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On the ultimate boundéd‘ness of solutions
of systems of differential equations

JUAN E. NAPOLES VALDES*

Abstract

In this paper we give conditions under which all solutions of a system of
differential equations are equi bounded and ultimate bounded. We apply
our result to a system which contain to well known Liénard’s cquation.

1. Introduction
We consider a system of ordinary differential equations:
o’ = f(t,2). )

Where f : I x R™ — R™, I = [0, +00), is continuous. Also consider that the
solutions of the system are uniquely determined by initial conditions.

In Liapunov’s Second Method the study of various qualitative properties asso-
ciated with solutions of (1) was originated in the fundamental memoir of the
russian mathematician Liapunov. Since that time this area has been exten-
sively (perhaps even exhaustively) investigated. Many of the results require
intermediate, or direct, use energy (Liapunov) functions.

In [8] Salvadori used scalar functions V (t,x) and W (¢,z), and C(r) > 0 which
satisfy:

Viy (2 (1) < = (W (1,2 (1)), (@)
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and studied the asymptoptic stability of (1) with f(¢,0) = 0. In {1] two Lia-
punov functions have been used to investigate the ultimate boundedness and
the equi-ultimate boundedness of the solutions of (1) and

Viy(t,z(8) < —c(W (t,2)) + A()g(V (2, 2)), (3)

where c(r) > 0, Jo° A(t)dt < oo and fg° f(‘;‘ﬁ = oo0.

The purpose of this paper is to investigate the ultimate boundedness and
the equi—ultimate boundedness of the solutions of (1) by using two scalar
functions too. In particular, our results generalize those in (1]. In section 3 as
an application, we consider the system z’ = a(y) — B(y) f(z), ¥’ = —a(t)g()
where a, 3, f, g and a are continuous.

Let R™, denote Euclidean m space and ||-|| denote any norm in R™, x(t; to, o)
denote a solution of (1) with z(to;to, zo) = zo.

We will use the following notations:

Sy ={zeR":|lz|| < r},

C(X) and CI(X) denote the families of continuous functions and continuous
increasing functions, respectively, on a real intervall X (0 € intX) and I =
[0, +00).

We consider the following functional class:

L

{A(t) e CI): A\(t) > o,/owx(t)dt < oo},
P = {p<t)ec<z):p(t)zo,/()“p(t)dmoo},

F

{d’(u) € C(R) : ¢(u) > 0 no decreasing and /Ooo % = 0o }

For definitions of boundedness of the solutions of (1), we refer the reader to
[9]- ‘

We shall use some auxiliary functions continuous in (t,z) and locally Lips-
chitzian in z. Define: '

Viy(t =) := lim sup RV (t+ b,z +hf(t,2) - V(t,2)}

Now we give two lemmas which will play an important role in the proof of our
main result.
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Lemma 1. Suppose that there exists a Liapunov function V (t, z) defined on
I x R™, which satisfies the following conditions:

(i) a(l|zll) £ V (t,z),where a(r) € CI (R*) and a (r) — oo asr — o0,
(ii) V('l) (t,z) <A(t)[r(t)¢(V)—q(t)], where A € L; q,r € P and ¢ € F.
Then the solutions of (1) are equi-bounded.

Lemma 2. Let A(t) be continuous on I, ¢ € F, ®(v) be a primitive of 1/¢(v)
and suppose that v/ < ) (t)¢(v). Then we have: -

v(t) < ®7! (Q (v(to)) + /t‘: z\(s)ds)
for all t > ty.

Remark 1. The proof of lemma 1, is a variant of the proofs of Theorems
10.1 and 10.2 of [9] and the Lemma 2 is a trivial application of the theory of
differential inequalities.

2. Our general theorem

We now state our main result.

- Theorem 1. Suppose that there exist two Liapunov functions V (t,z) and
W (t,z), defined on I x R™, satisfying the conditions:

1. k <V (t,z), wherek € R,
2. b(jlz]])) < W (t,x),b(r) € CI and b(r) — o0, as r — 00,

3. Vi) < =p () (W (t,2)) + A1 () 61 (V (¢, 2)), where ¢ (r) € C (R*) and
rl_i+n°1°infc(r)>0,1967’, M EL,y 91 €F,

4. Wiyt z) < Ao () [r (t) 62 (W) — g (t)], where A2 € L; q,r € P, 2 € F
with r(t) ¢p2(W) — q(t) > 0, for all t € I and = fixed.

Then the solutions of (1) are equi-bounded and equi~u1ti1ﬁate)y bounded.

43



44

JUAN E. NAPOLES VALDES

Proof. The conditions 2 and 4 satisfy the lemma 1 and the solutions of (1)
are equi-bounded. §

There exist positive constants v and k such that:

infe(r) =%, b7 l(s)>0 foranys >k,
r>k

since lim inf ¢(r) > 0 and b(r) — oo as r — oo. For the proof of the equi-
ultimate boundedness of solutions of (1), we first show the following facts.
We suppose the there exist to € I and o > 0 such that for all T > 0,there
exist g € So and z(¢; to, zo) such that:

W (t,z (t;to,x0)) 2 b(B) for to<t<to+T,

which means the no ultimate boundedness of the solutions of (1).
By the condition 3 and Lemma 2, there exist N > 0 such that:

1 (V (¢, z (t;to,x0))) < N for t 2=t
Then it would follow the condition 3 that:
Vi) < —yp () + NAr(t) for to<t<to+T

and therefore that:

to+T to+T
V(to+T,z(to+T)) <V (to,x0) — 7/ p(t)dt+ N A1(t)dt.

to to

Since p(t) € P,the last member becomes —ooc as T — +00,and this contradicts
the condition 1.

Let B > b~} (F~1(F (b(B))) + L) ,where F (r) is a primitive of m
and L = [ \o(t)dt

From the condition 4 we have:

Wy (t, z)
r(£)p2(W (t, z)) — q(t) < Aa(t).

Integrating this inequality from t;and ¢ (¢t > t1) we have:
F(W(t,z)) < F(b(B))+L

and therefore: '

W (t,z) < F7H(F (b(B)) + L) ,t > ty,

then W (t,z) < b(B), t > to+ T. Thus the condition 2 shows that: -
lz(t)|| < B for t>to+T

and the proof of Theorem 1 is completed. |
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Remark 2. In [1, Th 3.3] the authors obtained the same conclusion if the
condition 4 is replaced by the more restrictive condition:

W(y(t,z) < A2(t)p2(W),

 where A2 € L and ¢2 € F.

3. An application

We consider the system:

z a(y) — Bly)f (=),
y’ = ——a(t)g(:l:),

t4)

. where the dots indicate differentiation with respect to t. In what follows the
functions «a, 8, f and g are taken to be continuous real-valued and a positive
continuously differentiable on {0,+00).

We also asumme that the following conditions are fulfilled:

a) « € CC(R),
b) 8 € CPy (R),
c) f,g€ CS(R),
d) a € {CP([0+00))NC' ([0, +00))},

where:
CS(R) = {heC(R):zh(z)>0forallzx},
CC(R) = {he(CI(R)NCS(R))},
CPk(R) = {h€C(R):h(z)>k>O0forall x},
CP(R) := CPy(R),

with C! (R) are the families of functions with first derivate continuous on R.
We define G (z) = [§ g (s)ds and A (y) = [f a(r)dr.

In [5] we proved that under these conditions all solutions of (4) are continuable
to the future.

In many papers of author (for example [2-7]), we discussed the asymptotic be-
havior of solutions of system (4) under several conditions on functions involved
in this.

In this section we shall give sufficient conditions for the equi and ultimate
boundedness of solutions of (4).
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Theorem 2. Under conditions a)-d suppose that:

1. There exist some constants ¢ and a such that a(t) > a > 0 fort >0 and

2
ol < 400,

lim (F

t—o00

2. A (£oo) = o0 or G (+o0) =
Then the solutions of (4) are equi-bounded and ultimately bounded.

Proof. Let:

2a(t)
a'(t)
then: V (t,z,y) > ¢, thus V (t,z,y) satisfies the condition 1 of the Theorem
1. We next obtain: -

V(t,z,y) =

exp (A(y) +a(t)G(2)),

2u()

Vig (t2,y) < {*abf (z) g (z) + [a’(t)

] }exp (A(y) + a(t)G(z)),

from this we have:
+In [2“(”} {2“(“ }exp (A(y) + a(t)G(a:))}

'(t) ‘()
taking
Wt z,y) = ‘f((:)) lexp (A(y) + a(t)G(2)) — 1]
and

(W) = abf(z)g(z) [W + 1]

is clear that b (z,y) = A(y)+aG(z) satisfies the condition 2 of the Theorem 1.

Also:
i = [39] (o o+ [}

. ! 2
putting p(t) = 1, X1(0) = 2], 610) = 20 = [E@] 10 =4y
q(t) = L+ — 1, the conditions 3 and 4 in Theorem 1 are fulfilled. Hence, all
solutxons of (4) are equi-bounded and ultimate bounded. I
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