On Semigroup rings which are Marot Rings

U.B. VASANTHA KANDASAMY
Department of Mathematics
Indian Institute of Technology
Madras-600 036, India

In this note we obtain a necessary and sufficient condition for a semi group ring to be a Marot Ring. In fact we have proved all commutative semi group ring is a Marot Ring. For more properties of semi group rings please refer [1].

The author in [2] calls a commutative ring with identity to be a Marot ring if each regular ideal of R is generated by regular element of R. By a regular element of R the author means a non-zero divisor of the ring R. He calls an ideal containing regular elements to be a regular ideal. For more properties about Marot rings please refer [2].

Throughout this paper S denotes a commutative semigroup and K a commutative ring. KS the semigroup ring of S over K.

Theorem 1. KS is a Marot ring with no divisors of zero if and only if S is an ordered commutative semigroup with no zero divisors and S has no elements of finite order and K is an integral domain.

Proof. Suppose KS is a Marot ring with no divisors of zero, since KS is commutative so is S and K as \(S \subseteq KS \) and \(K \subseteq KS \). Further both S and K cannot have divisors of zero.

Conversely if S is a commutative ordered semigroup with no divisors of zero and K and integral domain, clearly KS is a commutative domain hence a Marot ring.

Proposition 2. Let K be a field. S a commutative semigroup having no proper zero divisors but element of finite order. Then KS is a Marot Ring.

Proof. The semigroup ring KS has nontrivial divisors of zero (for if S has an element of finite order \(s^n = 1 \ (s \neq 1) \), \(\mod (s-1) \ (s^{n+1} + s^{n+1} + \ldots + 1) = 0 \)).

To show KS is a Marot ring we need only show (1) if I is a regular ideal generated by
a regular element then I has no nontrivial divisors of zero (ii) if I is a regular ideal generated by a divisor of zero then I has no nontrivial regular element.

Proof of (i) Suppose I is generated by \(\alpha \) a regular element in KS. If possible let \(\beta \in I \) such that \(\beta \gamma = 0 \) (\(\beta \neq 0 \), \(\gamma \neq 0 \)) that is \(\beta \) is a non-trivial divisor of zero. Now \(\beta \in I \) and \(\alpha \) generates I so \(\beta = \sum \alpha \delta_i \) or

\[
\beta \gamma = \sum \alpha \delta_i \gamma = \sum \alpha \gamma \delta_i = 0
\]

That \(\alpha \) is a divisor of zero a contradiction. Hence I cannot contain divisors of zero.

Proof of (ii). Suppose I be a regular ideal of KS, but be generated by a zero divisor \(\alpha \in I \). I is regular so I has regular elements also let \(\beta \) be a regular element of I.

\[
\beta = \sum \alpha \delta_i,
\]

we have \(\alpha \gamma = 0 \) as \(\alpha \) is a divisor of zero. So

\[
\beta \gamma = \sum \alpha \delta_i \gamma = \sum \alpha \gamma \delta_i = 0
\]

implying \(\beta \) is also a divisor of zero a contradiction to our assumption \(\beta \) is a regular element of I. So I cannot contain regular element when I is generated by a zero divisor. Thus KS is a Marot Ring.

Proposition 3. Let \(K \) be a field, KS the semi group ring of \(S \) over \(K \) be a Marot ring with divisors of zero. Then \(S \) is a semi group either having elements of finite order or a semi group having divisors of zero or both.

Proof. \(K \subseteq KS \) and KS is a Marot ring with divisors of zero and \(K \) is a field so \(S \) has elements of finite order or \(S \) has zero divisors or both.

Proposition. Let KS be a Marot ring with divisor of zero and \(S \) be a ordered semigroup without divisors of zero then \(K \) has proper divisors of zero.

Proof. Since \(K \subseteq KS \) and KS is commutative and as KS is a Marot ring, \(K \) is a commutative structure. Given \(S \) is ordered with no divisors of zero. But given KS has divisors of zero, so to prove K has divisor of zero.

\[
suppose \ a\beta = 0 \ where \ a = \sum_{i=1}^{n} a_i s_i \ and
\]

\[
\beta = \sum_{j=1}^{m} b_j h_j \ where \ a_i, \ b_j \in K (a_i = 0, b_j = 0) and s_1, s_2, \ldots , s_n
\]

and \(h_1, h_2, \ldots , h_m \) are respectively mutually distinct elements of \(S \). To prove \(a_i h_j = 0 \) for all \(i = 1, 2, \ldots , n \) and \(j = 1, 2, \ldots , m \). If \(a = n = 1 \), nothing to prove. Suppose \(n \geq 2 \), \(m \geq 2 \). As \(S \) is ordered and \(s_1, s_2, \ldots , s_n \) and \(h_1, h_2, \ldots , h_m \) are mutually distinct, we may assume \(s_1 < s_2 < \ldots < s_n \), \(h_1 < h_2 < \ldots < h_m \). We have

\[
(1) \ a\beta = \sum a_i b_j s_i h_j = 0 \ and
\]

1 \(i \leq n \)

1 \(j \leq m \)

\(s_j h_j \) is the 'smallest among' \(s_j h_j \)' i.e., we have

\(s_j h_j < s_j h_j \) for any \(i, j \) with \(i < j, 1 < k \). Thus we should have \(a_i b_j = 0 \).

To simplify the further expression of our proof, we shall use the following expressions in pairs of indices \(i, j \), \(i', j' \) ... where

\[i, i' \ldots \in \{1, 2, \ldots , n\}, j, j' \in \{1, 2, \ldots , m\} \].

These two pairs are ordered according to the 'magnitudes' of \(s_i h_j, s_j h_j, \ldots \); we shall say namely \((i, j) \) is smaller than \((i', j') \) and write \((i, j) < (i', j') \) when \(s_i h_j < s_j h_j ; (i, j) \) is called equivalent to \((i', j') \), written \((i, j) = (i', j') \) when \(s_i h_j = s_j h_j \). From \(i < i' \) follows obviously \((i, j) < (i', j) \), and from \((i, j) < (i', j') \), \((i', j') \) follows \((i, j) < (i', j') \). We shall prove \(a_i b_j = 0 \) following 'the magnitudes' of \((i, j) \) beginning from the smallest pair \((1, 1) \). A pair \((i, j) \) will be called
settled, if \(a_i b_j = 0 \) has been proved. Thus \((1,1)\) is settled, and in proving
\[a_{i_0} b_{j_0} = 0 \]
for a fixed pair \((i_0, j_0)\), we can obviously assume that all
\((i, j)\) are settled for \((i, j) < (i_0, j_0)\). Let \((i_1, j_1), (i_2, j_2), \ldots, (i_p, j_p)\) be
the set of all unsettled pairs which are equivalent to \((i_0, j_0)\). From (1) follows.

\[
(2) \quad a_{i_k} b_{j_k} + a_{i_p} b_{j_p} = 0
\]

We have nothing more to prove if \(p = 1 \). So let \(p > 2 \) and \(i_1 < i_2 < \ldots < i_p \).
Then we have for \(K > 2 \) \((i_1, j_k) < (i_k, j_k) = (i_0, j_0)\) so that \((i_1, j_k)\) is settled
by our assumption and \(a_{i_k} b_{j_k} = 0 \) whence follows \(b_{j_k} a_{i_k} = 0 \) as \(K \) is commutative.

Multiplying (2) by \(a_{i_k} \) from right, we obtain \(a_{i_k} b_{j_k} = 0 \) i.e., \((i_1, j_1)\) is settled
and we can proceed further.

Theorem 5. The semigroup ring \(KS \) is a Marot ring with nontrivial divisors of zero if and
only if \((1) \) \(S \) is a finite commutative semigroup without divisors of zero and \(K \) is a field,
or \((2) \) \(S \) is a ordered semigroup without divisors of zero and \(K \) is a commutative ring with
divisors of zero or \((3) \) \(S \) is any commutative semigroup without divisors of zero and \(K \) ring
any with divisors of zero.

Proof. Follows from the above three propositions.

Problem. If \(S \) is a commutative semigroup and \(K \) a commutative ring with unit. Can \(RS \) have
nontrivial regular ideals?

REFERENCES
