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Abstract. A family of constructs is proposed that generalizes the notion of
closure operator associated to a partial order. The constructs of the family
(and some of its sub constructs) hold adjoint relations with Gconv which
ensure a topological resemblance; furthermore, it is shown that the constructs
are topological categories.
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Relaciones Topológicas

Resumen. Se propone una familia de constructos que generaliza la noción de
operador clausura asociado a un orden parcial. Los constructos de la fami-
lia (y algunos de sus subconstructos) cumplen relaciones de adjunción con
Gconv lo que nos asegura un símil topológico; aún más, se demuestra que
los constructos son categorías topológicas.
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1. Introduction

In [5] it is said that familiarity with categorical techniques can help those who are con-
fronted with a new field to detect analogies and connections to familiar fields, to organize
the new field properly, and to separate the general concepts, problems and results from
the specials ones which deserve special investigation. Thus, categorical knowledge can
help us to direct and organize our thoughts.

Closure operators have had multiple uses and applications. These applications have used
finite set models [3, 4, 6], endorsing a pretopological structure to the relationships ob-
tained from modelling the interactions between the elements (relationships that represent
nearness, academic influence, domination, etc.).
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80 E. Angulo-Perkins & J. Angoa-Amador

A categorical approach to the definitions of previously cited works helps to achive the
goals stated at the beginning of this section. Therefore, we propose structures that
generalize the closure operator used in those works.

Moreover, Blass [2] says that a useful methodological principle in modern mathematics
is that, when a kind of mathematics structures are defined, the corresponding morphism
between two of such structures should be defined. Therefore, not only new structures
are defined but also the morphisms among them.

The constructs proposed in this work have been defined in such a way that adjunctions to
classical topological structures (Gconv and some of its full subconstructs) are obtained.
We expect that analogous topological concepts can be defined in the future.

First, we determine the nature of the spaces to work as mathematical structures in the
sense of [1]. Then our mathematical structures are laid inside a construct in the sense of
[1, 5, 7]. As our main concern is to work with generalized forms of pretopological spaces,
we endowed our constructs with the properties needed to be topological in the sense of
[7]. We proceed to verify the “correct” behavior of our structures settling adjunctions
with familiar topological constructs.

2. Preliminaries

Following [7], a construct is a category C whose objects are structured sets, i.e. pairs
(X, ε) where X is a set and ε is C -structure on X, whose morphisms f : (X, ε)→ (Y, η)
are suitable maps between X and Y and whose composition law is the usual composition
of maps.

We call X the underlying set of (X, ε) and f : X → Y the underlying map of f :
(X, ε) → (Y, η). As an abuse of notation, we say a map f : (X, ε) → (Y, η) to refer to
the underlying map f . An example of this is the following definition:

If (X, ε) and (X, η) are C -constructs, we say that η is coarser than ε (or ε is finer than
η) if the identity map 1X : (X, ε)→ (X, η) is a C -morphism.

Again, according to [7], a construct C is called topological if it satisfies the following
conditions:

(1) Existence of initial structures: For any set X, any family
(
(Xi, εi)

)
i∈I of C -

objects indexed by a class I and any family (fi : X → Xi)i∈I of maps in-
dexed by I there exists a unique C -structure ε on X which is initial with
respect to

(
X, fi, (Xi, εi, I)

)
; i.e., such that for any C -object (Y, η) a map

g : (Y, η) → (X, ε) is a C -morphism iff for every i ∈ I the composite map
fi ◦ g : (Y, η)→ (Xi, εi) is a C -morphism.

(2) For any set X, the class {(Y, η) ∈ Ob(C ) : X = Y } of all C -objects with underlying
set X is a set.

(3) For any set X with cardinality at most one, there exists exactly one C -object with
underlying set X.
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We mainly work with the constructGconv and some of its full subcategories. Recall that
Gconv denotes the category of generalized convergence spaces (and continuous maps),
that is:

For each setX let F (X) be the set of all filters onX. Then a generalized convergence
space is a pair (X, q) where X is a set and q ⊆ F (X)×X such that the following
axioms are satisfied:

1) (ẋ, x) ∈ q for each x ∈ X, where ẋ = {A ⊆ X : x ∈ A};
2) (G, x) ∈ q whenever (F , x) ∈ q and G ⊇ F .

A map f : (X, q) → (Y, p) between generalized convergence spaces is continuous
provided that (f(F), f(x)) ∈ p for each (F , x) ∈ q.

Now, we recall some important subcategories ofGconv: A generalized convergence space
(X, q) is called

a) a Kent convergence space provided that the following condition is satisfied:

• (F ∩ ẋ, x) ∈ q whenever (F , x) ∈ q,

b) a limit space provided that the following condition is satisfied:

• (F ∩ G, x) ∈ q whenever (F , x) and (G, x) ∈ q,

c) a pretopological space provided that the following condition is satisfied:

• (Vq(x), x) ∈ q for all x ∈ X, where Vq(x) =
⋂
{F ∈ F (X) : (F , x) ∈ q}.

A pretopological space (X, q) is called a topological space provided that the following
condition is satisfied:

For each U ∈ Vq(x) there is some V ∈ Vq(x) such that U ∈ Vq(y) for all y ∈ V .

The corresponding full subcategories of Gconv are denoted by Kent, Lim, Prtop and
Top, respectively.

3. Topological Relations

In this section the concept of topological relation is defined. Also, interesting properties of
these relations are proved. Constructs are built with them, we show that those constructs
are topological.

Let X be a set and R ⊆ X × P(X). We say that R is a R1-relation on X if:

(RT0) ∀x ∈ X
[
(x, ∅) /∈ R

]
,

(RT1) ∀x ∈ X
[
(x, {x}) ∈ R

]
.
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82 E. Angulo-Perkins & J. Angoa-Amador

If R is a R1-relation on X, we call the pair (X,R) a R1-space. A function f : (X,R)→
(Y,Q) between R1-spaces is R1-continuous if:

∀(x, U) ∈ R ∃V
[
(f(x), V ) ∈ Q ∧ f [U ] ⊆ V

]
.

The class of R1-spaces, and R1-continuous functions forms a construct. This construct
is denoted by R1. Observe that the identity map 1X : (X,R) → (X,R1) is an R1-
morphism between the R1-objects (X,R) and (X,R1) if R ⊆ R1. We denote by xR the
set {U ⊆ X | (x, U) ∈ R}. The union of this set,

⋃
xR is denoted by U R

x or just Ux

when it is clear from context what relation we are referring to.

The following association can be made:

We associate to each (X,R) ∈ R1 an object (X, qR) ∈ Gconv as follows:

(F , x) ∈ qR ↔ ∃U [x R U ∧ F ⊇ U↑] .

We associate each R1-continuous f : (X,R) → (Y,Q) the Gconv-morphism f :
(X, qR)→ (Y, qQ), with the same underlying function.

Remark 3.1. The above association is a functor:

Given that x R {x} for all x, and ẋ = {x}↑, we have that (ẋ, x) ∈ qR for all x ∈ X.

If G ⊇ F and (F , x) ∈ qR, then ∃U [x R U ∧ F ⊇ U↑]. Thus we obtain that (G, x) ∈ qR
since G ⊇ U↑.
Suppose f : (X,R) → (Y,Q) is R1-continuous and (F , x) ∈ qR. It follows that
∃U [x R U ∧ F ⊇ U↑]. This implies that U ∈ F and f [U ] ∈ f(F); by the R1 continuity
we have that, for some V , f(x)QV where f [U ] ⊆ V . All the aforementioned implies that
f(F) ⊇ f [U ]↑ ⊇ V ↑, and also

(
f(F), f(x)

)
, which proves that f : (X, qR) → (Y, qQ) is

continuous.

The remaining properties to verify that the association is a functor are easily derived
from the construct structure. We denote the previous functor by T1.

The following association can also be made:

We associate to each (X, q) ∈ Gconv an R1-space, (X,Rq) as follows:

x Rq U ↔ ∃ (F , x) ∈ q
[
U =

⋂
F 6= ∅

]
.

We associate each Gconv-morphism f : (X, q)→ (Y, p) the R1-morphism f : (X,Rq)→
(Y,Rp), with the same underlying function.

Remark 3.2. The previous association is also a functor:

By construction we have (RT0). Given that (ẋ, x) ∈ q for all x, in any Gconv space, we
have that (RT1), therefore (X,Rq) is an R1-object.

Suppose that f : (X, q)→ (Y, p) is aGconv-morphism and that x Rq U . Then ∃ (F , x) ∈
q such that U =

⋂
F . By continuity of f we have that

(
f(F), f(x)

)
∈ p. Also, by
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construction, f [U ] ⊆ V , for all V ∈ f(F). Thus
⋂
f(F) ⊇ f [U ]. Observe that f [U ]↑ ⊇

f(F), this implies that
(
f [U ]↑, f(x)

)
. By construction f [U ] =

⋂
f [U ]↑, which implies

that f(x) Rp f [U ], which makes f an R1-morphism.

Equally, the remaining properties are easily derived from properties of the construct.

We will denote the previous functor by W1.

The following properties will be used to define different constructs.

Definition 3.3. Let X be a set and R ⊆ X × P(X):

(RT2) ∀x ∈ X
[
x R U ⇒ x R U ∪ {x}

]
.

(RT3) ∀x ∈ X
[
x R U ∧ x R V ⇒ x R (U ∪ V )

]
.

(RT4) ∀x ∈ X [x R Ux].

(RT5) ∀x ∈ X
[
x R U ∧ y ∈ U ⇒ Uy ⊆ Ux

]
.

With these properties it is possible to define Rn constructs as the full subconstructs of
R1 such that their objects satisfy the RTi properties with i ≤ 5.

Remark 3.4. Let (X,R) ∈ R1. We define Ř as (x, U) ∈ Ř⇔ ∃(x, V ) ∈ R [U ⊆ V ].

Then

1) T1((X,R)) = T1((X, Ř));

2) if R = Ř then

f : (X,R)→ (Y,Q) is R1-continuous⇔ ∀U
[
x R U ⇒ f(x)Qf [U ]

]
.

This means that if we are interested in studying Rn constructs through the functors T1

and W1, then we may assume R = Ř. Furthermore, we can replace (RT0) by

∀x ∈ X ∃U [x R U ∧ x ∈ U ] .

We will now see that the constructs Rn, with 1 ≤ n ≤ 5, are topological. First, we will
show this for R1 and then for the others.

and

Theorem 3.5. Let {(Xi, Ri)}i∈I and {fi : X → (Xi, Ri)}i∈I be a family of R1-spaces
and maps, respectively. The structure R over X defined as

x R U ↔ U 6= ∅ ∧ ∀i ∈ I ∃Vi ⊆ Xi

[
fi(x)RiVi ∧ fi[U ] ⊆ Vi

]

is an initial structure.
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Proof. Because fi(x) Ri {fi(x)} for all x ∈ X and all i ∈ I, we obtain that x R {x}.
Therefore we obtain RT1; the verification of RT0 is straightforward. The previous shows
that (X,R) is an R1 structure. Next we are going to verify the initiality.

Let g : (Y,Q) → (X,R) a map such that fi ◦ g : (Y,Q) → (X,Ri) is an R1-morphism.
We have to prove that g is an R1-morphism. Let y Q V . We will prove that ∃U ⊆
X
[
g(y) R U ∧ g[V ] ⊆ U

]
. Because fi ◦ g is an R1 morphism for each i ∈ I, then

∀i ∈ I ∃Ui ⊆ Xi

[
fi ◦ g(y) Ri Ui ∧ fi ◦ g[V ] ⊆ Ui

]
.

By the construction of R, we have that g(y) R g[V ]. Now we will show that R is the
coarsest structure that makes each fi R1-continuous. Suppose that R′ does it too. Let
1X : (X,R′)→ (X,R) be the identity map and (x, U) ∈ R′. We will prove that

∀i ∃Vi ⊆ Xi

[
fi(x) Ri Vi ∧ fi[U ] ⊆ Vi

]
,

but this is equivalent to fi : (X,R′) → (X,Ri) being R1-continuous, which is true by
hypothesis. �XXX

To show that Ri is also topological for 1 < i ≤ 5, it is enough to prove that the structure
R defined in Theorem 3.5 is an Ri-structure when {fi : X → (Xi, Ri)}i∈I is an Ri-source.

Theorem 3.6. The constructs Ri when 1 < i ≤ 5 are topological.

Proof. 1) R4 is topological. Indeed, let {fi : X → (Xi, Ri)}i∈I with {(Xi, Ri)}i∈I ⊆ R4.
Let (X,R) be defined as in indeed, Theorem 3.5. We shall prove that (x,

⋃
xR) ∈ R.

∀U ∈ xR ∃VU
[
fi(x) Ri VU ∧ fi[U ] ⊆ VU

]
. Because each (Xi, Ri) is an R4-object, then

(fi(x),
⋃
fi(x)Ri) ∈ Ri. It follows that

fi

[⋃
xR
]

=
⋃

U∈xR

fi[U ] ⊆
⋃

U∈xR

VU ⊆
⋃

fi(x)Ri for all i ∈ I,

which concludes that x R
⋃
xR.

The proof that R2 and R3 are topological constructs is similar.

2) R5 is topological. To see this, let {fi : X → (Xi, Ri)}i∈I with {(Xi, Ri)}i∈I ⊆ R5;
(X,R) as defined in Theorem 3.5; (x, U) ∈ R and y ∈ U . We shall prove that
Uy ⊆ Ux. Since (x, U) ∈ R, we have that ∀i ∈ I ∃Vi

[
fi(x) Ri Vi ∧ fi[U ] ⊆ Vi

]
.

It follows that fi(y) ∈ fi[U ] ⊆ Vi for each i and, since each (Xi, Ri) is R5, we
obtain Ufi(y) ⊆ Ufi(x). Let z ∈ Uy then ∃A [y R A ∧ z ∈ A]. Observe that z ∈
Ux is equivalent to ∃U ′

[
x R U ′ ∧ z ∈ U ′

]
. By construction we have that ∀i ∈ I

∃Wi

[
fi(y) Ri Wi ∧ fi[A] ⊆Wi

]
. From this it follows that fi(z) ∈ fi[A] ⊆WA ⊆ Ufi(y) ⊆

Ufi(x). So, we obtain that x R {z}. �XXX

From an R1-object, (X,R), we can construct Rn-objects as follows:

By letting Rk = R ∪ R∗, with R∗ = {(x, U ∪ {x}) | x R U}, we obtain an R2-object.
Defining Rl = R∪R∗, with R∗ = {(x,∪A) | A ⊆ xR∧|A| < ℵ0}, we obtain an R3-object.
And RC = R ∪R∗, with R∗ = {(x,∪A) | A ⊆ xR}, is an R4-object.
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We define recursively over ω the following sets for each x ∈ X: xR
0 = xR, xRn+1 =

{V ∈ yR
n | ∃U ∈ xR

n [y ∈ U ]} ∪ xRn, xRω =
⋃
{xRn | n ∈ ω}. Hence, (X, (Rω)C) is an

R5-object.

Theorem 3.7. R4 is a reflective subcategory of R1.

Proof. Let (X,R) be an R1-object and let RC be as previously defined. Let us see, in
fact, that (X,RC) is an R4-object. It is enough to show that

⋃
xRC =

⋃
xR. One

inclusion follows by definition. Let x ∈
⋃
xRC , if x ∈ U ∈ R we have finished. Suppose

that x ∈ U ∈ R∗. This implies that ∃V ∈ R [x ∈ V ∈ xR], so x ∈
⋃
xR, which shows

that (X,RC) is an R4-object.

We will see that the identity map 1x : (X,R)→ (X,RC) is a morphism and serves as a
reflector; for which we shall prove that the following diagram commutes if f̄ has f as an
underlying map.

(X,R)

(X,RC) (Y,Q)

1x

f

f̄

Let f : (X,R) → (Y,Q) and (x, U) ∈ RC . If U ∈ R, we have finished. Sup-
pose that U ∈ R∗; then U =

⋃
A. By the R1-continuity of f , we have that

∀W ∈ A∃VW
[
f(x)QVW ∧ f [W ] ⊆ VW

]
; all this implies that

f [U ] = f [
⋃
A] =

⋃

W∈A
f [W ] ⊆

⋃

W∈A
VW ⊆ U Q

f(x).

�XXX

The proofs that R2 and R3 are reflective are similar to that for R4.

Theorem 3.8. Let (X,R) ∈ R1 and Rω as previously defined. Then:

a) (X,Rω) satisfies RT5,

b) for any R1-morphism f : (X,R)→ (Y,Q) with (Y,Q) an R5-object, the diagram

(X,R)

(X,Rω) (Y,Q)

1X

f

f̄

commutes if f̄ and f have the same underlying map.
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86 E. Angulo-Perkins & J. Angoa-Amador

Proof. a) Let (x, U) ∈ Rω and y ∈ U . We shall prove that Uy ⊆ Ux. Let z ∈ Uy =⋃
yR

ω, then ∃V ⊆ X ∃n ∈ ω
[
z ∈ V ∧ V ∈ yR

n
]
; let n̂ be the least n ∈ ω which

satisfies the property. Since U ∈ xR
ω we have that ∃m ∈ ω [U ∈ xR

ω]; let m̂ be the
least m ∈ ω which satisfies the property. Let l = max(m̂, n̂). With this we obtain
that z ∈ V ∈ xR

l+1 ⊆ xR
ω ⊆ Ux.

b) Let (x, U) ∈ Rω. Let n ∈ ω the least natural number such that (x, U) ∈ Rn. We shall
prove by induction over n that, if 0 < n, there are N ∈ ω, {Ai}i∈N+1 ⊆ P(X) and
{xi}i∈N+1 ⊆ X such that:

A0 = U, (xi, Ai) ∈ R for each i ∈ N + 1,
xN = x and xi ∈ Ai+1 for each i ∈ N.

Base case, n = 1. By definition we have that

∃V ⊆ X ∃y
[
(y, U) ∈ R ∧ y ∈ V ∧ (x, V ) ∈ R

]
.

Letting N = 0, A1 = V and x0 = y we obtain what is required.

Inductive step. Let (x, U) ∈ RM+1 (remark our hypothesis, M + 1 is the least natural
number which satisfies that membership). By definition we have that ∃V ⊆ X ∃ y ∈
X
[
(y, U) ∈ RM ∧ y ∈ V ∧ (x, V ) ∈ RM

]
. Using the induction hypothesis with (y, U) ∈

RM and (x, V ) ∈ RM we obtain that there are N ∈ ω, {Ai}i∈N+1 ⊆ P(X), {xi}i∈N+1 ⊆
X and, N ′ ∈ ω, {A′i}i∈N ′+1 ⊆ P(X) y {x′i}i∈N ′+1 ⊆ X, respectively. For j ∈ N +N ′+2
we define

Bj = Aj and zj = xj if j ∈ N + 1,
Bj = A′k and zj = x′k if j = k +N + 1.

This construction satisfies what is required: B0 = A0 = U, zN+N ′+1 = x′N ′ = x and that
zN = y ∈ V = A′0 = BN+1.

Let M = N + N ′ + 1. By construction and the R1-continuity of f we have that there
is a family {Vj}j∈M+1 ⊆ P(Y ) which satisfies that f(zj) Q Vj and f [Bj ] ⊆ Vj for each
j ∈M + 1. The previous and that (Y,Q) is an R5-object implies that:

f [U ] ⊆ Uf(z0) ⊆ Uf(zi) ⊆ . . . ⊆ Uf(x).

Since f(x)QVM and from RT4, we have that f(x)QUf(x), which ends the proof. �XXX

Remark 3.9. To prove that f̄ : (X, (Rω)C) → (Y,Q) is continuous, the case when U =⋃
A with A ⊆ xR

ω remains. In this case we proceed in the same way as Theorem 3.7,
where the existence for each VW is obtained in the same way as it done in Theorem 3.8.

To prove that (X, (Rω)C) satisfies the property RT5, observe that U Rω

x = U
Rω

C
x .

From the previous observation we can deduce the following:

Theorem 3.10. R5 is reflexive in R1.

Example 3.11. Let X = ω.

1) Let nR = {{n}, {n+ 1}, {n+ 2}}. (X,R) is an R1-space but not an R2-space.
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2) Let nR = {{n}, {n, n+ 1}, {n, n+ 2}}. (X,R) is an R2-space but not an R3-space.

3) Let nR = {[n,N ] ⊆ ω | N ∈ ω ∧ n ≤ N}. (X,R) is an R3-space but not an
R4-space.

4) For n 6= 0, let nR = {[n− 1, ω) , {n}}. For n = 0, let 0R = {{0}, ω}. (X,R) is an
R4-space but not an R5-space.

5) Let nR = {[n, ω), {n}}. (X,R) is an R5-space.

Remark 3.12. We said that these constructs generalize the closure operators generated
by a reflexive poset. Indeed: If ≤ is a reflexive partial order over X, define an R4-object,
(X,R), as x R U ↔ U = {y ∈ X | x ≤ z}. Then, the canonical closure constructed from
(X,≤) coincides with the canonical closure constructed from T1((X,R)).

4. Adjunction

We will show that the functors T1 y W1 are adjoints; since the functors assign the same
underlying map to the morphism, it will be enough to show that the unity and co-unity
must have the identity map as their underlying maps.

(X,R) (X,RqR) (X, qRq ) (X, q)

(Y,Q) (Y,RqQ) (Y, qRp) (Y, p)

f

ηR

f f

εq

f

ηQ εp

Having proved that the identity maps works as unity and co-unity, we get that T1(η(X,R)) :
(X, qR) → (X, qRqR

) has an identity as their underlying map. Since the identity map
ε(X,qR) : (X, qRqR

) → (X, qR) is a morphism and by definition of the Gconv continuity
we can conclude that qR = qRqR

. Those structures being equal, ε(X,qR) and T1(η(X,R)) are
the identity morphism over (X, qR). This trivializes the triangular identity εT1 ◦ T1η =
1T1 , since both maps from the left side are 1T1 . Analogously this can be shown for
W1ε ◦ ηW1

= 1W1
.

Theorem 4.1. The identity map εq : (X, qRq
)→ (X, q) is Gconv continuous.

Proof. Let (F , x) ∈ qRq . By construction we have the following

∃(x, U) ∈ Rq [F ⊇ U↑]

and ∃(G, x) ∈ q
[
U =

⋂
G
]
. Then U↑ ⊇ G, which implies that (U↑, x) ∈ q. Since

F ⊇ U↑ ⊇ G, we conclude (F , x) ∈ q. �XXX

Theorem 4.2. The identity map ηR : (X,R)→ (X,RqR) is R1-continuous.

Proof. Let xRU . By definition, (U↑, x) ∈ qR. Since U =
⋂
U↑, we conclude that

x RqR U . �XXX
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Example 4.3. Let (X,R) be an R1-object.

If (X,R) is an R1-object such that X ∈ xR, then (F , x) ∈ qR for all F ∈ F (X). In this
case we get the proper inclusion R  RqR .

Let X = (0, 1] ⊆ R. Define V as the filter generated by the family {(0, δ] | 0 < δ ≤ 1}
and let q(x) denote the set {F ∈ F (X) | (F , x) ∈ q}. Let (X, q) be such that q(1) has 1̇,
V and all the superfilters of V as members. Then qRq

(1) = {1̇}. In this case we get the
proper inclusion qRq

 q.

The following observation will be useful to prove Theorem 4.5 below.

Remark 4.4. Let I be a non empty set, M = {Fi}i∈I ⊆ F (X) and N = {
⋃
{g(i)}i∈I |

g ∈
∏
i∈I Fi}. Therefore,

1)
⋂
M = N .

2) If L = {
⋂
Fi | i ∈ I} then

⋂⋂
M =

⋃
L.

1) For
⋂
M ⊆ N , if U ∈

⋂
M , it is enough to choose g such that g(i) = U for all i ∈ I.

For N ⊆
⋂
M it is enough to see that for each î ∈ I, g(̂i) ⊆

⋃
{g(i)}i∈I .

2) For
⋂⋂

M ⊇
⋃
L, observe that

⋂
M ⊆ Fi for each i ∈ I. For

⋂⋂
M ⊆

⋃
L, let us

see
⋂
M as N = {

⋃
{g(i)}i∈I | g ∈

∏
i∈I Fi}. Let z ∈

⋂⋂
M . This means that for each

g ∈
∏
i∈I Fi, there is an i such that z ∈ g(i). Suppose that z /∈

⋃
L. This implies that,

for each i ∈ I, we can select an Ai ∈ Fi such that z /∈ Ai. If we define ĝ(i) as Ai we have
that z /∈

⋃
{ĝ(i)}i∈I , a contradiction.

Restricting the functor T1 over Ri and W1 over Kent,Lim,Prtop and Top (which will
be denoted by Tn and Wn, respectively) we obtain the following:

Theorem 4.5. The following constructs are adjoints:

(a) R2 and Kent,

(b) R3 and Lim,

(c) R4 and Prtop,

(d) R5 and Top.

Proof. (a) T2 is well defined: Let (X,R) ∈ R2, (F , x) ∈ qR. By construction ∃U [x R
U ∧ F ⊇ U↑]. By the (RT2) property we have x R U ∪ {x}. Since F ∩ ẋ ⊇ (U ∪ {x})↑,
we conclude that (F ∩ ẋ, x) ∈ qR.
W2 is well defined: Let (X, q) ∈ Kent, x Rq U . By construction ∃(F , x) ∈
q
[
U =

⋂
F 6= ∅

]
. By the Kent property, we have that (F ∩ ẋ, x) ∈ q. By Remark

4.4 (choosing M = {F , ẋ}) we have
⋂

(F ∩ ẋ) = U ∪{x}, and, by the functor definition,
we have that x Rq U ∪ {x}.
(b) T3 is well defined: Similar to (a), it can be easily proven that if F ,G ∈ qR(x), we get
that there are U, V ⊆ P(X) such that F ⊇ U↑,G ⊇ V ↑, x R U and x R V . Finally, by
F ∩ G ⊇ (U ∪ V ) ↑ (Remark 4.4) we conclude that F ∩ G ∈ qR(x).
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W3 is well defined: Again, using the technique from (a) and by Remark 4.4, we have
that if x Rq U and xRqV , then there are F ,G ∈ q(x) such that

⋂
F = U 6= ∅ and⋂

G = V 6= ∅. But
⋂
F ∩ G = U ∪ V , which implies that xRqU ∪ V .

(c) T4 is well defined: Let (X,R) ∈ R4. By Remark 4.4 we have
⋂
F∈qR(x) F 3 Ux.

W4 is well defined: Let (X, q) ∈ Prtop. By Remark 4.4 we have that
⋂

Vx =
⋂⋂

q(x) =⋃
{
⋂
Fi | i ∈ I} = Ux.

(d) T5 is well defined: Let (X,R) ∈ R5. Let U ∈ Vx and take V as Ux. If y ∈ V , then

∃U ′
[
y ∈ U ′ ∧ x R U ′

]
.

From this and (RT5), we have that Uy ⊆ Ux. Thus Ux ∈ Vy and U ∈ Vy. This shows
that (X, qR) is a topological space; observe that Vx = Ux↑ for all x, then (X, qR) is
always an Alexandroff space.

W5 is well defined: Let (X, q) ∈ Top, xRqU and y ∈ U . By (c) it is known that
⋂

Vx =
Ux. y ∈ U , then there exists (F , x) ∈ q such that y ∈

⋂
F = U . Thus ∀V ∈ Vx[y ∈ V ].

Let V ∈ Vx. Since (X, q) ∈ Top, we have that ∃V ′ ∈ Vx
[
∀z ∈ V ′ [V ∈ Vz]

]
. In particular

V ∈ Vy. Therefore Uy ⊆ V . Since V was arbitrary, Uy ⊆
⋂

Vx = Ux. �XXX

It remains to determine which properties the functor W1 preserve, and how they will be
stated in an R1 construct.
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