.03
  44. Mann, P.; Corrigan J. (1990). Model for late Neogene deformation in Panama. Geology, 18(6), 558-562. https://doi.org/10.1130/0091-7613(1990)018<0558:MFLNDI>2.3.CO;2
  45. Marín-Cerón, M.I.; Vinasco-Vallejo, C. (2012). Contribuciones al conocimiento de la evolución geológica del sistema de fallas de Romeral. Boletín Ciencias de la Tierra, 32, 61-64.
  46. Marín-Cerón, M.I.; Leal-Mejía, H.; Bernet, M.; Mesa-García, J. (2019). Late Cenozoic to modern-day volcanism in the Northern Andes: A geochronological, petrographical, and geochemical review. En: F. Cediel, R.P. Shaw (eds.). Geology and tectonics of Northwestern South America (pp. 603-648). Springer. https://doi.org/10.1007/978-3-319-76132-9_8
  47. Mojica, J.; Herrera, A. (1986). Estratigrafía, facies y direcciones de aportes de la Formación Luisa en la región de Rovira (Tolima). Geología Colombiana, 15, 65-80.
  48. Mora, A.; Villagómez, D.; Parra, M.; Caballero, V.M.; Spikings, R.; Horton, B.K.; Mora-Bohórquez, J.A.; Ketcham, R.A.; Arias-Martínez, J.P. (2020). Late Cretaceous to Cenozoic uplift of the northern Andes: Paleogeographic implications. En: J. Gómez, D. Mateus-Zabala (eds.). The Geology of Colombia (pp. 89-121). Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.37.2019.04
  49. Murray, K.E.; Braun, J.; Reiners, P.W. (2018). Toward robust interpretation of low-temperature thermochronometers in magmatic terranes. Geochemistry, Geophysics, Geosystems, 19(10), 3739-3763. https://doi.org/10.1029/2018GC007595
  50. Nivia, A.; Marriner, G.; Kerr, A.; Tarney, J. (2006). The Quebradagrande Complex: A Lower Cretaceous ensialic marginal basin in the Central Cordillera of the Colombian Andes. Journal of South American Earth Sciences, 21(4), 423-436. https://doi.org/10.1016/j.jsames.2006.07.002
  51. Noriega-Londoño, S.; Restrepo-Moreno, S.A.; Vinasco, C.; Bermúdez, M.A.; Min, K. (2020). Thermochronologic and geomorphometric constraints on the Cenozoic landscape evolution of the Northern Andes: Northwestern Central Cordillera, Colombia. Geomorphology, 351, 106890. https://doi.org/10.1016/j.geomorph.2019.106890
  52. Núñez, A.; Murillo, A. (1982). Geología y prospección geoquímica de las Planchas 244 Ibagué y 363 Ortega. INGEOMINAS, Informe 1879. 366 p. Ibagué.
  53. Pardo-Trujillo, A.; Cardona, A.; Giraldo, A.S.; León, S.; Vallejo, D.F.; Trejos-Tamayo, R.; Plata, A.; Ceballos, J.; Echeverri, S.; Barbosa-Espitia, A.; Slattery, J.; Salazar-Ríos, A.; Botello, G.E.; Celis, S.A.; Osorio-Granada, E.; Giraldo-Villegas, C.A. (2020). Sedimentary record of the Cretaceous–Paleocene arc–continent collision in the northwestern Colombian Andes: Insights from stratigraphic and provenance constraints. Sedimentary Geology, 401, 105627. https://doi.org/10.1016/j.sedgeo.2020.105627
  54. Parmentier, E.M.; Spooner, E.T.C. (1978). A theoretical study of hydrothermal convection and the origin of the ophiolitic sulphide ore deposits of Cyprus. Earth and Planetary Science Letters, 40(1), 33-44. https://doi.org/10.1016/0012-821X(78)90072-9
  55. Prenzel, J.; Lisker, F.; Balestrieri, M.; Läufer, A.; Spiegel, C. (2013). The Eisenhower Range, Transantarctic Mountains: Evaluation of qualitative interpretation concepts of thermochronological data. Chemical Geology, 352, 176-187. https://doi.org/10.1016/j.chemgeo.2013.06.005
  56. Reiners, P.; Brandon, M. (2006). Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34, 419-466. https://doi.org/10.1146/annurev.earth.34.031405.125202
  57. Restrepo, J.J.; Toussaint, J.F. (2020). Tectonostratigraphic terranes in Colombia: An update. First part: Continental terranes. En: J. Gómez, D. Mateus-Zabala (eds.). The Geology of Colombia (pp. 37-63). Vol. 1, Chapter 3. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.35.2019.03
  58. Restrepo-Moreno, S.A.; Foster, D.A.; Stockli, D.F.; Parra-Sánchez, L.N. (2009). Long-term erosion and exhumation of the “Altiplano antioqueño”, Northern Andes (Colombia) from apatite (U-Th)/He thermochronology. Earth and Planetary Sciences Letters, 278(1-2), 1-12. https://doi.org/10.1016/j.epsl.2008.09.037
  59. Restrepo-Moreno, S.A.; Foster, D.A.; Bernet, M.; Min, K.; Noriega, S. (2019). Morphotectonic and Orogenic Development of the Northern Andes of Colombia: A Low-Temperature Thermochronology Perspective. En: F. Cediel, R.P. Shaw (eds). Geology and Tectonics of Northwestern South America (pp. 749-832). Springer. https://doi.org/10.1007/978-3-319-76132-9_11
  60. Ring, U.; Brandon, M.T.; Willett, S.D.; Lister, G.S. (1999). Exhumation processes. Geological Society, London, Special Publications, 154, 1-27. https://doi.org/10.1144/GSL.SP.1999.154.01.01
  61. Ring, U.; Brandon, M.T. (2008). Exhumation Settings, Part I: Relatively Simple Cases. International Geology Review, 50(2), 97-120. https://doi.org/10.2747/0020-6814.50.2.97
  62. Rodríguez-García, G.; Correa-Martínez, A.M.; Zapata-García, G.; Arango-Mejía, M.I.; Obando-Erazo, G.; Zapata-Villada, J.P.; Bermúdez, J.G. (2020). Diverse Jurassic magmatic arcs of the Colombian Andes: Constraints from petrography, geochronology and geochemistry. En: J. Gómez, A.O. Pinilla-Pachon (eds.). The Geology of Colombia (pp. 117-170). Vol. 2, Chapter 4. Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.36.2019.04
  63. Rodríguez-García, G.; Ramírez, D.A.; Zapata, J.P.; Correa-Martínez, A.M.; Sabrica, C.; Obando, G. (2022). Redefinición, correlación e implicaciones geotectónicas del batolito de Ibagué, Colombia. Boletín de Geología, 44(3), 65-93. https://doi.org/10.18273/revbol.v44n3-2022003
  64. Sarmiento-Rojas, L.F. (2018). Cretaceous stratigraphy and Paleo-Facies maps of Northwestern South America. En: F. Cediel, R.P. Shaw (eds.). Geology and tectonics of Northwestern South America (pp. 673-747). Frontiers in Earth Sciences. https://doi.org/10.1007/978-3-319-76132-9_10
  65. Schildgen, T.F.; van der Beek, P.A. (2019). The Application of low-temperature thermochronology to the Geomorphology of Orogenic Systems. In: M.G. Malusà, P.G. Fitzgerald (Eds.). Fission-track thermochronology and its application to geology (pp. 335-350). Springer. https://doi.org/10.1007/978-3-319-89421-8_19
  66. Scotese, C.R. (1976). A continental drift ‘flip book’. Computers & Geosciences, 2(1), 113-116. https://doi.org/10.1016/0098-3004(76)90096-0
  67. Spikings, R.; Cochrane, R.; Villagomez, D.; Van der Lelij, R.; Vallejo, C.; Winkler, W.; Beate, B. (2015). The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75Ma). Gondwana Research, 27(1), 95-139. https://doi.org/10.1016/j.gr.2014.06.004
  68. Stalder, N.; Herman, F.; Giuditta-Fellin, M.C.; Aguilar, G.; Reiners, P.; Fox, M. (2020). The relationships between tectonics, climate and exhumation in the Central Andes (18–36°S): Evidence from low-temperature thermochronology. Earth-Science Reviews, 210, 103276. https://doi.org/10.1016/j.earscirev.2020.103276
  69. Stüwe, K. (2007). Geodynamics of the Lithosphere. Springer Verlag. https://doi.org/10.1007/978-3-540-71237-4
  70. Turcotte, D.L.; Schubert, G. (2002). Geodynamics. Cambridge University Press. https://doi.org/10.1017/CBO9780511807442
  71. Vallejo, C.; Spikings, R.A.; Luzieux, L.; Winkler, W.; Chew, D.; Page, L. (2006). The early interaction between the Caribbean Plateau and the NW South American Plate. Terra Nova, 18(4), 264-269. https://doi.org/10.1111/j.1365-3121.2006.00688.x
  72. Villagómez, D.; Spikings, R.; Magna, T.; Kammer, A.; Winkler, W.; Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central Cordilleras of Colombia. Lithos, 125(3-4), 875-896. https://doi.org/10.1016/j.lithos.2011.05.003
  73. Villagómez, D.; Spikings, R. (2013). Thermochronology and tectonics of the Central and Western Cordilleras of Colombia: Early Cretaceous-Tertiary evolution of the Northern Andes. Lithos, 160-161, 228-249. https://doi.org/10.1016/j.lithos.2012.12.008
  74. Vinasco, C.J.; Cordani, U.G.; González, H.; Weber, M.; Peláez, C. (2006). Geochronological, isotopic and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355-371. https://doi.org/10.1016/j.jsames.2006.07.007
  75. Vinasco, C. (2019). The Romeral Shear Zone: The Pacific-Caribbean-Andean Junction. En: F. Cediel, R.P. Shaw (eds). Geology and tectonics of Northwestern South America (pp. 833-876). Springer. https://doi.org/10.1007/978-3-319-76132-9_12
  76. Wilson, J.T. (1965). A new class of faults and their bearing on continental drift. Nature, 207, 343-347. https://doi.org/10.1038/207343a0
  77. Wilson, J.T. (1966). Did the Atlantic close and then re-open? Nature, 211, 676-681. https://doi.org/10.1038/211676a0
  78. Zapata, S.; Zapata-Henao, M.; Cardona, A.; Jaramillo, C.; Silvestro, D.; Oboh-Ikuenobe, F. (2021). Long-term topographic growth and decay constrained by 3D thermo-kinematic modeling: Tectonic evolution of the Antioquia Altiplano, Northern Andes. Global and Planetary Change, 203, 103553. https://doi.org/10.1016/j.gloplacha.2021.103553