Revista INTEGRACION Departamento de Matemáticas UIS Vol. 9, No. 2, julio-dictembre 1991

LA CONEXIDAD Y EL AXIOMA DE COMPLETEZ EN UN CONJUNTO TOTALMENTE ORDENADO K DENSO, SIN ELEMENTOS PRIMERO Y ULTIMO

Rafael Ahumada Barrios •
Fernando Puerta Ortiz •

Introducción

En [1] se probó que en un cuerpo totalmente ordenado, el axioma de completez es equivalente a la conexidad; en este artículo se prueba que dicha equivalencia es independiente de las operaciones y sólo depende del orden.

Definición 1

Un conjunto K se dice totalmente ordenado si en K está definida una relación \leq que cumple: (i) es reflexiva; (ii) es antisimétrica; (iii) es transitiva; (iv) dados $x, y \in K$, entonces $x \leq y$ ó $y \leq x$

^{*} Profesores Asociados, Universidad Nacional, Seccional Medellín, Colombia.

Definición 2

Sea K un conjunto totalmente ordenado por \leq ; dados $x, y \in K$, decimos que x < y si y sólo si $x \leq y$ y $x \neq y$.

Definición 3

Sea K un conjunto totalmente ordenado por \le ; decimos que K es denso si dados $x, y \in K$, con x < y, entonces existe $z \in K$ tal que x < z < y.

Definición 4

Sea K un conjunto totalmente ordenado, $S \subseteq K$, $S \neq \emptyset$; decimos que S es acotado superiormente si existe $\alpha \in K$ tal que $x \le \alpha$, para todo $x \in S$.

Definición 5

Sea K un conjunto totalmente ordenado, $S \subseteq K$, $S \neq \emptyset$; acotado superiormente; decimos que α es el supremo de S (notado $\alpha = \operatorname{Sup} S$) si es cota superior de S y, además, para toda cota superior β de S, $\alpha \leq \beta$.

Definición 6

Sea K un conjunto totalmente ordenado, a, $b \in K$ con a < b; definimos V(a,b) como el conjunto siguiente:

$$V(a,b) = \{x \in K \mid a < x < b\}.$$

Definición 7

Sea K un conjunto totalmente ordenado, $S \subset K$; $S \neq a$; decimos que S es abierto, si para todo $x \in S$ existen a, $b \in K$, con a < b, tales que $x \in V(a, b) \subset S$.

Definición 8

Sea K un conjunto totalmente ordenado; el conjunto

es una topología para K, llamada la topología de orden para K.

Definición 9

Sea K un conjunto totalmente ordenado; decimos que K cumple el axioma de completez, si para todo

$$S \subseteq K$$
, con $S \neq \emptyset$

y acotado superiormente, se tiene que Sup S existe.

PROPOSICION 1

Si K cumple el axioma de completez, entonces (K, τ) es conexo.

Prueba:

Sea $F \subseteq K$, $F \neq \emptyset$ y $F \neq K$ con F cerrado; sean $x \notin F$, $y \in F$; supongamos que y < x.

Sea
$$S = t \in F \mid t < x \mid$$
; $S \neq \emptyset$, puesto que $y \in S$;

además S es acotado superiormente, entonces Sup S existe.

Sea z = Sup S; entonces $y \le z \le x$; si y = z entonces $z \in F$; ahora, si $y \ne z$ entonces $y < z \le x$; sea $z \in V(a,b) = (x \in K \mid a < x < b)$; entonces V(a,b) es una vecindad de z, luego a < z < b; como K es denso, existe $c \in K$ tal que a < c < z < b; como z = Sup S, existe $u \in S$ tal que a < c u < z < b, luego $V(a,b) \cap S \ne \emptyset$; entonces $z \in F = F$, ya que F es cerrado, luego tenemos que $z < x y z \in F$;

entonces, para todo $u \in V(z,x) = \{ t \in K \mid z < t < x \}$ tenemos que $u \notin F$; luego z no es punto interior de F, y por lo tanto F no es abierto, luego (K, τ) es conexo

PROPOSICION 2

 $Si(K, \tau)$ es conexo, entonces K cumple el axioma de completez.

Prueba:

Sea $S \subseteq K$, $S \neq \emptyset$, S acotado superiormente; consideremos

 $A = \{ \alpha \in K \mid \alpha \text{ es cota superior de } S \};$

A = Ø, porque S es acotado superiormente y A≠K:

Si existe $\alpha_o \in S$ tal que $\alpha_o \in A$, entonces $\alpha_o = \text{Sup S}$; supongamos que ningún punto de S pertenece a A; sea $B = A^*$; veamos que B es abierto: en efecto, sea $x \in B$; entonces $x \in A$, luego x no es cota superior de S, entonces existe $y \in S$ tal que x < y. Como K es denso, existe $b \in K$ tal que x < b < y; como K no tiene primer elemento, existe $a \in K$ tal que a < x < b < y, luego $x \in V(a, b)$, y además, si $x \in V(a, b)$ tenemos que a < x < b < y; luego $x \in V(a, b)$, y además, si sea que $x \in A$, luego $x \in B$; de donde tenemos que $x \in A$, o sea que $x \in A$, luego $x \in B$; de donde tenemos que $x \in A$, o sea que $x \in A$, luego $x \in A$, no es abierto y por lo tanto A es cerrado; como K es conexo, A no es abierto, luego existe $x \in A$ tal que para toda vecindad $x \in A$ se tiene que $x \in A$.

Sea $\beta < \alpha_o$ y $\beta \in A$; como K no tiene último elemento, existe $b \in K$ tal que $\alpha_o < b$; entonces, para $x \in V(\beta, b)$ tenemos que $\beta < x$, luego $x \in A$, y por lo tanto $V(\beta, b) \subseteq A$ y $\alpha_o \in V(\beta, b)$ lo cual es absurdo; luego para todo $\beta \in A$ se tiene que $\beta < \alpha_o$, entonces α_o es el mínimo de A, o sea que $\alpha_o = S$ y por lo tanto K cumple el axioma de completez

BIBLIOGRAFIA

[1] AHUMADA BARRIOS, Rafael Enrique. "La conexidad y el axioma de completez".

<u>Boletín de Matemáticas</u>, Vol. XXI, No. 1 (1987). Departamento de Matemáticas, U. Nacional, Bogotá.