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Abstract: In this paper ve shov that the embedding of a Wallman
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and if the embedding of WX\X in WX {is wallman extendible, then
the extension must be unique. Further, i{f X is regular and if the
embedding of WX\X in W¥X {is Wallman extendible, then Chis
embedding is a WC function.
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A natural way to consider a compactification aX of a
topological space X is as the union of two spaces, one space
being the original space X and the other being the remainder,
i.e. the points aX\X which are added in order to nake the
resulting union be compact. From this point of view, there are
two very natural questions, what kind of spaces can be so joined
and how do the two spaces fit together. For any yiven type of
compactification, a common variant of the first question is the
problem of determining precisely which spaces can occur as
remainders for the compactitication.

It is well known (sce (2] for example) that the class of

Stone-Cech remainders is the class of all Tychonov spaces. That
is to say that for any Tychonov space X, there exists some space
Y such that X is homeomorphic to the remalnder gY\Y. An analogous
result for the Wallman romainder was established in (1}; given
any T, space X there exists some T, sopace Y such that X is
homeomorphic to the Wallman remainder WY\Y. Thus the question of
which spaces can be remainders is settled for the case of the
Wallman compactification.

Although every continuous function from a Tychonov space.

into a compact Hausdorff space has a unique Stone-Cech extension,
the same is not true for Wallman extensions of continuous
functions from T, spaces to compact T, spaces. Thus, in
investigating how Tl spaces and their Wallman resainders fit
together, it seems most reasonable to inquire vhether the natural
enbedding of a remainder WX\X in the compactification WX must be
a Wallman extendible function, or whether there might exist a
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space X for which the natural embedding of WX\X in WX does not
have a Wallwan extension. In this paper we modify the
construction presented in {1] in such a way as to permit the
construction of spaces having the property that the enbeddings of
their Wallman remainders are not Wallman extendible functions,
thus establishing that Wallman rsmainders need not be “Wallsan
embedded® in the compactifications from which they derive.

Having established that the smbedding of a Wallman remainder
need not be Wallman extendidble, the question remains of how
imposition of higher separation properties on the underlying
space might affect the extendibility of the enbedding function.
In this paper we will consider the embedding of the Wallman
remainders of T, and T, spaces. We will show that if a space X is
Hausdorff and if the embedding of WX\X in WX is Wallman
extendible, then it is uniquely extendible. We will also show
that if X is regular and if the embedding of WX\X in wx |is
Wallman extendible, then the embedding must be a WC function.
(see {3))

Recall that for any Tl space X, the Wallman compactification
WX consists of the collection:
{u : u is an ultratilter in the lattice of all closed subsets of X)
with the topology gensrated by the collection:
{ cx(A) = (geWX : Aep) : Ais a closed subset of X )
as a base far the closed sets.

with the topology defined above, WX is a compact T, space
and is Hausdorff if and only if X is normal. The function oy from
X to WX defined by cx(x) = (A: Aclosed in X and x « A} is a
dense embedding. It is common practice, vhen no ambiguity can
result, to ignore the distinction between X and its image, the
subspace ox(X) of ux, We note that for any closed subset A of X,
the closure of A in WX is cx(A), and that {f A is compact then A
is equal to cx(A). Purther, if A is a closed subset of X and is
contained in a compact subset K of WX, then cx(A) € K. If f:X—Y
i{s a continuous function, then a Wallman extension of f is a

continuous function t': WX — WY such that the composition L t
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equal to t'. oy Unlike the case for the Stone-Cech
rompactification, there are sany continuous functions which have
no Wallman extensions. Further, there also exist functions with
mors than one Wallman extension, i.e. functions with non-unigue
Wallman extansions (see (5]). ’

As the Wallman compactification is only defined for T,
spaces, we will consider only spaces which satisfy this
separation axiom, and, thus, dispense with rcpcltinq the
condition over and over again throughout the paper.

An infinite cardinal is said to be regular provided that its
set of ordinal predecessors contains no cofinal subset of smaller
cardinality. For any cardinal a we define L and E to be,
respectively, the collection of all ordinal numbers less than «a
and the collaction of all ordinal numbers less than or equal to
a. The sets L and a are given the order topology and it is

easily seen that Ly in a subspace of the compact Hausdorff <P 72

! . Further, if « is an uncountable reqular cardinal, then, any
pair of disjoint closed subsets of L , has Lhe property that at
least one of the sets is compact. rro- this it is immediate that
WLa is equal to za.

Wwith the foregoing definitions, we can begin construction of
a space having an arbitrarily chosen space as its Wallman
remajnder. Given an arbitrary space X, choose a, a reqgular
cardinal greater than the cardinality of the topoleogy on X. Let

x” denote the one point cofinite extension of X obtained by
adding one cofinits point w to the space X. Define S, to be the

subspace of the product Ea « X consisting of Ly * ad together
with the point (a, w).

Theorem 1: The compactification WS, is homeomorphic to B, x*
and the remainder WS,\S, is homeomorphic to X.

proof: Suppose that u is an element of WS, \Sy. It is not
difficult to show (see for example (1)) that there exists some X,
in X such that L »x (xu) is an element of u. In addition, (for

eacr =lement X ¢ X, there exists precisely one aelement (ux)‘dt
“sx‘sx which contains the set Lc x {x}. Hence the function ¢ from
X to wsx\sx defined by ( (x) = "y, is both one to one and onto. If
a point u, is contained in an open subset U of WSy, then there is
some closed subset ru of sx such that Ky is not in cx(ru) (i.e.
some element. of uy is disjoint from Fu) and wsx\C(ru) is
contained in U. Xt is almost immediste, then, that there is some
slenent Ty of Ly and some open subsst A\ of X such that the
product { 2 « L, : 3> 7, ) xV, is contained in Sy\Fy. Clearly

Vu is a neighborhood of x contained in the inverse image c'x(ﬂj,
and so the function . is continuous. Similarly, if U is an open
subset of X, we will denots by VL the (clearly open) subset L¢ x U
of sx. 1t is easily seen that the image ((U) is wsx\cx(sx\un), an
open subset of st\sx. Hence the function ¢ is a homeomorphism
from X onto the remainder usx\s*.

For any space X, wa will denote by RX the subspace WX\X of
the Wallman compactification WX, and by Tpx the embedding of RX
in WX. We will be dealing with extensions of Tax rather
extensively and the following rasult will prove useful.

Lemma 1: If § : WRX — WX is a Wallman extension of TRx and if u
is any element of WRX\RX, then 3(u) € X.

proof: Suppose that v is any element of RX. sinc-'u » v, there is
some element F_ « u such that v ¢« F,. Since RX' is a subspace of
WX, there is soms closed subset Gv of WX such that rv is equal to
the intersection Gv n RX. If 8() = v, then the inverse image

-1
] [Gv) is a compact subset of WRX which contains rv but does not

-1
contain u. As noted above, however, cRx(Fv) £ 3 [Gv] and, Dby
definition, u e cRx(rv)' Thus, &{u) cannot be any element of RX,
and so, must be an element of X.

Theorsm 1, above, is the same as (and the construction is
similar to the construction for) the primary result of (1]). The
reagon for presenting this alternative construction is that |its
simplicity permits us to show that in many cases the embedding of
the remainder is not a Wallman extendible function, a result that



would ba quite difffcult to obtain using the relatively complex
construction of (1).

Theorem 21 If X is not a W-complets space, (see (3]} then the
embadding Ty from X to st i{s not Wallman extendible.

prooft Suppose that the functian Tx has a Wallman extension s
Since ty(X) is contained in the closed subset (a) x x* of
g, = X, 1t follovs that «*(WX] is also contained in (a) x X,
(Since t"l[(a) x i“) is a closed subset of WX containing all of

X, it must contain all of WX.) Hence, L' wust carry each point of
WX\X to the point (e, w), vhich is a closed subset of nx, and so

the inverse image c"l(c, w) is closed in WX. Prom [3), the only
spaces vith the property that WX\X is closed in WX are the
W-complate spacses.

Since many (in fact most) spaces are not ¥ complate, there
are many examples of spaces (the spaces sx for X not W-complete)
for which the embedding of the Wallman remainder is not a Wallman
extendible function.

We have now established that many embedding functions Tax
are not Wallman extendible., This does not, however, indicate
whether extensions, vhen they exist, sust be unique. A cursory
examination of the proof of lemma 1 mnmight even lead one to
conjecture that extendible embeddings must be WI functions. 1In
fact, however, it is easily shown that such extensions need not
be unique.

Theorem 3: If an embedding Yax is Wallsan extendible, then the
extension need not be unique.

proof: Let X denote the spece 0 U (a,b) with topology generated
by the open subsets of the rational numbers 0, together vith the

sets { (@ nU) U (a} : U is an open neighborhood of * } and the

sets { (0~ U) U (b} : U §is an open neighborhood of ®» }. It s
clear that both WX\(a) and WX\{Db) are pact H dorft p
(each being the Wallman cospactification of a metric space.) Thus

either of the functions Tax! RX ~ WX\{a) and v : RX -~ WX\(b)
RX

has a Wallman extension. These extensions are Wallman extensions
of the eabedding Tax? RX — WX, but the (first must carry some
point of WRX onto b and the second must carry sose point of WRX
onto a, and s0 they cannot be the same.

It is not entirely coincidental that the above example
involved a non~Hsusdorff space.

Theorem 4: If X is a Hausdorff space and {f the embedding

Tryt RX — WX has a Wallman extension 7;1’ WRX — WX, then the
extension is unique.

proof: Suppose that the extension 1;‘ is not unique. Then there
sust exist another Wallman extension & : WRX — WX of Tax* Since

& and 1;x are distinct functions, there ls sowe u e WRX such that
S(u) » 1;x-(u). The point u cannot be in RX, and so from lemma 1,

§(u) and 1;x(n) are distinct elemants of X. Since X is Hausdortf,
these two points have disjoint open neighborhoods. Suppose that U
and V are disjoint open sets of X, that 4(u) € U and that

7;x(‘" e V. Because WX = cx(X\U) v cx(X\V), at least one of the
sets RX n cx(xw) and RX A cx(x\\n is an element of u. Assume
that RX n C,(X\U) ¢ u. The inverse image a"(cx(x\U)] is a closed
subset of WRX which contains the set RX n cx(X\U) but not u.
Hovever, u ¢ cnx‘ RX n CX(X\U) ). the set vhich must be contained

in any closed (hence compact) set containing RX n C,(X\U).

We note that it is not necessary that a sp X be H dortf
in order that the embedding Tpx Nave a unique extension. As a
cpuntersxample, one need only consider the disjoint union of a
noncompact norsal space and an infinite cofinite space. We also
note that ve have, at presant, no exaaples of Mausdorff spaces X
for which the embedding Trx is not extendible. (The spaces Sy,
constructed having remainders with non~extendible embeddings, are
not Hausdorff.)




We now turn our attention .to conditions inmplying the
axtendibility of the embedding v.,. We vill show that if X |is
regular and if RX {s Hausdorff, then 7. is extendible. We will
first establish some preliminary results and notation.

Lemma 2: If X is a Hausdorff space and if x is any element of
WRX, then the intersection n { clwx(h) : A &« 4 ) contains exactly
one alement.

proof: Since { clux(h) :Ae u } is a collection of closed
subsets of WX having the ftinite intersection property, it is
clear that the intersection n { cl“x(A) : A€pnu )} is nonempty. If
the intersection n { A : A « u } is nonespty, then u must contain
an element which is a singleton, and the closure of this set in
WX can contain only one element. Suppose, then, that

A{A:Acn) is empty. For each y ¢ RX, there is some ry « B

such that y ¢ ry. Since ry is closed in the subspace RX of WX,

there is some closad subset Gy of WX such that ry - GY n RX.

Clearly then, the intersection A { cl“x(A) : Aey }) s G, 2 which
does not contain the point y. From this we c:n conclude that if
A{(A:Aepu) is enpty, then n { c;"x(h) : Aep ) S X. Suppose
now that x and y are distinct elements of X. Since X is
Hausdorff, there exist disjoint open neighborhoods U, and U, of x
and y respectively. It is clear then, that cx(X\ux) and cx(x\"y)
are closed subsets of WX whose union is all of WX. Since u is an
ultrafilter, at least one of the sets RX n cx(x\ux) and
RX n cx(X\Uy) is an element of u. If RX n cx(X\Ux) is an element

of u, then n (clwx(h) : A e u )} is contained in cx(X\U‘) which
does not contain the point x. (Similarly for y.) Hence, the
intersection n ( cl“x(A) : A € 4 ) cannot contain two points of
X, and so must contain exactly one element.

The result in lemma 2 permits us to define a function {, from
WRX to WX. This function Cx is, in fact, the only possible
candidate to be the Wallman extension of 7p,. It Qg is
continuous, then it is clearly a Wallman extension for 7py. It gy
is not continuous, then TRx has no Wallman extension.

Lesma 3: Suppose that £ : X — Y is continuous and that for each
u ¢ WX the intersection n { c‘( cl,(!(;)) )y :+ A e« u ) is a

singleton. If the function £ has a Wallman extension t., then for
each u ¢ WX, the image r'(u) «n{ c,( clY(Z[A]) )t Aey}.

prool:‘Suppos- that t.(u) ¢n{ C'( cly(tthl) ) tAen ). Then
there is some A « u such that £'(u) « Cy( cly(£(A])) ). Hence, the

inverse image t"‘[cy( cly(t(A)) )] is a closed subsat of WX
containing A. Any closed subset of WX containing A must contain
cx(A), and, therefors, iz, thus contradicting either the closurse

of the inverse image or the fact that t.(u) [ Cv( cly(l[A]) ).

We now turn our attention to the Wallman remainders of
regular spaces.

Lemma 4: If X is a regular spacs, if Cxlm) « X and if U is anm
open subset of WX containing (x(u), then thera exists an open

neighborhood V,  of u contained in (;1[U).
.

proof: By the regularity of X, there exists an open subset V of X
such that cx(u) «evVes clx(V) S U. Let AV denote the closed subset
C(X\V) of WX. It is clear that RX n Av is not an elewment of u,
since if it were, then Cy (1) would be an element of clwx(nx n Ay
which is contained in Av and implies (x(u) « v. Thus
U & WRX \ Cnx(ix n Av). If v is any element of WRX \ cnx(nx n Av)
then there is some element F e« v disjoint from RX n A,. By the
definition ot Cxe the image Cx(v) is contained in Clyx(F,) which
must be contained in Clyx(V) ¢ U. Thus v“’u = WRX | Cpy(RX n Ay)

is an open neighborhood of u contained in (;1(01.

Proposition 1: If X is a regular space, then the tunction ¢y is a
closed function.

proof: Suppose that A is a closed subset of WRX. Then thers is
some filter ah of closed subsets of RX such that
A=an{ CRX(B) : Be BA }. Ifu s clwx(C(A)) \ Cx(h), then either
u € RX or 4 « X. In the case that u ¢« RX, since u ¢ A, there must
be some l“ € BA such that g ¢ B, There is some closed subset GB
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of WX such that B = RX n Gy, and so, by the definition of the
function (x, we can conclude that clwx((x[xl) < clwx((x[!]) < GB
and u ¢ GB' Hence, if there is such a point u, it wust be an
element of X. Consider now the collection
{Bn °1wx(v) 1 Boe aA, V a neighborhood of u ). Either this
collection has finite intersection property or there is some
l“ < ah and some neighborhood V of u such that clvx(V) is
disjoint from Bu‘ If the collection has finite intersection
property, then it is contained in some element v ¢ WRX. Since ¢
contains each B in 3“, it is an element of n { c‘x(l) : Ba ﬁ‘ }e
which is equal to A, If (x(t) * 4, then thers exists some element
D « ¥ such that u « °1wx‘°" From {4), there exist disjoint open
sets UD and VD in WX such that u e UD and clwx(o) 4 VD. Since
clwx(uo) n RX must be an element of t, such disjoint open sets
cannot exist, and so (x(t) would be equal to u which would
contradict the assumption that u «¢ clwx(([A)) \ {x(A). Thus, it

such an element exists, then there is some B_ & A and some
neighborhood V of u such that clwx(V) is disjoint from l“. This,
howvever, implies that clwx((x(hl) s WX \ V, and, hence, that
u ¢ clwx((xlh)), and so, that no such u can exist. Hence, the
image {x(A] must be closed.

This proposition has an immediate corollary:

Corollary: If X is regular and if the embedding Tax is Wallman
extendible, then Tax is a WC function (smee [3).)

This brings us to the our previously announced result.

Theorem 3: If X is a regular space and if RX is a Hausdortf
space, then the embedding function Trx i{s a WC function.

proof: With the above corollary, the only thing we need prove is
that RX being Hausdorff implies that <x is a continuous function.
Suppose, then, that (x(u) « U an open subset of WX. If (x(u) € X,
then (from (4]) for each v ¢ WX\U there exist disjoint open
neighborhoods U, am Vv of Cxlu) and v respectively. The
collection ( vv t v ¢« WX\U ) is an open cover of the compact set
WA\U and thus contains a finite subcover { vv : v €« £ )}, The

intersection Uy = n (U, : v « L } is sn open neighborhood of u
disjoint from Vv, = Uy, :ve t ). From the definition of the
function (x, we know that RX n ('X\U!) is not an elemsnt of ¥,
and so there Rust bs some element A ¢ 4 disjoint from
RX n (WX\Ul). Then HRX\CRx(Hx\u') is an open subset of WRX
containing u. FOr eny v € WRE\Cp (W¥X\Uy), there will be scas
A, eV disjoint from RX & cu‘lﬂ\ﬂti., e hﬂl‘ Tox (3} is
contained in Uy, and so cly(7p4(A,]) wust be cantained in WE\Vy,
which, in turn, is contained in U. Hence g has an open

neighborhood in WRX, ( wnx\c.x(ux\u') ), which is contained in
c"1(0), and, thus, ¢, is continucus.
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