Pevista INTEGRACION
Departemento de Matemáticas UIS
Vol. 9 No. 1, enero-junio 1991

On Semigroup rings which are Marot Rings

W.B. VASANTHA KANDASANY Department of Mathematics Indian Institute of Technology Madras-600 036, India

In this note we obtain a necessary and sufficient condition for a semi group ring to be a Marot Ring. In fact we have proved all commutative semi group ring is a Marot Ring. Fore more properties of semi group rings please refer [1].

The author in [2] calls a commutative ring with identity to be a Marot ring if each regular ideal of R is generated by regular element of R. By a regular element of R the author means a non-zero divisor of the ring R. He calls an ideal containing regular elements to be a regular ideal, for more properties about Marot rings please refer [2].

Throughout this paper S denotes a commutative semigroup and K a commutative ring. KS the semigroup ring of S over K.

Theorem 1. KS is a Marot ring with no divisors of zero if and only if S is a ordered commutative semigroup with no zero divisors and S has no elements of finite order and K is an integral domain.

Proof. Suppose KS is a Marot ring with no divisors of zero, since KS is commutative so

is S and K as $S\subseteq KS$ and $K\subseteq KS$. Further both S and K cannot have divisors of zero.

Conversely if S is a commutative ordered semigroup with no divisors of zero and K and integral domain, clearly KS is a commutative domain hence a Marot ring.

Proposition 2. Let K be a field. S a commutative semigroup having no proper zero divisors but element of finite order. Then KS is a Marot Ring.

Proof. The semigroup ring KS has nontrivial divisors of zero (for if \$ has an element of finite order

 $s^{2} = 1 (s + 1 c r = 0 , s \in S), So(s-1) (s^{2-1} + s^{2-2} + ... + 1) = 0$

To show KS is a Marot ring we need only show (i) if I is a regular ideal generated by

a regular element them I has no nontrivial divisors of zero (ii) if I is a regular ideal generated by a divisor of zero them I has no nontrivial regular element.

Proof of (i) Suppose I is generated by α a regular element in KS. If possible let $\beta \in \mathcal{I}$ such that $\beta \gamma = 0$ ($\beta \neq 0$, $\gamma \neq 0$), that is β is a nontrivial divisor

of zero. Now $\beta \in I$ and α generates I so $\beta = \sum \alpha \delta_i$ or

$$\beta \gamma = \sum_{i} \alpha_{i} \delta_{i} \gamma = \sum_{i} \alpha_{i} \gamma_{i}, \delta_{i}$$

$$=\alpha\gamma \ (\Sigma \ \delta_i) = \alpha \ (\gamma \ \Sigma \ \delta_i) = 0$$

That & is a divisor of zero a contradiction. Hence I cannot contain divisors of zero.

Proof of (ii). Suppose I be a regular ideal of KS, but be generated by a zero divisor $\alpha \in \mathcal{I}$. I is regular so I has regular elements also lef β be a regular element of I.

 $\beta = \sum_{i} \alpha \delta_{i}$, we have $\alpha \gamma = 0$ as α is a divisor of zero. So

$$\beta \gamma = \sum \alpha \delta_{j} \gamma = \sum_{j} \alpha \gamma \delta_{j} = 0$$
 implying β is also a divisor of zero

a contradiction to our assumption β is a regular element of I. So I cannot contain regular element when I is generated by a zero divisor. Thus KS is a Marot Ring.

Proposition 3. Let K be a field. KS the semi group ring of S over K be a Marot ring with divisors of zero. Then S is a semigroup either having elements of finite order or a semi group having divisors of zero or both.

Proof. $K \subseteq KS$ and KS is a Marot ring with divisors of zero and K is a field so S has elements of finite order or S has zero divisors or both.

Proposition. Lef KS be a Marot ring with divisor of zero and S be a ordered semigroup without divisors of zero then K has proper divisors of zero.

Proop. Since $K \subseteq KS$ and KS is commutative and as KS is a Marot ring, K is a commutative structure. Given S is ordered with no divisors of zero. But given KS has divisors of zero, so to prove K has divisor of zero.

suppose
$$\alpha \beta = 0$$
 where $\alpha = \sum_{i=1}^{n} a_i S_i$ and

$$\beta = \sum_{j=1}^{m} b_j h_j$$
 where a_i , $b_j \in K$ $(a_i \neq 0, b_j \neq 0)$ and $a_1, a_2, ..., a_n$

and h_1 , h_2 ,..., h_m are respectively mutually distinct elements of S. To prove a_i b_i = 0 for all i = 1,2,..., n and j = 1,2,..., m.

If m = n = 1, nothing to prove. Suppose $n \ge 2$, $m \ge 2$. As S is orderd and s_1 , s_2 ,..., s_n and h_1 , h_2 ,..., h_m are mutually distinct, we may assume $s_1 < s_2$ <... $< s_n$, $h_1 < h_2 < ... < h_m$. We have

(1) ...
$$\alpha \beta = \sum a_i b_j s_i h_j = 0$$
 and
$$1 \le i \le n$$
$$1 \le i \le m$$

 s_1h_1 is the 'smallest among s_1h_1 ' i.e., we have $s_1h_1 < s_1h_j$ for any i,j with 1 < i, 1 < k. Thus we should have $a_1b_1 = 0$. To simplify the further description of our proof, we shall use the following expressions in pairs of indices (i,j), (i',j') ... where i, i', ... $\mathfrak{C}\{1,2,\ldots,n\}$, $j,j'\in\{1,2,\ldots,m\}$. These repairs are ordered according to the 'magnitudes of' s_1h_1 , s_1h_1 , ...; we shall say namely

pairs are ordered according to the 'magnitudes of' $s_{i}h_{j}$, $s_{i}h_{j}$, ...; we shall say namely (i,j) is smaller than (i', j') and write (i,j) < (i', j') when $s_{i}h_{j} < s_{i}$, h_{j} , ; (i,j) is called equivalent to (i', j'), written (i, j) ~ (i', j'), when $s_{i}h_{j} = s_{i}$, h_{j} , . From i < i' follows obviously (i, j) < (i', j), and from (i, j) < (i', j'), (i', j') ~ (i', j') follows (i, j) < (i", j"). We shall prove $a_{i}b_{j} = 0$ following 'the magnitudes' of (i,j) beginning from the smallest pair (1,1). A pair (i, j) will be called

settled, if $a_i b_j = 0$ has been proved. Thus (1,1) is settled, and in proving $a_i b_j = 0$ for a fixed pair (i_0, j_0) , we can obviously assume that all

(i, j) are settled for (i, j) < (i $_0$, j $_0$). Let (i $_1$, j $_1$), (i $_2$, j $_2$),..., (i $_p$, j $_p$ be the set of all unsettled pairs which are equivalent to (i $_0$, j $_a$). From (1) follows.

(2)
$$a_{i_1}b_{j_1} + a_{i_2}b_{j_2} = 0$$

We have nothing more to prove if p=1. So let p>2 and $i_1 < i_2 < ... < i_p$. Then we have for K>2 $(i_1, j_K) < (i_K, j_K) = (i_0, j_0)$ so that (i_1, j_K) is settled by our assumption and $a_{I_1}b_{J_2}=0$ whence follows $b_{K_1}a_{I_2}=0$ as K is commutative.

Multiplying (2) by a_{j_1} from right, we ontain $a_{j_1}b_{j_2}=0$ i.e., (i₁, j₄) is settled and we can proceed further.

Theorem 5. The semigroup ring KS is a Marot ring with nontrivial divisors of zero if and only if (i) S is a finite commutative semigroup without divisors of zero and K is a field, or (2) S is a ordered semigroup without divisors of zero and K is a commutative ring with divisors of zero or (3) S is any commutative semigroup without divisors of zero and K ring any with divisors of zero.

Proof. Follows from the above three propositions.

Problem: If S is a commutative semigroup and R a commutative ring with unit. Can RS have nontrivial regular ideals?

REFERENCES

- [1] KREMPA, J. On Semigroup rings. Bull. Acad. Polon. Sce. Ser. Math. Astron. Phys. 25, 225-31 (1977).
- [2] R. KATSUDA, On Marot Rings. Proc. Japan Acad., 60, Ser. A. 134-138 (1984).