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Function Spaces

with Generalized Distances *
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In [1]) we presented a generalization of the idea of a
metric, a generalized distance. We now consider how these

distances can be used to determine convergence structures for
function spaces.

Given a collection § of continuous functions into a distance
Space <Y, &>, we produce a definition for a distance on §
generalizing that of the uniform norm for functions into metric
spaces. If § is given the topology induced by this distance, then
a sufficient condition that the evaluation function be continuous

is that & be a summable distance (equivalently, that the
topological space Y be regular.)

We use this distance concept to describe the compact-open
topology on a function space by means of a base for the topology
in place of the more common Subbase.
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Recall from [1] the following definitions and results:

Definition 1: By a distance space we will mean a set Y together

with a function & from Y x Y to a partially ordered set P such

that: ‘

1 for any x, Yy € ¥, if &(%x, y) < p € P, then &(x, X) < P
and 3(y, ¥Y) < p.

Dz' 8(x, v) = 8(y, x) for all x, y e ¥

D3' if §(x, y) < o, then there exists some u € P such that
8(y, ¥) < u and such that &§(y, 2z) < u implies that
§(x, z) <o.

4 If 8(x, y) < u and &(x, y) < v, then there exists some
0 € P such that 8§(x, v) <o, 0 <= u and 0 s V.

5° For any X, y € Y, there exists some p € P such that
§(x, ¥) < pP.

The partially ordered set P is called a distance set for Y and
the function & is called a distance function. We denote by Nc(x)
the collection { y € ¥ : &(x, ¥) < € }. A set N_(x) is said to be
a distance neighborhood (or a & neighborhood) of x. Please note
that distance neighborhoods may be empty.

A distance space is a triple <X, &, P> where P is a distance
set for X and 8 : X x X — P is a distance function. If there
exists an element 08 € P such that §(x, x) = °8 for all x € X,
then <X, &, P> is called a zeroed distance space.

If <X, &, P> and <Y, 7, Q> are distance spaces and if £ is a
function from X to ¥, then f is said to be (distance) continuous
provided that for any € € Q and any x € X, if ¥( £(x),£(x) ) < &,
then there exists some o € P such that §(x, x) < ¢ and such that
§(x, z) < o implies that 7¥( f(x), £(2) ) < e. The collection of
all distance spaces and all distance continuous functions forms a
category DST. The full subcategory whose objects are zeroed
distance spaces will be designated ZDST.



For any distance space <X, §, P>, the collection
{ Nc(x) it xeX, £ eP}

is a base for a topology ’6 on X and the association which maps
<X, &, P> ¢to <x,38> induces a functor FDT from DST onto the
category TOP of all topological spaces and all continuous
functions. The image under FDT of ZDST is the category of R
spaces (see [2].) Any two distance spaces with the same image (or
homeomorphic images) under are isomorphic. Thus the

DT
isomorphism equlvalence classes of DST form a category equivalent

to TOP.

Given any topological space <X, 7>, we can define a partial
order on P(X), the collection of subsets of X, by saying that
A < B provided that A ¢ B and B ¢ 7. We designate this partially
ordered set as ?,. Define S4(%, y) to be {x, y}, an element of
Py. Then <X, 84, P> is a distance space. The association
<X,7> — <X, 8q, ?g> induces a functor FTD from TOP into DST and
the composition Fop © Frp is the identity on TOP.

Given any topological space <X, 7>, we denote by P(X x X)
the collection of all subsets of the product X x X. The
collection P(X x X) can be partially ordered by requiring that
As B only if A < B, that B be symmetric and open in X x X and

that the diagonal A = { (x, X) : x € X} be contained in B. We
denote this partially ordered set as Z,. We define a function C,
from X x X to Z’ by c’(x, y) = A v { (x, ¥), (Y, X)) }. Then
<X, Cq., Zy> is a zeroced distance space, the association relating
<X, > — <X, Cqy: Zy> induces a functor Zpp from TOP into ZDST
and the composition Fop ° zTD is the identity on the category of

R. spaces.

0

A distance space <X, §, P> is said to be summable if for any
x € X and any € € P, if §(X, x) < ¢ then there exists some 7 € P
such that

a) 8(x, x) <7
b) 8(x, ¥) < 7 and 8(y, z) < v imply that 3(x, z) < e.



If <X, &, P> is a summable zeroed distance space then
FDT( <X, 8, P> ) is a regular space (i.e. an R1 space in the
terminology of ([2]) and if <X, 9> is a regular space, then
zTD( <X, 9> ) is a summable zeroced distance space.

The following two definitions are NOT included in [1]. Their
inclusion will simplify both the statements and the proofs of the
results in this paper.

Definition 2: A zeroed distance space <X, §, P> will be said to
be a T, distance space provided that for any pair of distinct
points x, y € X there exists some € € P such that x e Ne(x) and
Y € N_(x).

Definition 3: A distance space <X, §, P> will be said to be a
lower bound distance space provided that for any p, q € P, if for
some X, Y € X we have 8(x, y) < p and 8(x, y) < g then there
exists some r € P such that 8 < r implies s < p and s < q and
such that s < p and s < q implies s s r. We call this element r
the minimum of p and q.

The relation between Tl distance spaces and T1 topological
spaces is the obvious one.

Theorem 1: If <X, &, P> is a zeroed distance space then the image
FDT( <X, &, P> ) is a T1 topological space if and only if the
distance space <X, §, P> is a ‘1‘1 distance space.

proof: Suppose that <X, &, P> is a Tl distance space. Then for
any two points x, y € X, there exists € ¢ P such that x « Ne(x)
and y ¢ Nc(x). Since x € Ne(x), the zero element O, is less than
e and so, as &8(y, ¥) = 08 < ¢, we have that y e Nc(Y)' Since
5(x, y) is NOT 1less than €, (i.e. y ¢ Nc(x) } we know that
X ¢ Ne(Y)‘ Hence, x and y each has a neighborhood which does not
contain the other, and so, <X, 36> is a Tl space. Suppose now
that <X, 76> is a T1 space. For any two points x, y € X there
exist open sets U, V e 75 such that x € U, vy € V, x ¢ V and
y ¢ U. From the construction of 58, there must exist some € € P
such that x € Ne(x) € U. This, then implies that y ¢ Ne(x), and
so <X, 3, P> is a T1 distance space.

30



We note that for any topological space <X, 7>, the image
FTD( <X, 9> ) is a lower bound distance space and that for any Ro
space <X, 7>, the image ZTD( <X, 9> ) is also a lower bound
distance space. Thus, we lose little in limiting ourselves to
lower bound distance spaces.

The following is an elementary exercise:

Proposition 1: If <X, &, P> is a lower bound distance space, if
n is any finite subset of P and if for some pair
of points x, y € X we have &§(x, y) < £y for each i =1, 2, ...,
n, then there exists some eo € P such that:

81, 82, ees 5 €

1. p s €, implies p = € for each i =1, 2, ..., n

2. ps €4 for each i =1, 2, ..., n implies p = €,

The following description of a distance on a collection of
functions is motivated by the uniform metric (see [3]) on a
collection of functions into a metric space.

Definition 4: Suppose that § is a collection of functions from a
set X into a lower bound T1 distance space <Y, §, P>. Let p*
denote P if P contains an element m such that &(y, z) < m for all
Y, 2 € Y. If P contains no such element, let P* denote the set P
v {m} with partial order of P together with the rule that m > P
for all p € P. Let ws denote the collection of functions from X
into P*. We give ms the partial order defined by defining ¢ < <t
provided that:

1. t is a constant function t(x) = p for all x € X, with
P > 05 the zero element of P.

2. there exists some € € P such that:
a) 8(y, Y) <€ for any y € Y
b) for any x € X, 8(y, 2) s o(x) and 8(z, W) < €
implies that &(y, w) < p.
For any two elements f, g € § we define 88(f' g) to be the
function which carries each x in X to the point &( f£(x), g(x) )
of P.

With these definitions, we will have a distance space. It
will be easier to follow, if we develop this result as a sequence
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of lemmas. In the following lemmas, assume that § is a collection

of functions from a set X to a lower bound,'r1 distance space
<Y, &, P>.

Lemma 1: If as(f, g) <he 98 then Gs(f, f) < h.

proof: By the definition of the partial order on 98, h must be a
constant function h(x) = p for all x ¢ X. Clearly for any three
points y, 2z, we Y, if:

d(y, 2) = as(f, f)(x) = &8( £(x), £(x) ) = 08

then, since <Y, &, P> is a T1 distance space, y = z. Thus, if
8(z, w) < p and &(y, 2) < Sg(f, £)(x), then §(y, z) < p = h(x).
Therefore SS(f, £f) < h.

Lemma 2: For any £, g € mg, Gg(f, g) = 53(9, f).

proof: For any X € X, 3g(f, 9)(x) = &( £(x), g(x) ) is, by D,,
equal to &( g(x), £(x) ) = Sg(g, f)(x).

Lemma 3: If as(f, g) <he 98 then there exists r e wﬁ such that
63(9’ g) < r and such that'ss(g, s) < r implies Gg(f, s) < h.

proof: If as(f, g) < h, then h is a constant function h(x) = p
and there exists some q > 08 in P such that for any x € X and any
yeY, if 8( g(x), ¥) < g then &8( £(x), ¥) < p. Define r(x) to be
the constant function r(x) = gq. As was shown in lemma 1,
sg(g, g) < r and it is immediate that ag(g, 8) < r implies that
Gg(f, s) < h.

Lemma 4: Suppose that sg(f, g) < p and Ss(f, g) < o. Then there
exists T € mg such thatfss(f, g) <t, tTspandT s .

proof: From the partial order on mg' p is a constant function
p(x) = r and o is a constant function o(x) = s. There also exist
r, and 5, in P such that for any x € X and any y € Y, if
3(g(x), ¥y ) < x4 then 3( f(x), Y ) < r and such that if
§(g(x), ¥y ) < Sy then &§( £(x), ¥ ) < s. Since < ¥, §, P > is a
lower bound distance space, there exist z and Z, in P such that
zsr, z =8, Z, = r, and z, = Sy such that t s r and t = s
implies that t s 2z and such that t = r, and t s s, implies that
ts z,. Define T(x) to be the element z of P. It is clear that
tsrand T s s. ’
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Lemma 5: There exists some o € {DS such that for any elements f
and g of §, ag(f, g) < o.

proof: The set P* contains an element m such that for any
Y, Z2€ Y the image 38(y, 2z) < m. Then, defining o to be the
constant function o(x) = m, it is clear that for any f, g € §,
68(1:‘, g) < o.

Lemma 6: Given any two distinct elements f, g € §, there exists
some o € ‘Dﬁ, such that f ¢ No,(f) and such that g « Na,(f).

proof: Since f and g are distinct functions, there exists some
x € X such that f(x) = g(x). Since <Y, §, P> is a 'I‘l distance
space, there is some p € P such that &§( £(x), £(x) ) < p and such
that g(x) ¢ Np( f(x) ). Define o to be the constant function
o(x) = p. From the proof of lemma 1, we can conclude that

sﬁ(f' f) < o and it is immediate that g ¢ No_(t).

Lemma 7: For any three elements o, T, A € @8, if both A < ¢ and
A < T, then there exists 7 € EDS, which has the property that if

§s o and £ s v then £ = 7y and which has the property that if
€ sy then £ s o0 and £ s T.

proof: Since A < o, then o must be a constamt fumction o(3) = ¢

0*
Since A < T, then T must be a constant funetion T(x) = To- For
some (any) x e X, we have both A(x) < ¢, and A(x) < T Since

0 0o’
<Y, 8§, P> is a lower bound distance space, there exists some L

in P such that Py 5 T and Py = Tg imply that Po % 7, and such
that Py = 7 implies p = o, and Po = Ty Define y to be the
constant function ¥(x) = 7y Then if a < 7, there exists some
€ € P such that 08 < €& and such that &8(y, z) s a(x) and
8(z, w) < ¢ imply 8(y, w) < L and, therefore that &(y, w) < %
and 8(y, w) < To* Thus, x < c and a < T. If a < ¢ and a < T, then
there exist €, and €, in P such that &(y, 2) = a(x) and
3(z, W) < €, imply that &(y, w) < 0, and such that §(y, z) 5 a(x)
and 8(z2, w) < €, imply that &(y, w) < Ty- Since <Y, &, P> is a
lower bound distance space, there exists €, €P such that p < €,
implies p < €, and p < €, Thus, 3(y, 2) = a(x) and &§(z, w) < €4
implies &8(y, W) < % and §(y, w) < To which, in turn, imply that
8(Y, W) < 740
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Having established these lemmas, we are now in a position to
prove our theoren.

Theorem 2: If § is a collection of functions from a set X to a
lower bound T1 distance space <Y, 3, P>, then <«{, 88’ m8> is a
lower bound T1 distance space.

proof: From lemma 1, the system satisfies condition D1 of
definition 1. Lemma 2 implies that the system satisfies condition
Dz' Lemma 3 implies that the system satisfies condition D,. Lemma
4 implies that the system satisfies condition D,- Lemma 5 implies
that the system satisfies condition Dg. Hence, <3, sg, w8> is a
distance space. The constant function og(x) = 0, is obviously a
zero element and so the system is a zeroed distance space.
Lemma 6 gives us that <@, 88, 98> is a 'r1 distance space and
lemma 7 implies that it is a lower bound distance space.

Given a distance structure for a collection of functions, it
is only natural to inquire how this distance structure relates to
the continuity of the functions.

Theorem 3: Suppose that <X, p, Q> is a distance space and that
<Y, 8§, P> is a summable lower bound 'r1 distance space. If § is a
collection of continuous functions from <X, p, Q> to <Y, §, P>,
then the evaluation function e : § x X — Y defined by
e(f, x) = £(x) is continuous (as a function from the product of
the distance spaces <, 88’ 98> and <X, p, Q> to the distance
space <Y, &, P>.)

proof: For a given x € X and € ¢ P, if &( £(x), £(x) ) < £, then,
since <Y, &, P> is summable, there exists some T € P such that
f(x) € v { Nt(z) : 2 € Nt( f(x) ) } s Ne( f(x) ). Since f is a
continuous function, there exists some v € Q such that x e Nv(x)
and such that z € Nu(x) implies f£(z) € Nt( f(x) ). Define o to be
the constant function o(x) = t. If as(f, g) < o and p(x, 2) < v,
then &( f£(2), 9(z) ) < T and &§( f(x), f(2) ) < T, and so
g(z) ev { N (y) : Yy eN_(£(x)) }.

Of course the above construction can be used to construct a
topology on § such that the evaluation function is a continuous
function from the topological space § x X to the topological
space Y. This construction does not, in general, provide the
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smallest topology for which the evaluation function is
continuous. It is well known that, in the case that the space Y

is locally compact, then the smallest topology on § for which the
evaluation function is continuous is the compact open topology. A
modification of the above construction does, in fact, yield the
compact open topology.

Definition 5: Suppose that § is a collection of functions from a
distance space <X, p, Q> into a lower bound T1 distance space
<Y, &, P>. Let P* denote P if P contains an element m such that
5(y, 2) <m for all y, z € Y. If P contains no such element, let
P* denote the set P v {m} with partial order of P together with
the rule that m > p for all p € P. Let £ be a collection of
subsets of X which is closed under finite unions and finite
intersections, which contains the empty set and which has the
property that every element of X has a neighborhood contained in
some element of Z. Let mz denote the collection of functions from
X into P . By a "I distance construct' we will mean a pair <&, {
where @ is a finite subset of % which is closed under the
formation of unions and intersections, and where { is a function
from @ to P having the property that M s N implies {(M) s {(N).
Each I distance construct <®,, ¢,> determines a "I distance
function® T defined by:

mif xev {S:8Se€ @v }

ru(x) = {
{f(n{S:xes €@, }1)ifxev{s:8e@ }

We give Ps the partial order obtained by deflning o0 < T provided
that:

1. t is a £ distance function
2. there exists some ¢ € P such that:
a) §(y, ¥Y) <e foranyye Y
b) for any x € X, if &(y, z) s o(x) and &8(z2, W) < g,
then §(y, w) < T(%).

For any two elements f, g ¢ § we define sg(f' g), as before, to
be the function which carries each element x of X to the point

§( £(x), g(x) ) of P.



We will need a basic result concerning the order on ‘.Dz.

Proposition 2: Let <X, p, Q>, <Y, §, P>, SDZ, 8 and 88 be as

described above and let ¥ be an element of mz. Suppose that

S, Te T and 8 & T. Suppose also that p, q € P and that p < q. If
< T the < T a-

v qT ny pS

proof: For any x € X, it is clear that th(x) = tps(x). Since
v < Tar there exists some ¢ € P such that &(y, y) < £ for each
y € Y, and such that for any x e X, if &(y, 2z) s y(x) and if
8(z, W) < £, then 3(y, w) < th(x) = tps(x).

We must, of course, prove that the structure of definition 5
produces a distance space. Once again we do this as a sequence of
lemmas, all very similar to the lemmas proved earlier. In each of
the following lemmas, assume that <X, p, Q> is a distance space.
Assume also that £ is a collection of subsets of X which is
closed under finite unions and which has the property that each
element of X has a neighborhood which is contained in some
element of ¥. Finally assume that <Y, &, P> is a lower bound Tl
distance space.

Lemma 1A: If Ss(f, g) <he ‘,'Dz then Bs(f, f) < h.

proof: By the definition of the partial order on {Dz, h must be a
function of the form 'rps. Clearly for any x € S and any three
points y, 2z, w € ¥, if &(y, 2z) s ag(f, £)(x) = &8( £(x), f£(x}) )
which is equal to 0,. Then, since <Y, 3, P> is a 'r1 distance
space, y = 2. Thus, if §(z, w) < h(x) and &(y, 2) s‘ss(f, £)(x),
then 3(y, w) < h(x). Therefore 88“' £f) < h.

Lemma 2A: For any f, g € Py, SS(f' g) = 53(9, £).

proof: For any X € X, 3g(f, g)(x) = &( £(x), 9(x) ) is, by D,,
equal to &( g(x), £(x) ) = dz(g, f)(x).

Lemma 3A: If Ss(f, g) < he m}: then there exists r e {Dz such that
ag(g, g) < r and such that 88(9’ s) < r implies sg(f, s) < h.
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proof: If 68(f’ g) < h, then h is a function of the form Tos for
some S € £ and some p € P. In addition there exists some € € P
such that 08 < ¢ and such that &(y, z) s &¢( f(x), g(x) ) and
8(z, w) < ¢ imply that &(y, w) < h(x). Define r(x) to be the
function res(x). With this definition, it is immediate that
88‘(9' g) < r. Suppose that as(g, S) < r. For any x € X, if
8(y, z) s 8( £(x), s(x) ) and &(z, w) < r(x) then either x ¢ S
which implies that &(y, W) < h(x) = m, or x € S and 5(z, W) < ¢,
and so &(y, W) < h(x) = p. In either case we have that
3(y, w) < h(x).

Lemma 4A: Suppose that as(f, g) < n and 68(f' g) < o. Then there
exists A e {Dz such that sﬁ(f' g) <A, Asvnand A s o.

proof: From the partial order on {I)Z, n is a function of the form
n(x) = tps(x) for some p € P and some S € £, and ¢ is a function
of the form o(x) = th(x) for some g € P and some T € £. Let U be
the union S v T. By hypothesis, £ is closed under finite unions,
and so U is an element of I. Since <Y, 8, P> is a lower bound
distance space,there exists w € P such that 05 < w, such that
ws p, such that w s ¢ and such that if z = p and z 5= q then
Z s w. Define A by:

m if x € X\(T v S)
_ p if x e S\T
AX) = { qif x e T\S

wif xeS AT

Clearly A is a I distance function. Since ag(f, g) < mn, there
exists €, € P such that 08 < €, and such that for any x € X and
any r, s, t e Y, if &8(r, s) = 8( f(x), g(x) ) and &(s, t) < £,
then 3(r, t) < n(x). Since Bs(f, g) < ¢, there exists some €, € P
such 06 < e, and such that for any x € X and any r, s, t € Y, if
8(r, s) = &8( f£(x), g(x) ) and &(s, t) < €,y then &(r, t) < o(x).
As <Y, &, P> is a lower bound space, there exists 7 € P such that
T 3 e, 7 S €, and such that &(a, b) < €y and &(a, b) < €,
implies that &(a, b) < 7. Suppose now that x e X, that
r, s, teY, that &(r, s) = §( £(x), g(x) ) and that &(s, t) < 7.
If x € X\(S v T), then &(r, t) < m = A(xX). If x € S\T then
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§(s, t) < v s ¢, implies that §(r, t) < p = A(x). If x € T\S then
(s, t) < 7 s g, implies that &(r, t) < q = Aa(x). Finally, if
Xxe€eS n T, then &(r, t) < p and &(r, t) < g implies that
8(r, t) < w = A(x). Hence sg(f, g) < A.

Lemma 5A: There exists some o € mz such that for any elements f
and g of §, ag(f, g) < o.

proof: The set P* contains an element m such that for any
Yy, 2€Y the image 3(y, 2) < m. Then, defining o to be the
constant function o(x) = m, it is clear that for any f, g € G,
ag(f, g) < o.

Lemma 6A: Given any two distinct elements £, g € §, there exists
some O € mz such that f € Nv(f) and such that g ¢ Nc(f).

proof: Since f and g are distinct functions, there exists some
X € X such that f(x) # g(x). Since <Y, 8§, P> is a Tl distance
space, there is some p € P such that §( £(x), £(x) ) < p and such
that g(x) ¢« Np( f(x) ). There exists some S € Z such that x € S.
Define o to be the function

- p if z € S
o(z) { mif z ¢ S
The function o is clearly a I distance function, ag(f, f) < o and

it is immediate that g ¢ Nc(f)‘

Lemma 7A: For any three elements o, ¢, A € mz, if both A < ¢ and
A < ¥, then there exists 7 ¢ wz which has the property that if
€=s 0 and £ = ¢ then £ s v and which has the property that if
£ sy then £ s ¢ and § = 9.

proof: Since A < o, then o must be a T distance function. Since
A < 9 then ¢ must also be a £ distance function. For each x € X
we define 7(x) to be the minimum of o(x) and ¥#(x). It is not
difficult to see that 7y is also a £ distance function. If § < ¢
and £ < ¥ then there exists €, and €, such that 06 < gy and
06 <€y and such that for any x € X and any w, y, 2 € Y, if

d(w, ¥) < E(x) and &(y, 2) < £, then 3(w, 2) < o(x) and if
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6(w, ¥) < £(x) and 8(y, z) < €, then 8(w, z) < ¥(x). Let £ be the
minimum of €, and €,. For any x € X and any w, y, z € Y, if
S(w, ¥y) < €(x) and &(y, z) < e, then éd(w, z) < 7(x). Hence,
§ < 7. Suppose, now, that £ < 7. There exists & such that for any
Xe€eXand any W, y, 2 € Y, if &(w, y) < €(x) and &8(y, z) < € then
8(w, 2z) < 7(x). This, then, implies that 3§ (w, z) < o(x) and
8(w, z) < ¥(x). Hence, £ < o and € < 9,

These lemmas permit us to establish the intended result:

Theorem 4: If § is a collection of functions from a set X to a
lower bound T1 distance space <Y, &, P>, then <5, 88' mz> is a
lower bound T, distance space.

proof: From lemma 1A, the system satisfies condition D1 of
definition 1. Lemma 2A implies that the system satisfies

D,. Lemma 3A implies that the system satisfies
condition D;. Lemma 4A implies that the system satisfies
condition D, Lemma 5A implies that the system satisfies
condition DS' Hence, <{J, 88’ $z> is a distance space. The
constant function og(x) = 08 is obviously a zero element and so
the system is a zeroced distance space. Lemma 6A gives us that
<3, 65' ®z> is a Ty distance space and lemma 7A implies that it
is a lower bound distance space.

condition

With this distance function, the distance space also has
the property that the evaluation function is continuous:

Theorem S: Suppose that <X, P, Q> is a distance space and that
<Y, &8, P> is a summable lower bound T, distance space. If § is a
collection of continuous functions from <X, p, Q> to <Y, §, P>,
and if £ is a collection of subsets of X as in definition 5, then
the evaluation function e : § x X — Y defined by e(f, x) = f(x)
is continuous (as a function from the product of the distance

spaces <§, 854 mz> and <X, p, Q> to the distance space
<Y, &, P>.)

proof: For a given x € X and € ¢ P*, if 8( £(x), f(x) ) < ¢,
then, since <Y, &, P> is summable, there exists some 4 € P such
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that f(x) € v { Nu(g) Pz € Nu( f(x) ) } s Nc( f(x) ). Since £ is
a continuous function, there exists some v € Q such that
xeNU(x) and such that z e Nv(x) implies f(2) e Nu( £f(x) ).
Choose an element S € £ which is a neighborhood of x. Define ¢ to
be the function tus(x). There exists some ¢y € P, such that
stw(x) € S. Let ¢ denote the nminimum of v and y¥. For any
geNo,(f) and any z € Nw(x), we have that &( f£(x), £(2) ) < u
and, since z € S, we also have that &( £(z), g(z2) ) < u. Hence

S( £(x), 9(z) ) < &€&, and so the evaluation function |is
continuous.

Theorems 2, 3, 4 and 5 establish distance functions (and
thus topologies) on function spaces and the relationship with the
evaluation functions on these function spaces. The most common
traditional technique for assigning a topology to a collection of
functions is, in the case of locally compact spaces, the compact
open topology. It seems natural, then, to ask how the compact
open topology is related to the structures of theorems 2 and 4.
This, however, requires an additional distance property for the
spaces.

Definition 6: A distance space <X, &, P> will be said to be
d-bounded if for any x € X and any ¢ € P, if 8(x, Xx) < €, there
exists some y € P such that if 8(x, y) < ¥ and &(x, z) < ¥ then
d(y, 2) < €.

We note that it is easily shown that for any topological
space <X, 9>, the image F'I'D( <X, 7> ) is d-bounded. If <X, 7> is
an arbitrary Ro space, the image ZTD( <X, 7> ) might NOT be d4-
bounded. (This is particularly easy to see in the case where
<X, 9> is an infinite cofinite space.) If, however, <X, 7> is an
Ro space, then ZTD( <X, 9> ) IS d-bounded.

Theorem 6: Suppose that <X, p, Q> is a summable zeroed distance
space, that <Y, &8, P> is a d-bounded summable lower bound T:L
distance space and that § is the collection of all continuous
functions from <X, p, Q> to <Y, §, P>. 'If the image under FD’I‘ of
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<X, p, Q> is a locally compact space and if £ is the collection
of compact subsets of X, then the topology on § induced by
68 x5 — 9); is the compact-open topology.

proof: Denote 7(3) the topology on § induced by 88 as indicated
in the theorem. From theorem 5 we know that when § is given this
topology, the evaluation is a continuous function on the product
§ x X. It is well known (see, for example, [3]) that the compact-
open topology is the smallest (i.e. coarsest) topology on § for
which the evaluation function is continuous. Hence, the compact-
open topology must be contained in 9J(8§). Suppose, now, that
feUe J(8). There must, then, exist some element A e I (i.e.
some compact subset A of X) and some € € P, such that

b4 eNa(f) ¢ U, where a = Teas Since <Y, &, P> is summable, for

each y € Y there exists 7y € P such that 08 < 7y and such that

v { N,' (z) : 2z € N7 {(y) } s Nc(Y)' Since <Y, &, P> is d~bounded,
b4 y

there exists Cy such that 06 < Cy and such that §(y, 2z) < CY and
S(y, W) < cy imply that 8(z, w) < 7y’ Since f is continuous, for
each x € A, there exists some open neighborhood Vx of x such that
the closure vx is compact and such that the image

f[\_lx] Schg ;:‘(x) ). The collection { V., ¢ x € A} is an open
X

cover of the compact subspace A of X and so contains a finite
subcover. Let U be a finite subset of A such that { Ve ' X € o
covers A. For any compact subset B of X and any open subset W of
Y we denote by [ B : W ] the collection { g € § : g{B] € W }.
(These are, of course, the subbase elements from which we
construct the compact open topology.) It is clear that
fen [\—Ix : ch§x)f(x) )] ¢+ x e ¥ }, an open subset of § (as a

topological space with the compact open topology.) For any
gen{ [V_: N, (£f(x) )] : xe ¥ } and any z € A we know that
X T e

there is some x € U such that 2z ¢ Vx' Since 2z € Vx and

ge/f Vx : chg,f()(x) ] we have that &( f(x), g(z) ) < cf(x)' Since

z2 € Vx we have that &( f(x), £(2z) ) < cf(x)' Hence

8( £(z), g(z) ) < 7f(x) and so sg(f, g) < «. Thus 68
neighborhoods are open in the compact open topology on §.

4]
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