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It is quite common to motivate the study of general topology
as a generalization of the study of metric spaces, and, thus, to
consider the concept of a neighborhood as being related to, or
motivated by, the idea of "closeness". This relationship, however,
between “closeness" and the open sets of a general topological
space is not a particularly obvious one. The commonly used
statement "two points are close to each other if most of the
neighborhoods of one are also neighborhoods of the other" is
patent nonsanse. Even in cases where closeness can be defined with
precision (metrizable spaces) the collection of neighborhoods of
one point which contain another and the collection of
neighborhoods which do not contain the other will typically have
the same cardinality.

In this paper wa provide a generalized definition of distance
and show that, with this definition, any topological space can be
generated by (distance derived) neighborhocods in exactly the same
manner as metric topologies. In this setting, Ro spaces (see (1))

and racular snaces havae natural rhavactarizarinane 2@ Arae +ha

topology on M. This identification of the metric space <M, m> with
the topological space <M, 7. > induces a functor from the category
of metric spaces to the category of (metrizable) topological
spacaes. '

A natural way to generalize the idea of metric spaces would
seem to be by replacing the real number system R with scme less
restrictive structure. If we are to retain a concept of
neighborhood similar to that obtained from a metric, some kind of
order relation is necessary. Thus, we must consider, at an
absolute minimum, a partially ordered seat as a replacement for R.

Definition 1: By a distance space we will mean a set Y together
with a function 3 from Y x Y to a partially ordered set P such
that: )
D for any x, y « ¥, if &(x,y) < p ¢« P, then 3(x,x) < p and
&(y,¥Y) < p. )
Dz. 5(x,y) = 8§(y,x) for all x, y ¢ Y
D.,. if &(x,y) < o, then thers exists some u « P such that
! 4 implies 8(x,2) <o,
then there exists sonme
and o s v.
i some p € P such that
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has not been required to have any type of algebraic structure, and
so we cannot formulate a true triangle inequality. Condition D, is
about as close as wa can come without any form of addition, and,
as we stated earlier, it will be adequate to establish a
connection between distance spaces and topoloqibaihspaces similar
to that between metric spaces and metrizable spaces. Conditions D,
and Dg serve to eliminate trivial examples. Metric analogs of D,
and Dg would be trivial consequences of the totally ordered and
unbounded characteristics of R.

The following lemma will be useful in establishing the
connection between distances and topologies mentioned above.

Lemma 1: Suppose that <X, &, P> is a distance space, that
&(x,z) < u and that &(y,z) < v. Then there axists some o € P such
that 3(2z,2) < o and such that Nv(z) < Nu(x) n Hv(y).

proof: Under the conditions of the }c-na, condition D, implies
that there exist p, T € P such that &(z,z) < p, &8(z,2) < ¢,
Np(z) < Nu(x) and Nt(z) < Nv(y). From condition D4 we can conclude
that thers exists some ¢ ¢ P such that §(z,z) < &, such that ¢ < p
and such that ¢ < T.

This approach to generalized concepts of distance has more
than just academic interest. One possible application lies in the
field of computer science. A parallel multi-processor system might
consist of a number of small processors connected on a high speed
‘helt’ allowing them to work jointly on parts of the same problem.
(For a description of such a system see [9]). Each processor would
have its own (privately accessible) memory, but might also have
joint access to other memory in common with other processors. In
this context, it would make good sense to say that two processors
are "near® if they share access to large amounts of memory. One
might also say that two processors are "farther apart® if they
share less memory or share none, but each share access to some
memory with a third processor. These "distances” clearly relate to
the efficlency of information transfer within the system. The
results of this paper provide a method for formalizing these ideas
of distance in a way which would bring a large body of knowledge
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(all of topoloéy) to bear on the problems of information transfer
within a parallel processing system.

In a hypertext system (see [6]), the difficulty in
transitioning from one point to another in a document depends on
both the number of transitions and the complexity of the decisions
to be made at each of the various transition points. Since number
and complexity are distinct types of entity whose relation is not
easily ascertainable, a partially ordered set is a natural
candidate for measuring distance (in the sense of difficulty in
transition) between points in a hypertext system.

If we are to generalize the idea of metric spaces, we will
also certainly have to consider the idea of a continuous function.
Recall that if <H1, n1> and <Hz, '2> are metric spaces, then a
function £ : Ml—» "2 is said to be (metric) continuous at a point
x e M, if for any ¢ > 0, there exists some & > 0 such that
ml(x,y) < § implies that nz( £(x),2(y) ) < c¢. The function f is
said to be a continuous function from the metric space "1 to the
metric space "2’

This definition has a perfectly natural analog in the setting
of distance spaces:

Definition 2: If <°1‘ 81, P1> and <°2' 82, Pz> are distance
spaces, and f is a tqnction from D1 to 02, then £ is said to be
(distance) continuous provided that for each x ¢ 01 and for each
c e Pz, it 62( £(x), £{(x) ) < € then there exists some Tt « P1 such
that:

a) ll(x, X) <T

b) it ll(x, y) < t© then 82( £(x), £(y) <¢

Thers are two primary attributes of continuous functions that
we would like to have carry over from metric spaces to distance
spaces, the fact that the composition of continuous functions is
continuous and the fact that they correspond (in a vary natural
way) to (topologically) continuous functions. These properties are
established in the following two theorems.
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Theorem 1: If f is a continuous function from the distance space
<D1' 81, P1> to the distance space <D

27 82, P2>, and if g is a
continuous function from <D

27 62, Pz> to the distance space
<DJ, 63, 93>, then the composition g « £ is a continuous function
from <Dl’ 81, P1> to <D3' 63, ’3>-

proof: Suppose x is an element of 01' that ¢ is an element of P,
and that 63( g( £(x) ), g( £{x) ) ) < ¢. Since the function g is
continuous, there exists some o ] P2 such that
62( £(x), £(x) ) < ¢ and such that az(y, f(x) ) < o implies that
;0 g(y), g( £(x) ) ) < e. Since the function £ is also
continuous, there exists some T « D1 such that 61( X, X ) < T and
such that al(x, z) < T implies that 82( f(x), £(z) ) < o, which,
in turn, implies that 33( g( £(x) ), g( £(2) ) ) < c. Hencea, the
composition g « £ is continuous.

The result of theorem 1 can be rephrased in a meaningful way:

Corollary 1.1: The distance spaces and the distance continucus

functions form the object class and morphism class for a category
(see (3].)

We will refer to this category, the category of all distance
spaces and all continuous functions, as DST.

Theorem 2: Suppose that <X, &8, P> is a distance space. Then the
collection { Nc(x) : xX€X, c€«P) is a base for a topology 7(8)
on X.
proof: From (4), in order to show that a collection 3 of subsats
of X forms a base for some topology on X, it is necessary only to
show that if a point x € X is contained in two elements S. and s
of §, then there nmust exist some 53 ¢ § such that x cls and
3
83 < s1 n s . Suppose, then, that x is contained in both N (y) and
N (z). This means that 3(x,y) < 7 and 3(x, 2) < n. By lomnn 1 there
cxilts some X ¢ P such that &(x,x) < A and such that
Ny (X) S N_(y) AN (2). -
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Theorem 2 provides a relation between objects of DST and the
objects of TOP. This naturally suggests the possibility that this
relation might induce a relation between the morphisms in these
categories.

Proposition 1: A SET morphism f :X — Y is a DST morphism from the
distance space <X, &, P> to the distance space <Y, x, Q> if and
only if it is a TOP morphism from <X, J(3)> to <Y, ¥(x)>.

proof: Suppose f is a DST morphism from <X, §, P> to <Y, x, Q.
Let U be an element of J(x) and suppose that f(x) « U. From the
definition of J(x), there is some ¢ ¢ Q such that
t{x) « N_ ( £(x) ) ¢ U. From the (distance) continuity ot the
function t, there exists some Tt € P such that x e N (x) ¢ £ [U],
and so the function f is continucus in the s.n.c of general
topology. We suppose, next, that f is a TOP morphism from
<X, ¥(8)> to <Y, %(x)>. For any X € X and any ¢ « Q, it
k( £(x), f(x) ) < €, then f(x) e Nc( f(x) ) € J(x). By the
(topological) continuity of f, we have that t'I[Nc( £(x) ) is an
element of ¥(5). Hence, by the definition of 7(3), there exists
some 7 « P such that x & N_(x) € t-I[Nc(t(x)], and thus f is a DST
morphism.

Theorem 3: The relation <X, &, P> — <X, %(3)> determines a
functor from DST to TOP. (We will denote this functor DT.)

proof: From theorem 2, the above relation does associate each DST
object with a TOP object, and, from proposition 1, each DST
morphism can be associated (in a natural way) with a TOP morphisa.
This association of morphisms clearly respects composition, and so
the relation from DST to TOP is a functor.

. The result in Theorsm 2 should not have been any great
surprise. It might, hovever, be more unexpected that all
topologies can be constructed in this fashion. Our first step in
establishing this result will be the following definitions.
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Definition 3: Suppose that <X, 7> is an arbitrary topological
space. We will denote by P(X, ¥) the collection of all subsats of
X with the partial order obtained by defining A < B provided that
B is open and A < B. Finally, we define a function ax from X x X
to P(X, ¥) by defining ax(x, Y) to be the set {x, y}.

With the above definitions, the next result is exactly what
is to be expected.

Lemma 2: Por any topological space <X, 7> the set P(X, 7),is a
distance set, for X and the function sx is a distance function on
X. Hence, <X, sx, P(X, 7) > forms a distance spacs.
proof: P(X, ¥) is, by construction, a partially ordered set, and
so, is a legitimate candidate to be a distance set. For any
X, ¥ ¢« X, if the image x(x, Y) = (x, y} < U ¢« P(X, 7), then U is
an open subset of X and (x, y) € U. This implies that ax(x, X) =
{x} < U and that ax(y, Y) = {y} < U. Hence 6x satisfies condition
1. For any two points x, y in X, the image 6x(x, Y) = {x, "y} is
equal to (y, x) = 8x(y,x). Thus, sx satisfies condition D.. 1If
x(x,y) < £ e« P(X, 7), then ¢ must be an open subset 20! X
containing both x and y. Clearly then, y « N (y) s N (x), and so
Gx satisfies condition DJ. Now, if Jx(x, y) < 7 and 5 (x, 2) < 17,
then both 7 and n must be open subsets of X, and the intarscction
A = 7 A 1 must also be an open subset of X which contains the
point x. Therefore Sx(x, X) < A. Further, x(x, W) < A implies
that w « A, and, therefore, that ax(y, W) = (y, w}) ¢ 7 and
x(z, w) = {z, W} ¢ 7. This, then, implies that L, satisfies
condition D The set X, being an open subset of the spac. X, is
an element ot ?,, and for any x, y €« X, the image 3 (x,y) = (x, ¥Y)
is contained in X, and so the function ax satistiec condition O,

and, satisfying all five conditions, is a distance function on the
space X.

Now that we have a way of generating distance spaces from
topological spaces, it is natural to ask whether this too gives us
a functor.
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Theorem 4: The relation < X, ¥ > — < X, ax, P(X, ¥) > induces a
functor from TOP to DST. (We will denote this functor TD.)

proof: Suppose that £ is a continuous function from topological
space <X, 7> to topological space <Y, ¥>. For any X e X and any
c e P(Y, ¥, it ay( £(x), £(x) ) < c, then f(x) « c and ¢ ¢ ¥,
since elements of ¥ are the only elements of P(Y, ¥) which
dominate anything (i.e. if a < 8, for any «, then 8 « ¥.) Since ¢
is topologically continuocus, we know that x « £ [c] ¢« 5. Then, if
Sy(x, ¥) = {x, ¥} € t™1(c), we can conclude that (f(x), £(y)} s ¢.
Hence, the function f is a morphism in DST.

We now have a functor, DT, from DST to TOP and another, TD,
from TOP to DST. Our next problem is to determine the relationship
between these functors.

Theorem 5: If X is any topological space, then the topology on X
induced by the ax neighborhoods coincides with the original
topology on X.

proof: If Nc(x) is nonempty, then ¢ must be a nonempty open subset
of X, since these ars the only elements of Py which strictly
dominate other points of Px, and we have that x ¢ €. In this case,
it is clear that Nc(x) = ¢. Thus any sx neighborhood is open in
the original topology on X. Further, if U is a nonempty open
subset of X, then for any v « U, the set Nu(v) is equal to U.
Hence, open sets are sx neighborhoods and ax neighborhoods are

open sets.

Theorem 5 provides us with the previously announced result,
that any topological space can be derived from a distancs space.
It also lets us describe TOP as a subcategory of DST.

Corollary S5.1: The composition of the functors DT « TD is the
identity functor on TOP.

Corollary S.2: DST contains a full subcategory, TD(TOP], which is
isomorphic to TOP.
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Having identified TOP as being equivalent to (isomorphic to)
a subcategory of DST, it seems only natural to investigate the
relationship between this subcategory and the category DST.

Lemma 3: For an arbitrary distance space <X, &, P>, the identity
function Ly H X —_ X determines a DST morphism
ty ¢ <X, §, P> — < X, Jx, P(X, !a) > ) .
proof: Clearly the only thing to be proved is that ty is a DST
continuous function from <X, &, P> to < X, sx, P(X, ’8) >. Suppose
that u « 35 and that ax(x,x) < g. By the definition of P(X, ;x),
this implies that u e« !x and that x € g. Since L is generated by
5 neighborhocds, there is scme c « P such that &(x, y) < ¢ implies
that y €« 4. This, in turn, implies that Sy(x, y) = (x, ¥} <-u.

Lemma 4: Suppose that <X, 3, P> is a distance space, that <Y, £
is a topological space, that < Y, sy, P(Y, 2) > is the distance
space associated with the space <Y, £> and that £ : X — Y is a
DST morphism from <X, &, P> to < Y, ay, P(Y, £2) >. Then the
function f is also a DST morphism from < X, 6x, P(X, 78) > to
<Y, ay, P(Y, Z) >. .

proof: Suppose that ¢ €« P(Y, 2) and that 3( f(x), £(x) ) < c. By
the continuity of the function £ from < X, &, P > to
<Y, ay, P(Y, £) >, there exists some ¢ « P such that §(x, x) < ¢
and such that §(x, z) < ¢ implies that GY( £(x), £(y) ) < €. This,
then, implies that x e N_(x) s £~ N.( £(x) ) ). The open set
N, (%) is an element of P(X, ’6) and the N, (%) neighborhood of x
contains x. Further, it 3y(x, 2) < o, then s, £00), £(y) )} < ¢,
and so the function f from <X, ax,.r(x, 15)> to < Y, 51, P(Y, 2) >
is a DST morphism.

Theorem 6: The full subcategory TD(TOP] of DST is epireflective
and is isomorphic to TOP.

proof: It was noted in corollary $.2, above, that TD(TOP] is a
full subcategory which is isomorphic to TOP. Lemma 4 establishes
that this subcategory is reflective. Thus, it remains to show that
the function ¢, of lemma 3 is an epimorphism in DST. This,
however, follows immediately from the fact that the function Ly is
an epimorphism in SET.
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In fact an even stronger result is <true coné.ining the
relation bestveen DST and TOP. The epireflelection from theorem 6§
is, in fact, an isomorphism. ‘

Lemma 5: For an arbitrary distance space <X, &, P>, the identity
function Ty : X — X determines a DST worphisa
Ty ¢ < X, sx, P(X, 3‘) > — <X, §, P>

proof: If &(x, X) < ¢t « P, then Xx ¢ Nc(x) < !5. Hence
sx(x, x) < Nc(x) and, clearly, for any y < X, it ax(x, y) < N (x)
then 5(x, y) < €. Thus Tty is a DST morphism.

This yields the following theorem.

Theorem 7: The isomorphism equivalence classes of DST form a
category isomorphic to TOP.

In wany categories it is common to consider isomorphic
objects to be completely equivalent. It is not entirely clear that
this is appropriate in categories related to distance spaces. The
set (n :n a natural number} and the set {1/n :n a natural number}
both inherit a metric from the real numbers. As metric spaces,
they are isomorphic but the first has the property that if it is
the domain of a function to a metric space, then the function is
uniformly continuous. The second space does not have this
property. Thus, in a sstting in which it is possible to talk about
uniform continuity, isomorphic distance spaces cannot be
considered completely equivalent.

At this point we would like to introduce some terminology and
some basic results for future reference.

pefinition 4: If <X, &, P> is a distance space, then an element
p ¢« P will be said to be a distance element if p €« 8 [ X x X ]. An
element p ¢« P will be said to be a measurement element provided
that for some x, Yy ¢ X, the distance 3(x, yY) < p. The distance
space will be called a distinguishing space if each element of P
is a distance element or a measurement element and if for each

51



pair p. and q of measurement elements of P, there exists some x « X
ch that N ® N_(x).
su ha p(x) q( )

Lemma 6: Every distance space is isomorphic to a distinguishing
space (with a maximum distance element greater than any distance
element.) }
proof: Suppose that <X, &, P> is a distance space. Let P’ denote
the set obtained by removing from P all elements which are neither
distance elements nor measurement alements and by adding one
elenent greater than any other element of P. Let Q denote the
quotient obtained by identifying the measurement elements of
P'which generate jdentical neighborhood families in X. It is
obvicus that <X, 8, Q> is a distance space and that the identity
function on X determines an isomorphism from <X, 3, P> to
<X, 8§, Q>.

Among the reasons for introducing the above lemma is the
identification of products in the category DST.

Definition S: Suppose that for each element A of a set A,
<xk' sA, PA> is a distance space. From lemma 6 above, for each A
there exists a distinquishing space <YA' 7, 9A> in which the
distance set contains a maximum element m, greater than any
distance element, and there  exists a  DsT isomorphism
fA H <YA' Ty ?A> — <xl, 5A' Px” We define HAYA to be the
Cartesian product of the sats YA" we define HA?A to be the
Cartesian product of the sets ?A and we define a function nA’A
from (HAYA) x (HAYA) to n’A?X by defining "A’x( <Y\ > <Z,> ) to be
< 7A(YA’ zA) >. Finally, we define a partial order on nA’A by
defining <p,> to be. less than <q,> provided that P, < 4, for each

A « A, and that q, = o, for all but finitely many A in A.

It is immediate that <"AYA' "A’A' nA’A’ is a distance space.
t is our intention to establish that this is a product in DST.
ur next lemma will be to this end.
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Lemma 7: Suppose that <Z, ¢, Q> is a distance space, and that
{ <Yy, 7,, P> 1 A e A} is a collection of distinguishing
spaces, in each of which, the distance set PA contains an element
LY greater than any distance 7)“' s). Suppose also that
<“AYA’ nA1A, HA?K> is as defined in definition 5, and that for
each A e« A, we have a DST morphism ’x from <2, ¢, Q@ to
<Yy, Yy ’A" Then the function HAOX from Z to HAYA is a DsT
morphism.

proof: Lat z be an element of Z, and let ¢ be an element of "A’x
and suppose that uA7A( HA’A(z) B ﬂAiA(z) ) < €. As ¢ is a
measursment element of nA?A‘ it must be of the form <e,> with
e, = m except for A in some finite subset £ € A. Then for each A,
we have that»vx( wx(z) ' &x(z) ) < €y By the continuity of the
function ’A’ there exists some T, ¢« Q such that ¢(z, 2) < T, and
such that ¢(w, 2) < T, implies that 71( &x(w), ’A(z) ) < €, - The
collection { T, ¢ Ael )} is a finite subset of A, and p(z, z) is
less than each element. Hence, by D‘, there is some Ty ¢ Q such
that ¢(z, 2) < Ty 2T, for each A in 2. Then if p(w, 2) < o it
is clear that 1A( ‘A(")' wx(z) ) < €, for each A ¢ A, and, hence,

nA7A( Hwa(w), HAﬁx(z) ) <e.

Lemma 8: Suppose that ( <YA' Ty ?x> : A €« A} is a collection of
distinguishing spaces, in each of which, the distance set ?x
contains an element n, greater than any distance 1A(r, 3) . Suppose
also that <HA A’ “A'x' ﬂA?x> is as defined in definition S. Then
each projdction LN from IIAYA to Yk is a DST morphisa.

proof: Suppose that <Y,> e HAYA' that ¢ ¢ ’c and that
1¢( “c( <Y,> Yo uc( <Yy > ) ) € ¢. We can, then, Qctinc an element
{ = <z,> e nArx by detining z, =W for all A except ¢, and by

defining z, = ¢. Clearly, then, if uA’k(<YA>' <wx>) < {, then

70.( ﬂ,(<¥x>), Rd‘(wl>) ) = 70.( Yor Y5 ) <e.

Theorem 8: If ( <xx, sk, PA> : A e« A ) is a set of distance
spaces, then <uAYA' Hhrx, nA?x> (as defined in definition 5) is
the product, in DST, of the collection { <xx, 81, PA’ t A e A},
proof: Suppose that <%, £, Q> is a distance space and that for
each A ¢« A, we have a DST nmorphisa P <z, §, > — <xk, ax, PA>'
Since <Xy, 8y P> is isomorphic to <Yy, Ty #,>, each g, can be
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written as the composition rx D wx for a DST morphism L from

<z, €&, Q> ¢to <Yx' Tyr ’A>' Each ’A can be written as the

composition of the DST morphisms n, and nAwl. Hence, each P, can
be written as the composition of fA s @, and HA‘A'

Above, we have demonstrated that any topology can be
considered to be generated by a generalized idea of “distance®
between points. The generalization, howaver, .might be considered a
bit extreme. The distance sets (arbitrary partially ordered sets)
lack many (in fact most) of the characteristics which we normally
assocciate with distances. It would seem natural, then, to inquire
whether we might utilize something with more appealing
characteristics.

One of the characteristics most noticeably lacking from our
distance definition is the idea of a zero distance. The idea that
the distance between one point and itself should be different from
the distance between another point and itself, is not very
appealing.

Definition 6: If <X, &, P> is a distance space, then 3 will be
said to be a zeroed distance function and <X, &, P> will be called
a zerced distance space, provided that for any two points x,y « X,
the images 3(x,x) and 3(y,y) are the same element, 0(P®) of P. The
full subcategory of DST consisting of zeroed distance spaces will
be referred to as ZDST. (Please note that a zeroed distance space

will be DST isomorphic to distance spaces which are not zeroed
distance spaces.)

The reason for designating the point 3(x,x) of P, the
distance set, as a zero should be obvious. Our next project will
be the investigation of the relation between DST and ZDST.
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Lemma 9: Suppose that <X, 3, P> is a distance space, that
<Y, 7, @ is a zerced distance space and that £ is a DST morphism
from <X, &, P> to <Y, 7, Q>. If we define 7, to be the function
from X x X to Q defined by 7.(x,, X;) = 7( £(x;), £(x,) ), then

<X, Te, @ is a zeroced distance space and the identity function on
X provides a DST morphism from <X, &, P> to <X, LI Q>.
proof: It is clear that Q is a partially ordered space and that L

is a function from X x X to Q. For any two points x, and x, of X,

1
ir 1£(x1, xz) < ¢ « Q, then, since 7( t(xl), t(xz) ) < ¢ and since
the function 7 satisfies condition Dx' 7( f(xl), t(xl) ) < ¢ and
7( t(xl), t(xz) ) < ¢. Hence we can conclude that Ly also
satisfies condition o,. Since the function 7 satisfies condition
Dz' we know that 7( t(xl), t(xz) ) = 7( t(xz), f(xl) ), and so P
satisfies condition D, It 7£(x1, xz) < ¢ ¢« Q, then, since the

function 7y satisfies condition 03, there exists some u €« Q such
that 7( f(xz), t(xz) ) < 4 and such that 7{ !(xz), Y ) < u implies

7 t(xl), Y ) < €. Obviously, then, 7£(x2, xz) < u and

1t(x2, zZ) < u implies 7£(x1, z) < ¢, and, hence, the function T,

satisfies condition DJ. It 1t(x1, xz) < ¢ and if 1£(x1, xz) < T,

then, as 7 satisfies D‘, there exists some ¢ ¢ Q such that ¢ < o,
such that ¢ < T and such that 7( t(xl), t(xz) ) < e. Thus Te
satisfies condition D,. For any xy and x, in X, there is, by D,

some ¢ ¢« Q such that 7({( :(xl), t(xz) ) < ¢, and so Te also
satisfies condition Ds. Therefore <X, Ter Q> is a distance spacs.
Since <Y, 7, Q> is a zeroced distance space, for any x, and x, in
X, 1:(x1, xl) - 1£(x2, xz) and <X, Tes Q> is also a zeroed

distance space. It 1t(x, X) < ¢ €« Q, then, since f is a DST
morphism there exists some u ¢« P such that 3(x, x) < u and such
that 8(x, 2) < u implies that 1t(x, Y) < €, and, hence, that the

identity function on X is a DST morphism from <X, 3, P> to
<X, 7:: Q.
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With the above constructions, we will be able to eastablish an
initial relation between DST and ZDST.

Theorem 9: ZDST is an epireflective subcategory of DST.

proof: Suppose that < X, &, P > is an arbitrary distance space.
Let { (1A’ QA) : A « A} be the collection (easily seen to be a
set) of all pairs (7A' QA) such that <X, 7,, Q,> is a
distinguishing zerced distance space with a maximum distance
slement m,, and such that the identity function Ly on X defines a
DST morphism T <X, §, P> —» <X, Ty Qx>. It is easily
established that the product <W,X, LAY n,Q,> is a zeroed
distance space and that the diagonal function 4 : X — X «x X
induces a DST morphism from <X, §, P> to <ﬂAx, “A’A' uAQx>. We
will denote by 7, the function from X x X to HAQA which carries
(xl, xz) to <1A(x1, x2)>. From lemma 9, <X, Ty HAQA> is a zeroced
distance space and the identity function Ly X — X induces a DST
morphism ta from <X, §, P> to <X, Ty EAQA>° Suppose, now, that
g : <X, 8§, P> — <2, {, P> is a DST morphism and that <z, {, P> is
a zeroced distance space. The function g can be written as the
composition g, + 9,, where g, <X, 8, P> — <X, (q, £> and
9y ¢ <X, cq' #> — <2, {, P>. The function : ) in turn, can §¢
written as the composition 93 ¢ g vhere g, is an isomorphism
from <X, 15, QB> to <X, cg, $> and where <X, 73, QB> is a
distinguishing zeroed distance space with a maximum distance
element na. Finally, the function LB is the composition
LI 4 o, Thus, the DST morphism g is equal to the composition
of the ZDST morphisa (q1 9y "B « A) and the DST morphism Lyt
Since the function Ly } X — X is an epimorphism in SET, the DST
morphism Ly B X, 8, P> — <X, 7,, "AQx’ is a DST epimorphism.

A natural question to ask at this point would be whether all
topological spaces can be cbtained as zeroced distance spaces (that
is, are images, under the functor DT from theorem 3, of objects
from ZDST.) The answer, as the next theorem shovs, is no. Thers
are topologies which cannot be generated by zeroced distance
functions. In fact, the spaces whose topologies can be obtained
from zeroced distances are precisely the Ro spaces. (Prom (1) a
topological space X is said to be an R, spacs provided that for
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any two points x, y € X, the sets (x} and {y} are either equal or

disjoint.)

Theorem 10: If <X, &, P > is a zeroced distance space, then
< X, 7(8) > is an R, space.

proof: Suppose that two points x, y e X do not have identical
neighborhood families (in the topology J(3).) Then one of the
points (assume that it is x) has a neighborhood U which does not
contain the other. Hence there must exist some neighborhood of the
form Ne(z) which contains x and does not contain y. This implies
that there is some 7 € P such that x ¢ N1(x) < Nc(z). Now, as & is
zerced and 8(x,x) < 7, it follows that &(y,y) < 7, and so N1(y) is
an open neighborhood of y. If it were the case that 8(x, y) < 7,
then y would be an element of N1(x), and therefore an element of
U. By hypothesis, y ¢ U, and so N7(x) does not contain y and N7(y)
does not contain x. We conclude, then, that the closure of (x} is
contained in X \ Ny(y) and the closure of (y} is contained in
X\ Nw(x), and, hence, that the closure of any singleton consists
of precisely those points having exactly the sawe neighborhoods.

The following result follows immediately from the previous
theoren. Tt

Corollary 10.1: If < X, &, P > is a zeroed distance space, and if
< X, 7(3) > is a '1‘o space then < X, 7(8) > is a Tl space.

The previous r.-ult'dennnstrates that zeroed distance spaces
produce Ro spaces. It does not, however, prove that all Ro spacos
are produced by zeroced distance spaces. We will now show that all
Ro spaces are, in fact, images of zeroed distance spaces, that is,

the image DT(ZDST] is equal to the subcategory REGO of TOP.

Definition 7: Suppose that < X, 7 > is an arbitrary topological
space. We define the set 2, to be the collection of all symmetric
subsets of X x X containing the diagonal Ax = ((x,x) : x € X}. The
set z, is partially ordered by the relation Py < By provided that
P, ¢ Py and P, is open in the product X x X.
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We next define the function C, from X x X to z, by:
Co(x, ) = By v { (X, ¥), (¥, %) ).

The following lemmas should simplify the proof of
intended result.

Lemma 10: If < X, 7 > is an Ro space, and if C,(x, y) < o« z,,
then there exists some u € z, such that C’.(y, y) < u and such that
Cgly, W) < implies that (,(x, w) < ¢ (i.e. (’. satisties
condition DJ.) ‘

proof: It (1(x, y) € o e z,, then ¢ must be a symmetric open
subset of X x X containing Ax, and so for each z & X, there is
some open neighborhood U, of z such that U, x U, so. Since X is

assumed to be an R, space, we can assume that either Ux = U or

0 b4

X ¢ Uy and y ¢ Ux. For each additional point z ¢ X, we can assunme
that U, = Uy . that U, = G or that neither x nor y is an element
of U,. In addition there must alsoc exist open neighborhoods v, and
Vy of x angd Y respectively, such that
( Vx X vy Y} v ( vy x vx ) S o. If we let wx represent Vx n Ux and

we let wy represent V. n U , and we let C denote the set

Y Yy
X \ {x, Y}, then we can define an element u of z, to be:

(WU, x U,:z € C}) v (W x W) v (W x W) v (W x W) v (W, x W)
From construction, it is clear that g s ¢ and that (x(y, y) < u.
For any w € X, if (x(y, W) < u, then either (y, w} s wy x wy’ or
{y, w}:(wxxwy)u(wyxwx).'rhus, either w ¢ W _, which
implies that C,(x. W) < o, or v e wx, which alsc implies that
cx(x, w) < o. Hence, the function (, satisfies condition D,.

Theorem 11: For any Ro space < X, 7 >, the function c’, described
above, is a zeroed di_:tance function. Further, the topology ¥
coincides with the topology 7 ( y) generated by the &
neighborhoods.

proof: The set Z, is (clearly) partially ordered and iy is a
function from X x X to Zy.- It (’(x,y) <uez, then u must be a
symmetric open subset of X x X containing Ax. Thus, by definition,

Lg(x, x) = C,(y, Yy) = Ax S 4. Thus the function C, satisfies
condition Dl' Clearly the two sets Ax v { (x, ¥), (Y, x) } and
4 v { (¥, x), (%, ¥) } are equal, and so (,(x, y) is equal to
Cq(y, Xx). Hence the function Lq satisfies condition Dz' From
lemmas 10 and 11 above, the function (, satisfies conditions 03

and D4. Finally, we need only note that for any two points
X, Y € X, it is obvious that g(x, ¥) < X x X and X x X is a
symsetric open set containing 4y, and so the function {y also
satisfies condition Ds. Therefore, <X, C,: z,> is a distance
space, and, since C,(x, X) = Ax for any x € X, a zeroed distance

space. It remains, then, to show that the topology 1((,) is the

same as the original topology ¥ on X. For any x ¢« X and any ¢ in

2, either ¢ is not an open set containing Ax' and hence,

N.(x) =, or ¢ IS a symmetric open set containing Ay. In this

case there is some open neighborhood U of x such that U x U § ¢.

This would imply that U.g Nc(x), and, hence the (, neighborhood

Nc(x) is a 7 neighborhood of x. Suppose, now, that U is an

arbitrary nonempty element of J and that x ¢« U. The set V, defined

to be X \ {x}, is Clearly open in X. If we denote by ¢ the set

(U x U) v (V x V), then it should be clear that ¢ is syametric,

open in X x X, and contains Ax. It should also be clear that a

point y €« X is in Nc(x) if and only if (x, y) € ¢. This, howaver,

will be the case precisely when y « U. Thus every (topological)

neighborhood in <X, 7> is a (s neighborhood and every ¢ -
neighborhocod is a ¥ neighborhood, and, thus, the topologies

coincide.

The result of theorem 11 immediately gives us the following:
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Corollary 11.1: The assoclation <X, 7> — <X, {4, Z4> induces a
functor RZ from REGO into ZDST. Further, the composition DT + RZ
is the identity functor on REGO.

Recalling that distance spaces with the same image under DT
are isomorphic (in DST, and, hence, in the full subcategory ZDST)
produces another rslated result:

Corollary 11.2: The category REGO is equivalent to the category of
isomrphism equivalence classes of ZDST.

We earlier indicated that the concept uniform continuity has
important consequences for our understanding of the relationships
among the chtegoties we are investigating. It is, in fact,
precisely in the sitting of zeroed distance spaces where this
concept can be formulated.

pefinition 8: Suppgse that <X, 6x, Px> and <Y, ay, PY> are zeroed
distance spaces. A function f from X to Y will be said to be
uniformly continuous (with respect to ax and SY) provided that for
any € « Py, it e > oy, there exists some ¢ > ox such that for any

X, ¥ & X, it ax(x,y) < ¢ then 5Y( £(x),£{y) ) < e.

In the case where the distances, sx and sY, are, in fact,
metrics, the above definition reduces to precisely the standard
definition of uniform continuity. This, then, provides us with
numerous examples of continuous functions which are not uniformly
continuous. It also provides us with examples of situations where
a given topology can be generated by distinct distance functions,
and in which a particular function may be uniformly continuous
with respect to one of the distance functions, and not uniformly

continuous with respect to the other.

A rather natural question to raise at this point would seem
to be which continuous functions can be obtained as images (under
the functor DT) of uniformly continuous functions.

Theorem 12: Suppose that <X, 7> and <Y, ¥> are Ro spaces and that
f is a TOP worphism from the space <X, 7> to the space <Y, .
Then, as a ZDST morphism, the function f from < X, (,, Zy > to
< ¥, Lyo 2y > is uniformly continuous.

proof: Suppose that OY < c e z,. By the construction of the
partial order on z,, the distance element ¢ must ba a symmetric
open subset of Y x Y containing Ay. Then for each y € Y, there
must exist some open set Uy $ Y, a neighborhood of y, such that
Uy x UY € ¢. Since f is a DST morphism, for each x ¢ X, there
exists some open neighborhood Vx of x such that Vx [ t-l[ut(x)]’
The set ¢ = v { V x Vx : x e« X ) is clearly an element of Zy. For
any two points w, z ¢ X, if cx(v,z) < ¢, then some Vx contains
both w and z, that is (w,z) « Ve * v, for some x e X. Thiz implies
that both f(w) and f£(z) are in “t(x) and, thus, that
Syl 2(w), £(2) ) < c.

This shows us that, if the distance functions are chosen
correctly, any REGO morphism might be considered to be uniformly
continuous. Every ZDST morphism in the full subcategory RZ[REGO)
of .ZDST is uniformly continucus. It is interesting to conjecture
that objects of RZ[REGO) might have the compactness like property
that any 2Z0ST morphism with domain in RZ(REGO] be uniformly
continuous. We are not certain whether this is true or not, but we
can obtain the result by adding another condition, a condition
which turns out to have interesting topological implications.

pDefinition 9: A distance space <X, &, P> (and its distance
function §) will be said to be divisible provided that for any
x « X and any ¢ € P, if &(x, x) < ¢ then there exists some o « P
such that x ¢ v { Nc(y) Ty e N’(x) } s Nc(x).

We nota that by itself, divisibility is not a particularly
strong condition. (For any topological space <X, 7>, the distancs
space <X, 6x, P(X, 7)> is easily seen to be divisible.) It is in
the context of zerced distance spaces that divisibility has
interesting consequences.
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Lemma 12: If a zerced distance space <X, §, P> is divisible, then
<X, ,8>' its image under the functor DT, is a regular space (that
is, in the notation of (1], an Rl‘)

proof: Suppose that x is an element of an open set U « 15. Then
there aexists some ¢ « P such that x e Nc(x) € U. By the
divisibility of &, there exists some o « P such that x « N_(x) and
such that v ( Nc(y) 1y« Nc(x) } S Nc(x). Then z €« X \ U implies
that N,(x) and Nc(z) are disjoint, sipco if y vere an element of
the intersection, then z would be an element of Nc(y), but Nv(y)
is contained in U, and thus could not contain z. Therefore the
sots4uc(x) and v { Nc(z) : 2« X\ U ) are disjoint open sats,. the
first containing x and the second containing X \ U.

Lemma 13: If the topological space <X, 7> is reqular, then its
inage, <X, (,, Zg>, in ZDST is divisible.
proof: Suppose that X « Nc(x), for a given element ¢ of z,. 8y the
definition of z,, ¢ is an open subset of X x X containing Ax. Then
there is some open neighborhoocd U of x in ¥ such that U x U ¢ ¢.
By the regularity of <X, 7>, thers cxis;s an open neighborhood V
of x such that the closure V is contained in U. Let W(ec) denote
the following set:

en ( (VxV)u ( (NEDxU(x}) ) v ( (X\T) x (x\W) ).

Clearly W(c) is an element of z, and x ¢ NW(c)(x)‘ It y « NW(e)(x)
then y ¢ V, which would imply that if z « N'(c)(y), then z ¢ U.
Hence v { Nw(c)(y) :t Yy e "H(c)(x) } s U s Nc(&), and so
<X, Cq¢ Zg> is divisible.

Definition 10: A zerced distance space <X, 3, P> will be said to
be uniformly divisible provided that for any ¢ > 0(P) there exists
gsome ¢ « P such that O(P) < o < ¢ and such that for any x € X
the union v { N, (y) : y €« N.(x) } § N_(x).

Uniform divisibility has a topological consequence similar to
that of divisibility.

Lemma 14: If <X, 8, P> is a uniformly divisible distance space,
then the measurement elements of P determine a uniformity U on X
and the topology 7(38) is equivalent to the topology generated by
the uniformity Uu.

proof: Let PM denote the collection of measurement elements of P.
For each ¢ « P‘, let U: denote { (%X, ¥y) ¢ X x X : §(x, y) < ¢ }.
Define U to be the collection { Uc HE - | P‘ }. Then U is clearly a
collection of subsets of X x X and each subset contains Ay. From
property D,, each Uc is equal to Uzl. Given any ¢ « Pyr by the
uniform divisibility of &, there exists some ¢ « Py such that
§(x, y) < o and 8(y, z) < o imply &(x, 2) < e. Hence, the
composition Uc o Uc < Uc' Finally, from D‘, given any Uc and 01 in
U there exists some ¢ ¢« P such that &§(x, x) < o, such that o < ¢
and such that ¢ < 7. Thus KJ‘r ¢ U and Uc < Uc n 07, and so U is a
base for a uniformity on X. It is easily seen that the family
{ Nc(x) : x ¢« X, €c @ P‘ } is a4 base for both the topology
generated by U and for 7(3).

Lemma 15: Suppose that U is a uniformity on X. Let Pu denote the
’ bsets of X x X containing Ay. The

€ B € U is a partial order on Py

N =4, v { (x, ¥), (Y, X) }. The

iniformly divisible zeroced distance

n X induced by the uniformity U is

y partially ordered set, that LT is
ch satisfies the conditions Dl' Dz'

theorem 11) and that 8u(x, X) = Ax
)ed distance space. It is immediate
logy induced by U is equivalent to
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7(au), and so it remains to show that < X, Sy Py > is uniformly
divisible. If 4y < c « P,, then € ¢ U by the definition of the
partial order on Pu. Since U is a uniformity, there exists some
(symmetric) element ¢ of U with the property that ¢ « ¢ < ¢. This
is equivalent to saying that for any x, y, z € X, if su(x, y) <o
and 6u(y, z) < o, then su(x, Z) < €. Hence, < X, su, Pu > is
uniformly divisible.

These results permit us to characterize yet another
topological property in terms of distance properties.

Theorem 14: The category of completely reqular spaces is
equivalent to the category of isomorphism classes of UNIFDIVZDST,
the full subcategory of DST whose objects are the uniformly
divisible distance spaces.

proof: From lemma 14 we have that if <X, §, P> is uniformly
divisible, then its image under the functor DT is a uniformizable
space. From (4] wa know that any uniformizable space is completely
regular. Thus the image under DT of UNIFDIVZDST consists of
completely regular spaces. Again from (4], every completely
Tegular space is uniformizable, and so, from lemma 15, is the
image under DT of some uniformly divisible space.

We have now defined a reasonable extension of the concept of
a distance on a set. This concept provides a natural construction
of the category TOP, in much the same way that metrizable spaces
are constructed from metrics. Thus, up to isomorphism, topological
spaces can be considered to be distance spaces.

The addition of a natural condition, a zero element in the
distance set, provides a category which yields an alternate
characterization of the Ro spaces (and as a natural extension, the
T, spaces.) In this setting, it is possible to qatin. an analogue
of uniform continuity, and thus provides a generalization of the
concept of a uniformity.

The addition of other natural conditions (divisibility and
uniform divisibility) on the distance sets produces distance
derived characterizations of regqular spaces and of completely
ragular (i.e. uniformizable) spaces.

64

|
|

(1)

{2]

3]

(4]
(s]

{s}

7]

{83

{93}

(10]

Davis, A. S., Indexed Systems of Neighborhoods for General
Topological Spaces, Amer. Math. Monthly 68 (1961) pp. 886-893
Hajek, D., Perlis, D, and Wilson, R., Distance Spaces and
Natural Convexity, Informe de Investigacién, Depto. de Mate.,
UAM-Iztapalapa, vol. 1 no. 22

Herrlich H. and Strecker, G., Category Theory, 2‘nd Ed.,
Helderman Verlag, Berlin, 1979

Kelley, J. L., General Topology, Van Nostrand, New York
Mamuzié, 2. Introduction to General Topology, P. Noordhoff,
Ltd., Groningen

Nelson, T., Managing Immense Storage, Byte Magazine, Jan.
1988

Reichel, H. C., Basic Properties of Topologies compatible
with (not necessarily symmetric) Distance Functions, General
Topology and Appl. 8 (1978) no. 3, pp. 283-289

Reichel, H. C., Towards a Unified Theory of Semimetric and
Metric Spaces, Topological Structures, II (Proc. Sympos.
Topology and Geom., Amsterdam, 1978) part 2 pp. 209-241,
Math; Centre Tracts, 116, Math. Centrum, Amsterdam, 1979
Reiger, C., 2ZMOB: Hardware from a User’s Vicwﬁoint, Proc.
IEEE Comp. Soc., Conference on Pattern Recognition & Image
Processing, Aug. 1981

Stevenson, F. W., and Thron, W., Results on W-netric Spaces,
Pund. Math. 65 (1969) 317-324

65



