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Abstract. Let N(G) be the number of vertices of the graph G. Let P;(B;) be
the tree obtained of the path P, and the trees By, B, ..., B; by identifying the
root vertex of B; with the i-th vertex of P,. Let V" = {F(B;) : N(P/(B;)) =
n; N(B;) > 2;1 > m}. In this paper, we determine the tree that has the
largest a-index among all the trees in V.

Keywords: Caterpillar, diameter, distance, index, tree.
MSC2010: 05C50, 05C76, 15A18, 05C12, 05C75.

Grafos extremales para a-indice

Resumen. Sea N(G) el numero de vértices del grafo G. Sean P;(B;) los
arboles obtenidos del camino P, y los arboles By, Bs, ..., B;, identificando el
vértice raiz de B; con el i-th vértice de P;. Sea V' = {P/(B;) : N(P/(B;)) =
n; N(B;) > 2;1 > m}. En este articulo determinamos el arbol que tiene el
a-indice mas grande entre todos los arboles en V).
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1. Introduction

Let G be a simple undirected graph with vertex set V(G) and edge set F(G). The degree
of a vertex v € V(G) is d(v) or simply d,. We denote by N(G) the number of vertices of
the graph G. A graph G is bipartite if there exists a partitioning of V(G) into disjoint,
nonempty sets V1 and V5 such that the end vertices of each edge in G are in distinct sets
Vi, V5. In this case Vp, V4 are referred as a bipartition of G. A graph G is a complete
bipartite graph if G is bipartite with bipartition V5 and Vs, where each vertex in V; is
connected to all the vertices in V2. If G is a complete bipartite graph and N(V;) = p
and N(V2) = g, the graph G is written as K, ;. The Laplacian matrix of G is the n x n
matrix L(G) = D(G) — A(G), where A(G) and D(G) are the matrices adjacency and
diagonal of vertex degrees of G 7], |8], and |11], respectively. It is well known that L(G)
is a positive semi-definite matrix and that (0,e) is an eigenpair of L(G) where e is the
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all ones vector. The matrix Q(G) = A(G)+ D(G) is called the signless Laplacian matrix
of G (see [4], |5], and |6]). The eigenvalues of A(G), L(G) and Q(G) are called the
eigenvalues, Laplacian eigenvalues and signless Laplacian eigenvalues of G, respectively.
The matrices Q(G) and L(G) are positive semidefinite, (see [20]). The spectra of L(G)
and Q(G) coincide if and only if G is a bipartite graph, (see [2], [4], [7], and [8]). The
largest eigenvalue p; of L(G) is the Laplacian index of G, the largest eigenvalue ¢1(G)
of Q(G) is known as the signless Laplacian index of G and the largest eigenvalue A1 (G)
of A(G) is the adjacency index or index of G [3].

In [12], it was proposed to study the family of matrices A, (G) defined for any real number
a €10,1] as

Ao (G) = aD(G) + (1 — a)A(G).

Since Ao(G) = A(G) and 24,/5(G) = Q(G), the matrices A,(G) can underpin a unified
theory of A(G) and Q(G). In this paper, the eigenvalues of the matrices A, (G) are called
the a-eigenvalues of G. We write p,(G) for the spectral radii of the matrices A,(G) and
are called the a-indices of G. The a-eigenvalue set of G is called a-spectrum of G. The
spectrum of a matrix M will be denoted by Sp(M).

Let []] denote the set {1,2,...1}. Given a rooted graph, define the level of a vertex to be
equal to its distance to the root vertex increased by one. A generalized Bethe tree is a
rooted tree in which vertices at the same level have the same degree. Throughout this
paper {B; : i € [l]} is a set of generalized Bethe trees. Let P, be a path of [ vertices.
In this paper, we study the tree P/{B; : ¢ € [I]} obtained from P, and Bi, Bs, ..., By,
by identifying the root vertex of B; with the i-th vertex of P, where each B; has order
greater than or equal to 2. For brevity, we write P;(B;) instead of P{B; : i € [I]}. Let

V" = {P(B;) : N(P(B:)) = n; N(B;) > 2,1 > m}.

Figure 1. The complete caterpillar Py(K1,2, K1,1,K1,3,K1,2).

In a graph, a vertex of degree at least 2 is called an internal vertex, a vertex of degree
1 is a pendant vertex and any vertex adjacent to a pendant vertex is a quasi-pendant
vertex. We recall that a caterpillar is a tree in which the removal of all pendant vertices
and incident edges results in a path. We define a complete caterpillar as a caterpillar in
which each internal vertex is a quasi-pendant vertex.

A complete caterpillar P;(K; p,) is a graph obtained from the path P, and the stars
Kip,, ..., K1 p, by identifying the root of Ki ,, with the i-th vertex of P, where p; > 1
for all 7 € [I] (see Fig. 1 for an example). Let g € [I]. Let A, be the complete caterpillar
P(K1,p,), where p, =n —2l+1 and p; = 1 for all ¢ # gq.

Let Ty,,q be the class of all trees on n vertices and diameter d. Let P, be a path on m
vertices and K, be a star on p 4 1 vertices.

In [19] the authors prove that the tree in 7, ¢ having the largest index is the caterpillar
Py n—q obtained from Py, on the vertices 1,2, ...,d+1 and the star K; ,,—4—1 identifying
the root of K1 ,_q—1 with the vertex f%} of Pyy1. In [10], for 3 < d < n — 4, the first
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Extremal graphs for a-index 17

|4]+1 indices of trees in Ty, 4 are determined. In [9], for 3 < d < n—3, the first Laplacian
spectral radii of trees in 7T, q are characterized. In [14] the authors present some extremal
results about the spectral radius p,(G) of A, (G) that generalize previous results about
po(G) and p1/2(G). In [23], the authors gives three edge graft transformations on A,-
spectral radius. As applications, we determine the unique graph with maximum A,-
spectral radius among all connected graphs with diameter d, and determine the unique
graph with minimum Ag-spectral radius among all connected graphs with given clique
number. In [13] the authors gives several results about the A,-matrices of trees. In
particular, it is shown that if Ta is a tree of maximal degree A, then the spectral radius
of A, (Ta) satisfies the tight inequality

p(A(TA)) < aA +2(1 — a)VA - 1.

The complete caterpillars were initially studied in [17] and [18]. In particular, in [17]
the authors determine the unique complete caterpillars that minimize and maximize the
algebraic connectivity (second smallest Laplacian eigenvalue) among all complete cater-
pillars on n vertices and diameter m + 1. Below we summarize the result corresponding
to the caterpillar attaining the largest algebraic connectivity.

Theorem 1.1 ([17] Theorems 3.3 and 3.6.). Among all caterpillars on n vertices and
diameter m + 1, the largest algebraic connectivity is attained by the caterpillar ALmTHJ.

Theorem 1.2 (Abreu, Lenes, Rojo [1]). Let a« = 0,1/2. Let G be a complete caterpillars
on n vertices and diameter m + 1. Then,

pa(G) < pa(AL%J)a

with equality if, and only if, G = ALmTHJ.

Numerical experiments suggest us that AL mi1) is also the tree attaining the largest a-
index in the class V). In this paper we prove that this conjecture is true; we come up
with a bound for the whole family A, (G), which implies the result of Abreu, Lenes, and
Rojo. This is organized as follows. In Section 2, we introduce trees obtained of the path
P, and the trees By, Ba, ..., B; by identifying the root vertex of B; with the i-th vertex of
P, and give a reduction procedure for calculating their a-spectra, thereby extending the
main results of [15]. In the Section 3, we determine the graph that maximize the a-index
in V). We finish the section maximizing the a-index among all the unicyclic connected
graphs on n vertices.

2. The «-eigenvalues of P,(B;)

Given a generalized Bethe tree B; with k; levels and an integer j € [k;], we write n; g, — ;41
for the number of vertices at level j and d; i, ;41 for their degree. In particular, d;; =1
and n;y, = 1. Further, for any j € [k; — 1], let m;; = n;;/n;j+1. Then, for any
j € [k; — 2], we see that

nij = (dijr1 — Dnijyn,
and, in particular,

Nk, = dik

shvg sl

=My k;—1-
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37 38
m 16 17 26 35 36
14¢ 15 24 25w 316 32e 33¢ 34

1 2 3 45 6

10 11 12 13 18 19 20 21 22 23 27 28 29 30

Figure 2. Labelling the tree P4(B;).

For i € [I], it is worth pointing out that m; 1, ...,m; k,—1 are always positive integers, and
that n;1 > n;2 > -+ > n;r,. We label the vertices of P;(B;) as in [15]. (See figure 2).
Recall that the Kronecker product C ® E of two matrices C' = (¢; ;) and E = (e; ;) of
sizes m x m and n X n, is an mn x mn matrix defined as C ® E = (¢; ; E).

Two basic properties of C ® E are the identities

(CoE)T =CcT®ET
and
(C®E)F®H)=(CF®FEH),

which hold for any matrices of appropriate sizes.
We write I; for the identity matrix of order [ and j; for the column I/-vector of ones. For

iel], let s; = 252712 n;; and D; be the matrix of order s; x I defined by

1, ifg=dand s;+1<p <s;+nik -1,
0, elsewhere.

Dz(p7Q) = {

Let 8 = 1—«, and assume that P;(B;) is a tree labeled as described above. It is not hard
to see that the matrix A, (P;(B;)) can be represented as a symmetric block tridiagonal
matrix

X, 0 - 0 AD
0 X, . BD;

: . .0 N
0 0 Xy BD
gDT DI --- BD] Xy

where, for i € [l], the matrix X; is the block tridiagonal matrix:

'Yi,IImJ ﬁlmz ®jmi,1
ﬁIni,2 ®j£741 FYi,2Im,2 ﬂIni,fi ®jmi,2

’Y’qui*2Ini,ki—2 ﬂjm,ki—z ®Jmi,ki—2

T
ﬁ‘[ni,ki—l ®Jmi,ki,2 /yi;ki_l‘["i,ki—l
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Extremal graphs for a-index 19

and
Yk T B
B Yoke + 200 B
Xig1 = ,

B YMi-1k-1+ 2 B
B Mk +

where
Vij = adij.

Let’s define the polynomials Py(\), Pi(A), ..., P(A) and P; j(A) for i € [I] and j € [k;] as
follows:

Definition 2.1. For i € [I] and j € [k;], let
Vi = o .

For i € [I], let
Pio(AN) =1,P1(N) =A—q,

and for i € [[] and j =2,3,....k; — 1, let
Pii(N) = (A=) Pij-1(N) = B*mi 1Py j—2(N). (1)
Moreover, let
Pi(A) = (A= 715 — )P, —1(A) = 8201 -1 Pr g, —2(A),

Pi(A) = (A =k — @) Prgy—1(A) = B2y k-1 Pg,—2(N),
and

Pi(A) = (A =ik, = 20) Pig,—1(A) — B2 g, -1 Pi g, —2(N), (2)
for i =2,3,...,0— 1.
Theorem 2.2. The characteristic polynomial () of Ao (P(B;)) satisfies

m ki—1

WITIT £ o, (3)

=1 j=1
where
Pi(A) —BPr1 ke, -1(A)
PO = —BP2,k,—1(N) '

. —BP 14y —1(N) '
—BP g, —1(N) Pi(N)

Proof. Write ’A‘ for the determinant of a square matrix A. To prove 3, we shall reduce
= ‘/\I — A, (Pl(Bl))’ to the determinant of an upper triangular matrix. For a start,

Vol. 38, N° 1, 2020]



20 E. Lenes, H. Garcia, A. Ficueroa & F. MErRCADO B.

note that
X1(A) 0 e 0 —BDq
0 Xa(\) —BD;
0 0 Xi(\) —BD,
-BDY —-BDY -+ —BDF X1 (N)

where, for ¢ € [I], the matrix X;(\) given by,

Pivl()\)‘lni,l _6I"i,2®jmi,1
_6I"i,2®j£i11 (A= ’Yi,2)17li,2 _6I"i,3®jmi12

)

_BIni,ki—l®j7ni,ki—2
—Bfni,kfl(&i%i,krz (A - %'»krl)jni,krl
and
A — Mk — & _/B
—/8 A— V2,ke — 2a _/8
X1 (V) = ' ' '
A= Yi-1,k-1— 2 =B
- A=Yy —

Let A € R be such that P; ;(A) # 0 for any i € [/] and j € [k; — 1]; set P, ; = P, ;(\). For
each i € [I] and for all j € [k; — 2], multiplying the j-th row of X;()) inserted in ¢(\) by

51;%’];1 ®jzmj and add it to the next row. Since
Ao — B2mi P j 1 _ (X =%ijr1)Pij — BPmi Py _ Pijn
’ P P P
we obtain,
YiA) 0 -~ 0  —8D
0 Y2(\) - —BD;
(b(/\) = . . . . )
0 0 Yi(\) -BD
0 0o - 0 Y

where, for ¢ € [I], the matrix Y;()) is given by

‘Pi,l‘[n»;J _ﬁlni,z ®jmi11 0
Pi2

Pi’llm,z _BI"M,S ®jmi,2

.
_/B’[ni,kifl ® Jmi,kif2

Pi g, -1
P g, -2 ik -1
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and
_Pli:%l ;25 , -
Poky 1
Yipi(A) = '
L —B PL,I:LL—l_
Thereby,
I+1

o) = J[MX
i=1
!
. Py o\ 2 Py g\ i3 P —o\Miki=2 f Py g 1\ Miki—1
_ Y A P‘w,l( 7) ( 1) ( LAk ) ( — )
| Vi ( )}il;[l i B, Pia Pi,—s Pigi—a

_ i, 1—Mq,2 N, 24,3 M k;—2—Nik; —1 pMik; —1
= }Yl—i-l()‘)}HPi,l P, R B S

where
Vi a(N)] =
Py —BP1 k-1
. —BPs jy—1 P —BPs jy—1
l ’ -'. "L
P
[licy Pikis —BP 1511 P —BP 1511
—BP k-1 ]
Hence
I Mik;—1
’)\I A (P)l H H P"z]*n11+1 )\)
=1 j=1

Thus, the equality (3) is proved whenever P; ;(A) # 0 for any ¢ € [I] and j € [k; — 1].
Since for any ¢ € [I] and j € [k; — 1] the polynomials P; ;(A) have finitely many roots,
the equality (3) is verified for infinitely many value of A\. The proof is complete. ]

Definition 2.3. Fori € [l] and j € [k; —1], let T; ; be the j x j leading principal submatrix
of the k; x k; symmetric tridiagonal matrix

ad; B/di2 —1

By/dia —1 ad; 2

T; = BV/dik -1 =1 !
B/ dig,—1 —1 ad; ;1 B/ dik;
B/ ik, Vi ky + c

where 8 =1—a,c=2forie[l—1]andc=1fori=1andi=1.

Vol. 38, N° 1, 2020]



22 E. Lenes, H. Garcia, A. Ficueroa & F. MErRCADO B.

Since ds > 1 for all s = 2, ..., j, each matrix 7 has nonzero codiagonal entries and it is
known that its eigenvalues are simple. Using the well known three-term recursion formula
for the characteristic polynomials of the leading principal submatrices of a symmetric
tridiagonal matrix and the formulas (1) and (2), one can easily prove the following
assertion:

Lemma 2.4. Let a € [0,1). Then
(M =Tij| =PV
and
I\ =Ty = P()),
for any i € [l] and j € [k; — 1].
Let A be the matrix obtained from a matrix A by deleting its last row and last column.

Moreover, for i,j € [r], let E;; be the k; x k; matrix with E; ;(k;, k;) = 1 and zeroes
elsewhere. We recall the following Lemma.

Lemma 2.5 ([16]). Fori,j € [r], let C; be a matriz of order k; x k; and u; ; be arbitrary
scalars. Then,

Ch oo o prr—1B1 1 1By
2 Ef Cs e e p2,rEa
M3,1E1T,3 #3,252T,3 :
: : : Cr_1 pr—1 Bl
JTR0 5 SR TR O R T Cr
ICi| 2 |Ca| g 1’CT 1‘ - |Cr
pio1 |Cy ‘Cz‘ pi2,r |C
= [M3,1 CN& H3,2 6;
|Cr—1| fir—1,r |Cr
Hr 1 CN& Hr,2 6; o M1 ’C/Y:—/l} ’Cr’

From now on, for ¢ € [l — 1], by F; we denote the matrix of order k; X k;1+1 whose entries
are 0, except for the entry F;(k;, ki+1) = 1.

Lemma 2.6. Let r = Ei L ki Let M(P)(B;)) be the symmetric matriz of order n x n
defined by
n PR

BFL Ty
- BF-1
BEL, T
Then,
AT — M(P(By))| = P(A).

[Revista Integracion, temas de matemadticas



Extremal graphs for a-index 23

Proof. The characteristic polynomial of the matrix M (P,(B;)) is given by
MN-Ty —pF
—BFL A - Ty

g —BF 1
_ﬂﬂjil A — T’l

From Lemma 2.5, we have that ‘)\I — M(P, (BZ))| is given by

M -T -]\
BT M-T| —8|aT T
~BN—Tia| M -Tia| —8[ACT
—B\[=m| -
Since )\T:/Ti = A —T; ,—1 for i € [I], by Lemma 2.4, the proof is complete. v

Theorem 2.2, Lemma 2.4, Lemma 2.6, and the interlacing property for the eigenvalues
of hermitian matrices yield the following summary statement:

Theorem 2.7. Let o € [0,1). Then:

1. the a-spectrum of P,(B;) is

I ki—1

(U U sotzp] uspu(ns);

i=1 j=1

2. the multiplicity of each eigenvalue of T;; as an c-eigenvalue of Pi(B;) is nij —
N 41, ift €] and j € [k; — 1], and is 1 if i € [I] and j = k;;

3. pa(Pi(By;)) is the largest eigenvalue of M(Pi(B;));

4. pa(Bi(Bi)) > a.

3. The a-index of graphs

In Theorem 2.7, we characterize the a-eigenvalues of the trees P;(B;) obtained from path
P, and the generalized Bethe trees By, Bs, ..., B; obtained identifying the root vertex of
B; with the i-th vertex of F;. This is the case for the caterpillars P;(K; p,) in which the
path is P; and each star K p, is a generalized Bethe tree of 2 levels. From Theorem 2.7,
we get
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Lemma 3.1. Let a € [0,1). Then:

1. the a-spectrum of P/(K1p,) is formed by o with multiplicity Zézl pi — I, and the
eigenvalues of the 21 x 2l irreducible nonnegative matrizc

T(p1) BE
BE  S(p2) BE

M(P(Kyp,)) = ,

S(pi-1) BE
BE  T(m)

where
Bvr az+1) 0 1
2. pa(P(K1,p,)) is the largest eigenvalue of M (P(K1p,));
3. pa(P(K1p,)) > a.

T(:z;)_{ @ AV ],E_ [0 0];S(x)—T(x)+aE,

Let t(\, z) and s(\, z) be the characteristic polynomials of the matrices T'(z) and S(x),
respectively. That is,

thz) =X —alz+2) A+ (z+1) - %z
and

s\ z) = A — a(r + 3\ + o (x + 2) — 2.
Then,

s\ z) —t(\ z) = ala — N).

The notation ]A’ , Will be used to denote the determinant of the matrix A of order I x [.
The next result is an immediate consequence of the Lemma, 2.5.
Lemma 3.2. The characteristic polynomial of M (P, (K1 p,)) is

t()‘vpl) ﬁ(a_)‘)
Bla=A)  s(Ap2) Bla—2A)

s(A,pi—1) Bla—N)
Bla=X)  t\p) |,

For g € [l], let A, be the complete caterpillar P;(K p,), where p, =n—2l+1 and p; =1
for all i # q. We define
TQ()\) = 1,7‘1()\) = t()\, 1)

and, for 2 < ¢ < \_HTlJ, we define

s(A 1) Bla—=A)
Bla=A)  s(A1)  Bla=A)

Tg(A) =

s(A 1) Bla=N)
Bla—A) (A1)

q

[Revista Integracion, temas de matemadticas



Extremal graphs for a-index 25

Let ¢,()\) be the characteristic polynomial of M(A,), then,
bg(\) = |\ — M(A,)].
Lemma 3.3. Let a € [0,1). Then
$q(N) = dgr1(N) = (a—1)(aX =2+ 1) (BN = ))*" Harm—24(A) + B2 (A = @)r1—24-1(N)]

for all q € {LHTlJ — 1}, where [ > 3.

Proof. By Lemma 3.2, the (q,q)-entry of ¢g(\) = | —M(Ag)| is t(Xa) if ¢ = 1

and s(\,a) if ¢ # 1. Let E; = P(Ki,,), where p, = 1 for all i € [l]. Let
¢s(A) = |\ — M(E,)|. From Lemma 3.2, we have
t(A1)  Bla—2A)
Bla=A)  s(A1)  Bla=A)
ps(A) = ' '
s(A 1) Bla—A)
Bla—=A) (A1) |,
Since
T‘Q()\) = 1,7‘1()\) = t()\, 1)
and
s(A1) - Bla—2A)
Bla=A)  s(A1)  Bla=A)
rq()‘) = ' - ’
s(A 1) Bla=N)
Ba—X A1) |,
forg=2,..., \_HTlJ, then, expanding along the first row, we obtain
rq(A) = s\, Drg—1(A) = B2 (A — @)’rg—2 (V). (4)

Since s(\, z) = t(A, x) + a(a — A), by linearity on the first column, we have

£\ 1)
Bla—A)

Tq(A)

Then,

Bla—x)
s(\ 1)

Bla—A)

s(A, 1)
Blar—A)

Bla—A)
t(\ 1)

+ a(a — A)rg—1(A).

rq(A) = 0g(N) + ale = AN)rg—1(A).

Let ¢ € [LHTlJ - 1] We search for the difference ¢q(A) — ¢g4+1(A). We recall that
(q,q)-entry of ¢4(N) = ‘/\I—M(Aq)‘ is t(A\,a) if ¢ = 1 and s(X\,a) if ¢ # 1. Since
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26 E. Lenes, H. Garcia, A. Ficueroa & F. MErRCADO B.

t(Aa) =t(A 1)+ (1 —a)(aX —2a+ 1) and s(A,a) = s(A\, 1) + (1 —a)(aX —2a+ 1), by
linearity on the ¢-th column, we have

tn1)  Bla—A)
Bla=A)  s\1)  Bla=A)

qu(/\) = :
s(M1) Bla— ) (5)
Bla—2A)  tA1) |,
+ (1 —a)(ar—2a+1) rq_(l)()\) n_S(A) .

The (¢ + 1,q + 1)-entry of the determinant of order ! on the second right hand of (5) is
s(A\, 1), and since s(A, 1) = s(A,a) + (a — 1)(Aa — 2a + 1), by linearity on the (¢ + 1)-th
column, we obtain

tn1)  Bla—N)
Bla=2)  s(A\1)  Bla=A)

s(A 1) Bla=N)
Bla=A)  tA1) |,

= ¢gr1(N) + (1 —a)(ar - 2a +1) Tq(()A) Tl—q?l()\)’ '
Thereby,
¢q()‘) — Pg+1 ()‘) =
Tq— ()\) 0 Tq()‘) 0
(1—a)(aX —2a+1) (1) Tl_q()\)‘ +(a—1)(aX —2a+1) 0 Tl_q_l()\)' )

Thus,
Dq(A) = dg41(A) = (@ — 1)(aX = 2a+ 1)[rg(A)rm—g-1(A) = rg—1(A)rm—q(N)].
Applying the recurrence formula (4) to r4(\) and r;_4()\), we obtain

Tg(N)T1—q—1(A) =rg—1(MNri—g(A) = [s(A, Drg—1(A) = 62()‘ - a)2rq—2()‘)]rl—q—l (\)
— 11 (W[ Drimg—1(A) = B2(A = a)*ri—g2 (V)]

Then,
rq(N11—g-1(A) = 1-1(N)11-(N) = B2(A = @)?[rg-1(Mri—g—2(X) = 7q—2(N)11-g-1(N)]-
By repeated applications of this process, we conclude that

Tq(A)T1—q—1(A) = rg—1(N)ri—¢(A) = [B(A — O‘)]Q(qil) [r1(MN)71—2¢(A) = T1—2g41(N)].
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Hence,
Tq ()‘)Tl—q—l (A) — Tg—1 ()‘)rl—q ()‘)
= [BO = )PV 1)r_ag(N) — s, D)r_2g(A) 4+ B2 — @)?r_2g-1 (V)]
= B = )P D [a(A — a)ri—ag(A) + B2 (N — @) ?ri—2g—1 (V)]
= [B(A— a)]2q_1 [ari—oq(N) + ﬁ2()\ — a)ri—aqg—1(N)].
Thus,
$q(A) = dg11(N) = (a = 1)(aX — 20+ 1)[BA — )]* " ar—9q(A) + B2 (A — a)ri—ag1 (V)]

v

Let p(A) be the spectral radius of the square matrix A. From Perron-Frobenius’s Theory
for nonnegative matrices [22], if A is a nonnegative irreducible matrix then A has a
unique eigenvalue equal to its spectral radius and it increases whenever any entry of it
increases. Hence, we have the next result.

Lemma 3.4 ([21]). If A is a nonnegative irreducible matriz and B is any principal sub-
matriz of A, then p(B) < p(A).

Let C,, be the class of all complete caterpillars on n vertices and diameter [ + 1. A
special subclass of C,,; is A, = {41, As,..., 4}, where A, = P/(K1,,) € Cy,, with
p; = 1for i # q and p; = n— 20+ 1. Since A; and A;_,41 are isomorphic caterpillars for
all ¢ € [|%]], the next theorem gives a total ordering in A, ; by the a-index.

Theorem 3.5. Let a € [0,1). Then
pa(Aq) < pa(Aq-i-l)

for all g € “HTlJ — 1}, where | > 3.

Proof. Let 1 > 3. Let q € “HTlJ — 1] Let ¢q(A) and ¢g+1(A) be the characteristic poly-

nomials of degrees 2! of the matrices M(A,) and M (Aq+1), respectively. The matrices
M(A,) and M(Ag+1) are nonnegative irreducible matrices, then its spectral radii are
simple eigenvalues.

Let

pa(Aq):Nl > fg = v 2 gy
and

Pa(Ags1) =11 >72 2 272
be the eigenvalues of the matrices M(A,) and M (Ag41), respectively.
By Lemma 3.3, we have

21 21
¢g(\) = b1 (V) = [T = my) = [TAN =)

= = (6)
=(a—1)(aX —2a+ 1)(B(\ —a))???

* [ori_og(A) + B2 — a)ri—ag—1 (M)
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We recall that r;_24(\) and 7_24—1()) are the characteristic polynomials of the matrices

—

M(E:;H) and M (E;_a4) whose spectral radii are p(M(E:;H)) and p(M@\lfzq)), re-
spectively. The matrices M (E;_24+1) and M (E;_a4) are principal submatrices of M (A,).

By Lemma 3.4, p(M (Ej—2¢+1)) < pa(Aq) and p(M(Ei—2)) < pa(Aq).

Hence, 7-24(pa(Aq)) > 0 and r—2q—1(pa(A4)) > 0. We claim that po(Aq) < pa(Agt1)-
Suppose pa(Aq) > pa(Agt1). Then po(Ag) > 5 for all j. Taking A = pa(A4g) in (6), we
obtain

21

—Pg+1(pa(Aq)) = — H(pa(Aq) = %)

j=1
~ (0= 1){apalAy) 20+ D(B(palA,) — @)1t
* [ar_2q(palAq)) + B2 (pa(Aq) — )ri—2g-1(palAg))].

By Lemma 3.1, po(A4) > . Then apa(A44) —2a+1 > 0. Thus,

21
0>— H(Pa(Aq) =)

= (a—1)(apa(4q) — 20+ 1)(B(pa(Aq) — a))*'~

* (07124 (pa(Ag)) + B2 (pa(Aq) — a)ri2g-1(pa(4y))]
> 0.

which is a contradiction. The proof is complete. v

Lemma 3.6 ([?]). Let A be a nonnegative symmetric matriz and x be a unit vector of
R™. If p(A) = a7 Ax, then Az = p(A)w.

Figure 3. Graphs G and G, with s = 3.
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Let Ng(v) be the vertex set adjacent to v in G.

Lemma 3.7 ([23]). Let o € [0,1). Let G be a connected graph and po(G) be the a-
index of G. Let u,v be two vertices of G. Suppose v1,vs,...,vs, are some vertices of
Ng(v) — (Ng(u) U {u}) and x = (z1,22, ..., Tn) is the Perron’s vector of Ao(G), where
x; corresponds to the vertex v; for i € [s]. Let

G, =2G—vvy — - — VU + U1 + -+ + uv,

(as shown in Fig. 8). If x,, > x,, then pa(G) < pa(Ga).

An immediate consequence of Lemma 3.7 is
Theorem 3.8. Let T € V]*. Then

pa(T) < pa(A | mir)), (7)
where ALmTHJ € Apm. For a € [0,1), the bound (7) is attained if, and only if, T =

ALmTHJ. For a = 1, the bound (7) is attained if, and only if, T = Ay, where k =

2,.., 2] and m >3 or T'= Ajmgr |, where m = 2.

Proof. Let a € [0,1). Let T = Pi(B;) € V. Let x1, 22, ..., 2; be the vertices of the path
P, in the tree T. Let B; be a tree with k; levels for all ¢ € [I]. Suppose T has the largest
a-index in V.

Suppose k; > 2 for some 2 < i <[ —1. Let uy,...,us, be all the vertices in the second
level of B;; we can assume without loss of generality that us, is an internal vertex. Let
w1, ..., wy, be all the vertices of Ng(us,) — {z;}. Let

Ty, 2T —ug,wi — -+ — Us, Wy, +T,w1 + -+ + Ty,
and
Ty, ET =212 — T 1T — UL — * — Uy, 185+ L1 U, T 1 Us, FUIUs, +++  F Uy —1 U, -

By Lemma 3.7, po(Tz,) > pa(T) or pa(Tu, ) > pa(T). Moreover, po(Ty,) € Vi and
Po (Tu) € V', which is a contradiction. If i = 1 or ¢ = [, we reason analogously. Then,
k; = 2 for all ¢ € [I]. This is,

T= B(K1>Pi)'

By reasoning analogously we can verify that
T € Aym.
Let m > 3. By Theorem 3.5,
Pa(A1) < pa(Az) <--- < pa(ALmT“J)'

Then the largest a-index is attained by AL mil). For m = 2 the result is immediate.

Let o = 1; then A, = D, where D is the diagonal matrix of vertex degrees. Let T" € V).
Let m = 3; then the maximum degree of T is less than or equal to n — 2] 4+ 3. Then,
pa(T) <n—2143 < po(Ag) forallk =2, ..., | L |. For m = 2 is result is immediate. @
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