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Abstract. Caterpillar trees, or simply Caterpillar, are trees such that when
we remove all their leaves (or end edge) we obtain a path. The number of
nonisomorphic caterpillars with n ≥ 2 edges is 2n−3 + 2⌊(n−3)/2⌋. Using a
new sum of graphs, introduced in this paper, we provided a new proof of this
result.
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Una nueva suma de grafos y árboles oruga

Resumen. Árboles oruga, o simplemente oruga, son árboles tales que cuando
les quitamos todas sus ramas (o arista final) obtenemos un camino. La can-
tidad de orugas no isomorfas con n ≥ 2 aristas es 2n−3 + 2⌊(n−3)/2⌋. Usando
una nueva suma de grafos, introducida en este artículo, proporcionamos una
nueva prueba de este resultado.
Palabras clave: Grafo, árboles oruga, grafo árbol, suma de grafos.

1. Introduction

The Caterpillar trees were initially studied by F. Harary and A. J. Schwenk [1] in a series
of articles. The name was introduced by Arthur Hobbs, an American mathematician.
In 1973, F. Harary and A.J. Schwenk [1] showed that the number of nonisomorphic
caterpillars with n ≥ 2 edges is 2n−3 + 2⌊(n−3)/2⌋. They found this formula in two ways:
first, derived as a special case of an application of Pólya’s enumeration Theorem which
counts graphs with integer-weighted points; secondly, by an appropriate labelling of the
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lines of the caterpillar. In this paper, we gave a new proof of this result using a new sum
of graphs, introduced in [3, 2] and studied with great attention in [4].
The paper is organized as follows. In Section 2, we study a combinatorial problem which
will be used in the proof of the main Theorem (see Theorem 3.7). In Section 3, we
introduce the sum of graphs and use it to build the caterpillar trees, and, thus, give a
new proof of the formula enumerating caterpillar trees on n ≥ 2 edges.

2. Combinatorial lemma

Let B = {0, 1} and Bm = B × · · · × B, the m-times Cartesian product of B. We define
the following functions:

i : Bm −→ Bm r : Bm −→ Bm

(x1, x2, ... , xm) 7−→ (x1, x2, ... , xm), (x1, x2, ... , xm) 7−→ (xm, xm−1, ... , x1),

c : Bm −→ Bm

(x1, x2, ... , xm) 7−→ (x1, x2, ... , xm),

where, for k = 1, . . . ,m,

xk =

{
0 if xk = 1,
1 if xk = 0.

Here, we consider for all f, g : Bm −→ Bm the composition f ◦ g : Bm −→ Bm.

Proposition 2.1. Let i, r, c : Bm −→ Bm be the functions defined above and take xxx ∈ Bm.
Then, the following properties hold:

(1) i(xxx) = xxx,

(2) r2 = i,

(3) c2 = i,

(4) c ◦ r = r ◦ c,

(5) (c ◦ r)2 = i,

where c2 = c ◦ c.

Proof. By definition of i, r and c, it is clear that (1), (2), (3) and (4) follows. And (5)
follows from (4), (2) and (3). □✓✓✓

Definition 2.2. Let xxx,yyy ∈ Bm. We will say that xxx is related to yyy when i(xxx) = yyy or
r(xxx) = yyy or c(xxx) = yyy or (c ◦ r)(xxx) = yyy, and it will be denoted by xxx ∼ yyy.

Remark 2.3. The relation ∼ defined in Definition 2.2 is an equivalence relation.

In this section we prove the following combinatorial lemma for the equivalence classes
associated with points in Bm.
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Lemma 2.4 (Combinatorial Lemma). Let xxx ∈ Bm and set [xxx ] = {yyy ∈ Bm | xxx ∼ yyy}.
Then,

#

(
Bm

∼

)
= 2m−2 + 2⌊

m−2
2 ⌋,

where Bm

∼
=

{
[xxx ] | xxx ∈ Bm

}
and bzc is the largest integer smaller than or equal to z.

Proof. First, let’s show the following: The class [xxx] ∈ Bm

∼ has 2 or 4 representatives.
Indeed, if xxx, r(xxx), c(xxx) and (c ◦ r)(xxx) = (r ◦ c)(xxx) are different from each other, we will
get that the class [xxx] has 4 representatives, namely

[xxx] = {xxx, r(xxx), c(xxx), (c ◦ r)(xxx)}.

On the other hand:

i) If xxx = r(xxx), then c(xxx) = (c ◦ r)(xxx) and, thus, [xxx] = {xxx, c(xxx)}.

ii) If xxx = (r ◦ c)(xxx), then r(xxx) = c(xxx) and, thus, [xxx] = {xxx, r(xxx) = c(xxx)}.

The cases i) and ii) have only 2 representatives for the class [xxx] and the affirmation
follows.
Remark: xxx 6= c(xxx) by definition.

Now, let [xxx] ∈ Bm

∼
be a class that only has 2 representatives. Set xxx = (x1, x2, · · · , xm).

We have the following cases:

I) If xxx = r(xxx) then

x1 = xm, x2 = xm−1, · · · , xi = xm−i+1, · · · , x⌊m
2 ⌋ = xm−⌊m

2 ⌋+1.

II) If xxx = (r ◦ c)(xxx) then

x1 = xm, x2 = xm−1, · · · , xi = xm−i+1, · · · , x⌊m
2 ⌋ = xm−⌊m

2 ⌋+1.

In case (I), if m is even, we have to know the bm
2 c first entries of xxx = (x1, x2, · · · , xm),

that is, we can form 2⌊
m
2 ⌋ elements. Now, as pairwise elements belong to the same

class, we have that 2⌊
m
2 ⌋−1 belong to the same class, and, therefore, we will have two

representatives. On the other hand, if m is odd, we first delete the central coordinate
x⌊m

2 ⌋ + 1 of xxx, to obtain the m − 1 even case, which leads us to have 2⌊
m−1

2 ⌋−1 classes
with two representatives. Now, considering the central coordinate x⌊m

2 ⌋ + 1 of xxx, we see
that it can take the values 0 or 1, and thus, when m is odd there are 2(2⌊

m−1
2 ⌋−1) =

2⌊
m−1

2 ⌋ = 2⌊
m
2 ⌋ classes with two representatives.

Analogously, we have a similar result in case (II) when m is even. Note that when m is
odd there are no representatives, since no xxx with m odd entries satisfies this case.
So, from (I) and (II), if m is even, we get 2⌊

m
2 ⌋−1 + 2⌊

m
2 ⌋−1 = 2⌊

m
2 ⌋ classes with two

representatives each. If m is odd, we get 2⌊
m
2 ⌋. Therefore, in both cases we have the

same number of representatives.
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The next step consists of computing #
(Bm

∼
)
. It follows from the Affirmation that Bm

∼ is
made up of classes that have 2 or 4 elements. Thus, we can divide Bm into a collection
of disjoint classes of 2 or 4 elements each. Thus, one gets

2m = #(Bm) = 2µ+ 4η, (1)

where µ is the number of classes of Bm

∼ with two representatives, namely µ = 2⌊
m
2 ⌋−1 +

2⌊
m
2 ⌋−1 = 2⌊

m
2 ⌋; and η is the number of classes of Bm

∼ with four representatives. Then,
substituting these values in (1), one gets

2m = 2(2⌊
m
2 ⌋) + 4η

⇒ η = 2m−2 − 2⌊
m
2 ⌋−1.

(2)

Therefore,

#

(
Bm

∼

)
= µ+ η = 2⌊

m
2 ⌋ + 2m−2 − 2⌊

m
2 ⌋−1 = 2m−2 + 2⌊

m
2 ⌋−1 = 2m−2 + 2⌊

m−2
2 ⌋.

□✓✓✓

3. Sum of graph and Caterpillar tree

Let us denote by A the set of all tree graphs.
The sum of graphs in A is an operation that is performed between two graphs of A. This
sum is defined as follows:

Figure 1. Sum of graphs.

Definition 3.1. Let G = (V,E) and H = (V ′, E′) be distinct graphs in A and let e =
(a, b) ∈ E and e′ = (a′, b′) ∈ E′ be edges. Then,

G ⊕{e,e′} H = (V ∪ V ′ − {a′, b′}, E ∪ E′ − {e′})

is a new graph such that e and e′ and their respective vertices, connecting G and H, are
identified. The graph G⊕{e,e′}H is the sum between G and H. This sum will be denoted
by G ⊕ H if there is no confusion in the identification of the edges. See Figure 1 for a
graphical representation of this sum.

Definition 3.2. Consider the path P3 and J = P3. We denote by J+ the graph derived
of J with two positive signs in the extreme vertices and a negative sign in the middle
vertex, and by J− to the graph derived of J with two negative signs in the extreme
vertices and a positive sign in the middle vertex. See Figure 2.
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Figure 2. Graphs J+ and J−.

Definition 3.3. Let {Ji}ki=1 be a family of graphs, where Ji ∈ {J+,J−}. We define
J1 ⊕ J2 ⊕ · · · ⊕ Jk, as follows:

• For k = 1, we have J1.

• For k = 2, we choose an edge in J1 and add with J2 in the chosen edge. Thus, we
obtain J1 ⊕ J2. Finally, we mark in J1 ⊕ J2 the edge of J2 where the addition was
not performed. (See part (i) of Figure 3).

• For k = j, we add J1 ⊕ · · · ⊕ Jj−1 with Jj on the marked edge of J1 ⊕ · · · ⊕ Jj−1,
and, thus, obtaining J1 ⊕ · · · ⊕ Jj−1 ⊕ Jj . Finally, we mark J1 ⊕ · · · ⊕ Jj−1 ⊕ Jj in
the edge of Jj , where the addition was not performed.

We note that the identification of edges should be done while preserving the signs.

Notation. Given {Ji}ki=1, where Ji ∈ {J+,J−}, we will denote by
⊕k

i=1 Ji the sum
J1⊕· · ·⊕Jk in Definition 3.3. Thus:

⊕k
i=1 Ji = J1⊕· · ·⊕Jk. By convention,

⊕0
i=1 Ji = I,

where I, is the graph of one edge.

Example 3.4. In Figure 3 (i), we have the construction of J+ ⊕ J+ and J− ⊕ J−,
according to the Definition 3.3, where we can see that J+ ⊕ J+

∼= J− ⊕ J−, as graphs.
Similarly, in Figure 3 (ii) we have the construction of J+ ⊕J− and J− ⊕J+, where we
can see that J+ ⊕ J− ∼= J− ⊕ J+.

Proposition 3.5. Let {Ji}ki=1 be a family of graphs such that Ji ∈ {J+,J−}. Then, the
following statements holds:

1.
k⊕

i=1

Ji ∼=
k⊕

i=1

J i, where J i =

{
J+, if Ji = J−
J−, if Ji = J+

,

2.
k⊕

i=1

Ji ∼=
k⊕

i=1

Jk+1−i.

Proof. For (1), since J+
∼= J− we have Ji ∼= J i for all i = 1, · · · , k. Then, if we replace

Ji by J i in
⊕k

i=1 Ji we get
⊕k

i=1 J i and since the sums of the graphs continue to be
performed on the same edges, we have

⊕k
i=1 Ji

∼=
⊕k

i=1 J i, see Figure 4.

For (2), we note that the sum
⊕k

i=1 Ji = J1⊕J2⊕· · ·⊕Jk−1⊕Jk is built starting from J1
which is added to J2 to obtain J1⊕J2, latter we added J3 to obtain J1⊕J2⊕J3, and, thus,
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Figure 3. Sum between J+ and J−, where “∼= ” is the isomorphism of graphs.

until we get the sum of J1⊕J2⊕· · ·⊕Jk−1 and Jk to finally get J1⊕J2⊕· · ·⊕Jk−1⊕Jk =⊕k
i=1 Ji, but we also noted that this same sum is built as the sum of Jk and Jk−1, and,

thus, until we get to add Jk⊕· · ·⊕J2 with J1 to get Jk⊕Jk−1⊕· · ·⊕J2⊕J1 =
⊕k

i=1 Jk+1−i.
Thus,

⊕k
i=1 Ji

∼=
⊕k

i=1 Jk+1−i. □✓✓✓

Example 3.6. The graphs J+⊕J−⊕J+⊕J+ and J−⊕J+⊕J−⊕J− are built in (i) and
(ii) of Figure 4, respectively. Furthermore, J−⊕J+⊕J−⊕J− ∼= J+⊕J−⊕J+⊕J+ =
J− ⊕ J + ⊕ J− ⊕ J−, and, thus:

J− ⊕ J+ ⊕ J− ⊕ J− ∼= J− ⊕ J + ⊕ J− ⊕ J−.

Figure 4. J+ ⊕ J− ⊕ J+ ⊕ J+
∼= J− ⊕ J+ ⊕ J− ⊕ J−

The following Theorem is the main result of the paper (it was initially showed by F.
Harary and A.J. Schwenk in [1]), for which we gave an alternative proof.
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Theorem 3.7. Let J = {J1 ⊕ · · · ⊕ Ji ⊕ · · · ⊕ Jm ∈ A | Ji = J+ or Ji = J−, ∀i =
1, · · · ,m, and m ∈ N}. Then, the number of different nonisomorphic graphs with n ≥ 2
edges in J, is given by

2n−3 + 2⌊
n−3
2 ⌋.

Proof. Given m ∈ N, we define the functions ι, φ, ψ : J −→ J by

ι(

m⊕
i=1

Ji) =

m⊕
i=1

Ji,

φ(

m⊕
i=1

Ji) =

m⊕
i=1

J i,

ψ(

m⊕
i=1

Ji) =

m⊕
i=1

Jm+1−i.

We say that
⊕m

i=1 Ji and
⊕m

i=1 Li are ∼m related in J, denoted by

m⊕
i=1

Ji ∼m

m⊕
i=1

Li,

if

ι(

m⊕
i=1

Ji) =

m⊕
i=1

Li or φ(

m⊕
i=1

Ji) =

m⊕
i=1

Li or

ψ(

m⊕
i=1

Ji) =

m⊕
i=1

Li or (φ ◦ ψ)(
m⊕
i=1

Ji) =

m⊕
i=1

Li.

Now, we affirm that the relation ∼m is an equivalence relation. Indeed, it follows
immediately by the combinatorial Lemma (Lemma 2.4), where we take Ji = xi,
J+ = 1, J− = 0,

⊕m
i=1 Ji = (x1, · · · , xm) and ι = i, φ = f , ψ = g, ∼m=∼. Fur-

thermore,

#

(
J

∼m

)
= #

(
Bm

∼

)
= 2m−2 + 2⌊

m−2
2 ⌋. (3)

Thus, we have 2m−2+2⌊
m−2

2 ⌋ different graphs of the form
⊕m

i=1 Ji, where Ji ∈ {J+,J−}.
Since the graphs

⊕m
i=1 Ji have m + 1 edges, making n = m + 1 and substituting in (3)

we have that the number of nonisomorphic different graphs, with n ≥ 2 edges in J, is
given by

2n−3 + 2⌊
n−3
2 ⌋.

□✓✓✓

Given a Caterpillar tree fixed, the following result allows us to obtain a family {Ji}ki=1,
where Ji ∈ {J+,J−}, such that K ∼=

⊕k
i=1 Ji.
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Proposition 3.8. Let n be a positive integer and K be a Caterpillar tree with n+1 edges,
then there exists a family {Ji}ni=1, where Ji ∈ {J+,J−}, such that

K ∼=
n⊕

i=1

Ji.

Proof. By induction on the number E of edges of K.

For a graph with 1 edge, then by convention we have K ∼=
⊕0

i=1 Ji.

For a graph with 2 edges, we take K ∼=
⊕1

i=1 Ji, where Ji = J+ or Ji = J−.

Suppose that it is true for a graph with n edges, then K ∼=
⊕n−1

i=1 Ji.

Now, we show that it is true for a graph with n + 1 edges. Indeed, K ′ is the
graph that is obtained when deleting an end edge from K. Thus, K ′ has E′ = n
edges. Then, by induction, we have that K ′ ∼=

⊕n−1
i=1 Ji. Now, in

⊕n−1
i=1 Ji we

insert an end edge by adding conveniently J+ or J−, so that
⊕n

i=1 Ji
∼= K as

follows: first, we identify the sign of the vertex where the edge will be inserted
(it is clear that said vertex is positive or negative). Then there will be a j such
that

⊕n−1
i=1 Ji = (

⊕n−1−j
i=1 Ji)⊕ (

⊕n−1
i=n−j Ji) so that the last vertex to the right of⊕n−1−j

i=1 Ji become the vertex where the missing edge will be inserted. If the vertex
is positive (resp. negative) we immediately add

⊕n−1−j
i=1 Ji with J− (resp. J+), and

adding
⊕n−1

i=n−j Ji, we get (
⊕n−1−j

i=1 Ji)⊕J− ⊕ (
⊕n−1

i=n−j Ji) (resp. (
⊕n−1−j

i=1 Ji)⊕
J+⊕ (

⊕n−1
i=n−j Ji)). As was inserted the missing edge to

⊕n−1
i=1 Ji to be isomorphic

to K, we have that

(

n−1−j⊕
i=1

Ji)⊕ J ⊕ (

n−1⊕
i=n−j

Ji) ∼=
n⊕

k=1

Jk ∼= K,

where J = J−, if the last vertex created in
⊕n−1−j

i=1 Ji has a positive sign and
J = J+, if the last vertex created in

⊕n−1−j
i=1 Ji has a negative sign.

□✓✓✓

An example for Proposition 3.8 is given in Figure 5.

Theorem 3.9. Let J0 be the set of all different nonisomorphic graphs in J and let K be
the set of nonisomorphic Caterpillar trees, then

J0 = K and #(J0) = #(K) = 2n−3 + 2⌊
n−3
2 ⌋.

Proof. By Definition 3.3 we have that the graphs in J0 are Caterpillar trees (thus J0 ⊆ K)
then, by Proposition 3.8, we get that every Caterpillar tree is isomorphic to an element
of J0, thus K ⊆ J0 and therefore J0 = K. Furthermore,

#(J0) = #(K) = 2n−3 + 2⌊
n−3
2 ⌋.

□✓✓✓
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Figure 5. Way to insert an edge in positive vertex (i) or in negative vertex (ii).
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