Vol. 14 Núm. 40 (2015): Revista GTI
Artículos de Investigación Científica e Innovación

RECUPERACIÓN DE OBJETOS DE APRENDIZAJE EN REPOSITORIOS: UNA APLICACIÓN CON BÚSQUEDA SEMÁNTICA

NÉSTOR DARÍO DUQUE MÉNDEZ
Universidad Nacional de Colombia – Sede Manizales
Biografía
GERMÁN A. OSORIO ZULUAGA
Universidad Nacional de Colombia – Sede Manizales
Biografía

Publicado 2016-11-04

Cómo citar

DUQUE MÉNDEZ, N. D., & OSORIO ZULUAGA, G. A. (2016). RECUPERACIÓN DE OBJETOS DE APRENDIZAJE EN REPOSITORIOS: UNA APLICACIÓN CON BÚSQUEDA SEMÁNTICA. Revista GTI, 14(40), 43–54. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistagti/article/view/5863

Resumen

En los últimos años ha crecido el número de recursos educativos almacenados en repositorios de objetos de aprendizaje. Para su recuperación se usan generalmente métodos de búsqueda tradicionales de coincidencia de términos de consulta con los metadatos de los objetos de aprendizaje. La precisión en los resultados de búsqueda con estos métodos sigue siendo baja. En este sentido, este trabajo se enfocó en mejorar el indicador de precisión en las búsquedas, usando la técnica de Análisis Semántico Latente sobre los metadatos que describen el objeto de aprendizaje. Esta técnica permite aproximaciones por su significado. En el experimento realizado, se evidenció una mejora en la precisión en la búsqueda, a medida que se ingresaron más términos en la consulta. La implementación se puede extender a búsquedas de texto completo de objetos de aprendizaje textuales, si se tiene acceso al contenido textual completo del objeto de aprendizaje.

PALABRAS CLAVES: Análisis Semántico Latente, LSA, objetos de aprendizaje, repositorios de objetos de aprendizaje, recuperación de información.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Alharbi, A., Henskens, F. & Hannaford, M. (2012). A Domain-Based Learning Object Search Engine to Support Self-Regulated Learning. International Journal of Computer and Information Technology 1(1), 83-93.
  2. Ali, N., Guéhénueuc, Y.-G., & Antoniol, G. (2013). Trustrace: Mining Software Repositories to Improve the Accuracy of Requirement Traceability Links. IEEE Transactions on Software Engineering, 39(5), 725–741.
  3. Astudillo, G. J. (2011). Análisis del estado del arte de los objetos de aprendizaje. Revisión de su definición y sus posibilidades. Technical report, Universidad Nacional de La Plata.
  4. Aswani Kumar, C., Radvansky, M., & Annapurna, J. (2012). Analysis of a vector space model, latent semantic indexing and formal concept analysis for information retrieval. Cybernetics and Information Technologies, 12(1), 34–48.
  5. Atkinson, J., Gonzalez, A., Munoz, M., & Astudillo, H. (2013). Web metadata extraction and semantic indexing for learning objects extraction. In Recent Trends in in Applied Artificial Intelligence, volume 7906 LNAI (pp. 31–140). Springer-Verlag Berlin Heidelberg.
  6. Baeza-Yates, R. & Ribeiro-Neto, B. (2011). Modern Information retrieval - the concepts and technology behind search. Essex: Addison Wesley.
  7. Barak, M. & Ziv, S. (2013). Wandering: A Webbased platform for the creation of locationbased interactive learning objects. Computers & Education, 62, 159–170.
  8. Becerra, C., Astudillo, H., & Mendoza, M. (2012). Improving Learning Objects Recommendation Processes by Using Domain Description Models. LACLO, 3(1).
  9. Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python. Sebastopol: O’Reilly Media.
  10. Borg, M., Runeson, P., & Ardo, A. (2014). Recovering from a decade: a systematic mapping of information retrieval approaches to software traceability. Empirical Software Engineering, 19(6), 1565–1616.
  11. Brut, M. M., Sedes, F., & Dumitrescu, S. D. (2011). A semantic-oriented approach for organizing and developing annotation for E-learning. IEEE Transactions on Learning Technologies, 4(3), 239– 248.
  12. Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., & Panichella, S. (2013). Improving IR-based traceability recovery via noun-based indexing of software artifacts. Software-Evolution and Process, 25(7), 743–762.
  13. De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., & Panichella, S. (2013). Labeling source code with information retrieval methods: an empirical study. Empirical Software Engineering, 1–38.
  14. Deerwester, S., Dumais, S., Furnas, G.W., Landauer, T. K., & Harshman, R. (1990). Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science, 41(6), 391.
  15. Díaz M, L. G. (2007). Estadística Multivariada: Inferencia y Métodos. Bogotá: Universidad Nacional de Colombia.
  16. Dit, B., Revelle, M., Gethers, M., & Poshyvanyk, D. (2013). Feature location in source code: a taxonomy and survey. Journal of SoftwareEvolution and Process, 25(1), 53–95.
  17. Gil, A. B., De la Prieta, F., & López, V. F. (2010). Hybrid Multiagent System for Automatic Object Learning Classification. In E. S. Corchado Rodriguez (Ed.), Hybrid Artificial Intelligency Systems (pp. 61–68). San Sebastián, Spain: Springer.
  18. Golub, G. H. & Van Loan, C. F. (2012). Matrix computations, volume 3. JHU Press.
  19. Gracia, J.-M. (2002). Álgebra Lineal tras los buscadores de Internet. Technical report.
  20. IEEE (2002). Standard for Learning Object Metadata. Technical report, Institute of Electrical and Electronics Engineers, New York.
  21. Ismail, A. & Joy, M. (2011). Semantic Searches for Extracting Similarities in a Content Management System. In International Conference on Semantic Technology and Information Retrieval, number June, (pp. 113–118)., Putrajaya (Malaysia). IEEE.
  22. Jain, V. & Singh, M. (2013). Ontology Based Information Retrieval in Semantic Web: A Survey. International Journal of Information Technology and Computer Science, 10, 62–69.
  23. Laender, A. H. F., Gonçalves, M. A., Cota, R. G., Ferreira, A. A., Santos, R. L. T., & Silva, A. J. C. (2008). Keeping a Digital Library Clean : New Solutions to Old Problems. In Eighth ACM symposium on Document engineering, (pp. 257– 262)., New York. ACM.
  24. Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes, 25(2-3), 259–284.
  25. López Guzmán, C. (2005). Los Repositorios de Objetos de Aprendizaje como soporte a un entorno e-learning. PhD thesis, Universidad de Salamanca.
  26. Martin, D. I. & Berry, M. W. (2007). Mathematical Foundations Behind Latent Semantic Analysis. In Handbook of Latent Semantic Analysis chapter 2, (pp. 35–55). New York: RoutLedge.
  27. Mihalcea, R. & Radev, D. (2011). Graph-Based Natural Language Processing and Information Retrieval. New York: Cambridge University Press.
  28. Ministerio_de_Educación_Nacional, C. (2012). Recursos Educativos Digitales Abiertos - Colombia. Bogotá: MEN.
  29. Moore, M. G. (2013). Handbook of Distance Education. New York.
  30. Nanba, H. & Okumura, M. (2005). Automatic Detection of Survey Articles. In Advanced Technology for Digital Libraries (pp. 391–401). Vienna, Austria: Springer.
  31. Novelli, A. D. P. & Parente De Oliveira, J. M. (2012). Simple Method for Ontology Automatic Extraction from Documents. International Journal of Advanced Computer Science and Applications, 3(12), 44–51.
  32. Oliphant, T. E. (2006). A Guide to NumPy. Trelgol Publishing.
  33. Peña, D. (2002). Análisis de datos multivariados. Madrid: McGraw Hill.
  34. Plaza Morales, L. (2011). Uso de Grafos Semánticos en la Generación Automática de Resúmenes y Estudio de su Aplicación en Distintos Dominios: Biomedicina , Periodismo y Turismo. PhD thesis, Universidad Complutense de Madrid.
  35. Poshyvanyk, D., Guéhéneuc, Y.-G., Marcus, A., Antoniol, G., & Rajlich, V. (2007). Feature Location Using Probabilistic Ranking of Methods Based on Execution Scenarios and Information Retrieval. IEEE Transactions on Software Engineering, 33(6), 420–432.
  36. Rodríguez M, P. A., Isaza, G., & Duque Méndez, N. D. (2012). Búsqueda personalizada en Repositorios de Objetos de Aprendizaje a partir del perfil del estudiante. Avances Investigación en Ingeniería, 9(1), 73–83.
  37. Sabitha, A. S. & Mehrotra, D. (2013). A push strategy for delivering of Learning Objects using meta data based association analysis (FP-Tree). In 2013 International Conference on Computer Communication and Informatics, (pp. 1–4). IEEE.
  38. Sánchez-Alonso, S., Ovelar, R., & Sicilia, M.-Á. (2007). Estándares de e-learning. In A. Landeta Etxeberría (Ed.), Buenas Prácticas de e-learning.