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Abstract. Let q be a prime. We classify the odd primes p 6= q such that the
equation x2 ≡ q (mod p) has a solution, concretely, we find a subgroup L4q of
the multiplicative group U4q of integers relatively prime with 4q (modulo 4q)
such that x2 ≡ q (mod p) has a solution iff p ≡ c (mod 4q) for some c ∈ L4q.
Moreover, L4q is the only subgroup of U4q of half order containing −1.
Considering the ring Z[

√
2], for any odd prime p it is known that the equation

x2 ≡ 2 (mod p) has a solution iff the equation x2 − 2y2 = p has a solution in
the integers. We ask whether this can be extended in the context of Z[ n

√
2]

with n ≥ 2, namely: for any prime p ≡ 1 (mod n), is it true that xn ≡ 2
(mod p) has a solution iff the equation D2

n(x0, . . . , xn−1) = p has a solution
in the integers? Here D2

n(x̄) represents the norm of the field extension Q( n
√
2)

of Q. We solve some weak versions of this problem, where equality with p is
replaced by 0 (mod p) (divisible by p), and the “norm" Dr

n(x̄) is considered
for any r ∈ Z in the place of 2.
Keywords: Power residues modulo prime, quadratic residues, Legendre sym-
bol, norms of field extensions, irreducible polynomials.
MSC2010: 11A15, 11C20, 11R04.

Sobre residuos de potencias módulo primo
Resumen. Sea q un número primo. Clasificamos los primos impares p 6= q
tal que la ecuación x2 ≡ q (mód p) tiene solución, concretamente, hay un
subgrupo L4q del grupo multiplicativo U4q de los enteros primos relativos
con 4q (módulo 4q) tal que x2 ≡ q (mód p) tiene solución si y solo si p ≡ c
(mód 4q) para algún c ∈ L4q. Aún más, L4q es el único subgrupo de U4q con
la mitad del orden que contiene a −1.
En conexión con el anillo Z[

√
2], para cualquier primo impar p se sabe que

la ecuación x2 ≡ 2 (mód p) tiene solución si y solo si x2 − 2y2 = p tiene so-
lución en los enteros. Nos preguntamos si esta situación se puede extender al
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contexto de Z[ n
√
2] con n ≥ 2, a saber: para cualquier primo p ≡ 1 (mód n),

¿la ecuación xn ≡ 2 (mód p) tiene solución si y solo si D2
n(x0, . . . , xn−1) = p

tiene solución en los enteros? Aquí D2
n(x̄) representa la norma de Q( n

√
2) co-

mo extensión del campo Q. Solucionamos algunas versiones débiles de este
problema, donde igualdad con p se reemplaza por 0 (mód p) (divisible por
p), y la “norma” Dr

n(x̄) se considera para cualquier r ∈ Z en lugar de 2.
Palabras clave: Residuos de potencias módulo primo, residuos cuadráticos,
símbolo de Legendre, normas de extensiones de campos, polinomios irreduci-
bles.

1. Introduction

In this work, we prove several properties and present problems related with quadratic
residues and its generalization to n-th power residues modulo prime, all in the framework
of elementary number theory.
Before entering into the subject, we first fix some basic notations.

Notation 1.1. In the following, m > 1 is an integer and q is a prime.

(1) Fq denotes the field of integers modulo q, which is the prime field of order q, and F×
q

denotes its associated multiplicative group.

(2) More generally, Um denotes the multiplicative group of integers modulo m that are
relatively prime with m. Note that Uq = F×

q .

(3) Let G be a group with identity element 1G. For any r ∈ G, the order of r in G,
which we denote by OG(r), is the smallest positive integer n satisfying rn = 1G in
case it exists, otherwise OG(r) is infinite. When G = Um, for r ∈ Um we abbreviate
Om(r) := OUm

(r), which is the smallest positive integer n such that rn ≡ 1 (mod m)
(which always exists because Um is finite). We can of course extend this notion for
any r ∈ Z that is relatively prime with m, so Om(r) = Om(r0) where r0 is the residue
obtained after dividing r by m.

(4) The number of elements of a set A is denoted by #A. When G is a group, #G is
also called the order of G. When G is a finite group and r ∈ G, OG(r) divides #G.
Therefore, since #Um = φ(m) where φ denotes Euler’s phi function, Om(r) | φ(m)
for any integer r relatively prime with m. In particular, if q does not divide r then
Oq(r) | φ(q) = q − 1.

(5) Let r ∈ Z be relatively prime with m. Since Om(r) | φ(m), there is a unique (positive)
integer nm(r) satisfying Om(r)nm(r) = φ(m). Therefore, due to the definition of
Om(r), nm(r) is the largest n | φ(m) such that r

φ(m)
n ≡ 1 (mod m).

The notion of nm(r) is not standard, but it will be very useful in the context of power
residues modulo prime, as well as in characterizations of Om(r).
Euler’s criterion for quadratic residues modulo prime can be easily generalized to power
residues as follows (see e.g. [5, Thm. 3.11], [8, Thm. 1.29] and [3, Prop. 4.2.1]).
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Theorem 1.2 (Generalized Euler’s criterion). Let r ∈ Z, p a prime not dividing r and let
n be a positive integer. Then the equation xn ≡ r (mod p) has a solution iff

r
p−1

gcd(p−1,n) ≡ 1 (mod p).

Even more, if the equation xn ≡ r (mod p) has a solution then it has gcd(p− 1, n)-many
incongruent solutions modulo p in total.

As a consequence,

Corollary 1.3. Let r ∈ Z and p a prime not dividing r. Then np(r) is the largest n | p−1
such that r has an n-th root modulo p. Moreover, the following statements are equivalent
for any positive integer n:

(i) xn ≡ r (mod p) has a solution.

(ii) r
p−1

gcd(p−1,n) ≡ 1 (mod p).

(iii) gcd(p− 1, n) | np(r).

Proof. The equivalence (i) ⇔ (ii) is Theorem 1.2; the equivalence (ii) ⇔ (iii) can be seen
from the definition of np(r) (see Notation 1.1(5)). □✓✓✓

In this view, np(r) plays a very important role in relation with power residues modulo p.

The main results of this paper are divided in two parts, the first about quadratic reci-
procity, and the second about power reciprocity modulo prime.

Main results 1: On quadratic residues

Fix r ∈ Z. When p is an odd prime not dividing r (i.e. gcd(p, r) = 1), whether r is a
quadratic residue modulo p is determined by the Legendre symbol, which is defined by

(
r

p

)
=

{
1 if the equation x2 ≡ r (mod p) has a solution,
−1 otherwise. (1.4)

In the case r = 2, the problem of whether 2 is a quadratic residue modulo an odd prime
is already solved.

Theorem 1.5 (See e.g. [1, Thm. 9.6]). If p is an odd prime then
(

2
p

)
= 1 iff p ≡ ±1

(mod 8).

We ask about similar characterizations for any integer r.

Problem 1.6. Let r ∈ Z. Is there a positive integer m(r) and a set L(r) ⊆ Um(r) such
that, for any prime p not dividing r,

(
r
p

)
= 1 iff the residue of p modulo m(r) is in L(r)?

If so, can L(r) be characterized in some way?
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The answer to the first question should not be difficult due to the quadratic reciprocity
law, but the characterization of L(r) is more interesting for settling the general problem.
In fact, due to the property (

ab

p

)
=

(
a

p

)(
b

p

)
, (1.7)

the interesting case of Problem 1.6 is when r is a prime. In this case, we proved the
following main result:

Theorem A (Theorem 3.5). Let q be a prime. Then

(a) There is only one subgroup of U4q with order #U4q

2 containing −1. This subgroup is
denoted by L4q.

(b) For any prime p 6= q,
(

q
p

)
= 1 iff the residue of p modulo 4q is in L4q.

This theorem becomes a tool to calculate
(

r
p

)
for any r ∈ Z relatively prime with p.

This is presented in Theorem 3.6 (and at the end of Section 3).

In the case of composite r, due to Equation (1.7) an extension of Theorem A is reasonable
when r is square free. In this case we can find a subgroup L4r of U4r containing −1 as in
(b), but in general this group is not unique as in (a). Details are presented in Theorem 3.7
and in the discussion that follows it.

Main results 2: On power residues

We aim to generalize the following result to power residues.

Theorem 1.8 (See e.g. [2, Thm. 256] and [9]). Let p be an odd prime. Then the following
statements are equivalent.

(i) The equation x2 ≡ 2 (mod p) has a solution.

(ii) The equation x2 − 2y2 = p has an integer solution.

This is related to the characterization of irreducible elements of the ring Z[
√
2]: an odd

prime p in Z is still a prime in Z[
√
2] iff the equation x2 − 2y2 = p does not have integer

solutions (see [2, Thm. 256]). Recall that x2 − 2y2 is the norm of x + y
√
2 in the field

extension Q(
√
2) of Q.

For any n ≥ 2, denote by D2
n(x0, . . . , xn−1) the norm of x0 + x1

n
√
2 + . . . xn−1

n
√
2n−1 in

the field extension Q( n
√
2) of Q. This norm is defined (even in a more general context) in

Section 4, but we just state here that D2
n(x0, . . . , xn−1) is an integer when x0, . . . , xn−1 ∈

Z. So we ask whether Theorem 1.8 can be generalized in the following sense.

Problem 1.9. Let n > 2 and p a prime such that p ≡ 1 (mod n). Are the following
statements equivalent?

(1) The equation xn ≡ 2 (mod p) has a solution.
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(2) The equation D2
n(x0, . . . , xn−1) = p has an integer solution.

The solution of this problem seems to rely on tools in algebraic number theory that
would go beyond elementary number theory. In these terms, we managed to solve weaker
versions of the problem, where in some of them (2) is replaced by D2

n(x0, . . . , xn−1) ≡ 0
(mod p). The trivial solution of this equation is x0 = . . . = xn−1 = 0, so we aim for
non-trivial solutions. On the other hand, our results deal with any integer r in place of
2, so we used a general version Dr

n(x0, . . . , xn−1) of the norm (which is defined in detail
in Section 4).

Theorem B (Theorem 5.1). Let p be a prime, r ∈ Z, n ∈ Z+ and r0 ∈ Fp such that
r ≡ r0 (mod p).

(a) The polynomial xn − r0 is irreducible in Fp[x] iff the equation Dr
n(x0, . . . , xn−1) ≡ 0

(mod p) does not have a non-trivial solution in the integers.

(b) If n ≥ 2 and the equation xn ≡ r (mod p) has a solution, then Dr
n(x0, . . . , xn−1) ≡ 0

(mod p) has a non-trivial solution in Zn satisfying −p
1
n < xi < p

1
n for all 0 ≤ i < n.

The proof of Theorem B(b) is inspired in the proof of Theorem 1.8 presented in the
post [9]. As a consequence, we obtain the following equivalence when n is a prime.

Corollary (Corollary 5.2). Let p and q be primes, r ∈ Z. Then the following statements
are equivalent:

(i) xq ≡ r (mod p) has a solution.

(ii) Dr
q(x0, . . . , xn−1) ≡ 0 (mod p) has a non-trivial solution.

We can also conclude some weakening of the implication (2) ⇒ (1) of Problem 1.9, which
yields the real implication when n is a prime.

Theorem C (Theorem 5.3). Assume that p is a prime, n ≥ 2, r ∈ Fp and r0 ∈ Fp such
that r ≡ r0 (mod p). If the polynomial xn − r0 is irreducible in Fp[x] then Dr

n(x̄) = p
does not have a solution in the integers.
In particular, (2) ⇒ (1) of Problem 1.9 is true when n is a prime.

We also present a simple proof of Theorem 1.8 using Theorem B (see Theorem 5.4),
where 2 can also be replaced by r ∈ {−2,−1}. This shortens the proof in [9] a little bit.
We remark that “xn − r is irreducible in Fp[x]” is stronger than “xn ≡ r (mod p) does
not have a solution”. For instance, if p ∈ {7, 17, 23, 31, 41, 47, 71}, the equation x2 ≡ 2
(mod p) has a solution, but xp−1 ≡ 2 (mod p) does not have one. On the other hand, if
a0 is a solution of x2 − 2 = 0 in Fp then, in Fp[x]:

xp−1 − 2 = x2( p−1
2 ) − a20 = (x

p−1
2 − a0)(x

p−1
2 + a0).

This means that xp−1−2 is reducible in Fp[x]. More details about irreducibility of xn−r
are presented in Section 4.
We do not have any counter-example for Problem 1.9 even when xn − 2 is reducible in
Fp[x].
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Indirect motivation

The motivation of this work is related with the study of Mersenne primes, although we
do not present explicit results about them. A Mersenne number is an integer of the form
2n − 1 with n ∈ Z+ (positive integer), and a Mersenne prime is a primer number of this
form. It is well known that, whenever 2n − 1 is a prime, n must be a prime. Another
curious fact is that, whenever 2n − 1 is a Mersenne prime, there is only one (odd) prime
p such that Op(2) | n, that is, such that 2n ≡ 1 (mod p). Even more, since n must be
prime, n = Op(2). The converse situation is interesting: if n is a prime and there is only
one prime p such that Op(2) | n, then 2n − 1 = pe for some e ∈ Z+. Hence, when e = 1,
2n−1 is a Mersenne prime; but if e > 1 then p is a Wieferich prime, i.e., a prime number
p satisfying 2p−1 ≡ 1 (mod p2). Recall that so far only two Wieferich primes are known,
namely 1093 and 3511, and Silverman proved under the abc-conjecture that there are
infinitely many non-Wieferich primes [7].

The previous observation indicates that understanding Op(2) would lead to a better
understanding of Mersenne primes and would trigger possible characterizations. On the
other hand, since Op(2) is associated with np(2), according to Corollary 1.3 we can
discover a lot about np(r) in general by studying power residues modulo p.

Concerning Op(r) for some fixed integer r > 1, the pattern of the sequence of Op(r) for
prime p relatively prime with r seems to be very erratic [6], but On(r) in general can
be determined in terms of Op(r) for prime p | n, see Theorems 2.1–2.3. In particular,
Ope(r) is deeply related with Wieferich primes (in base r). A more detail discussion is
presented in Section 2.

Structure of the paper

Section 2. We discuss some simple aspects related with Om(r) and np(r). In particular,
we show expressions of Om(r) for composite m, and a method to obtain n-th roots of
1 modulo a prime p, in particular np(r)-th roots of 1. The contents of this section are
known and unrelated with the main results, but we present them in accordance with the
“indirect motivation” above.

Section 3. This is dedicated to the proof of Theorem A and to further discussions about
groups associated with quadratic reciprocity.

Section 4. We present some preliminaries in algebra that are going to be required in
the proof of the main results about power residues modulo prime.

Section 5. We prove our main results about power residues modulo prime, in particular
Theorems B and C.

Section 6. We discuss research related to this work.

2. Multiplicative order

We first show how the multiplicative order modulo composite numbers can be calculated.
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Theorem 2.1 (See e.g. [5, §3.2, Thm. 3.6]). Let p be an odd prime and r ∈ Z, r 6= ±1
relatively prime with p. Assume that e0 is the maximum integer such that Ope0 (r) =
Op(r). Then, for any e ≥ 1,

Ope(r) =

{
Op(r) when e ≤ e0,
pe−e0Op(r) otherwise.

The previous result has a deep connection with Wieferich primes. In fact, an odd prime
p is a Wieferich prime in base r if p ∤ r and Op2(r) = Op(r).1 Very few of these numbers
are known for each r > 1.

The following is a version of Theorem 2.1 for p = 2. The proof is almost the same, so we
omit it.

Theorem 2.2. Assume r ∈ Z is odd, r 6= ±1. If e0 ≥ 2 is the maximum integer such that
O2e0 (r) = O4(r) then, for any e ≥ 2,

O2e(r) =

{
O4(r) when e ≤ e0,
2e−e0O4(r) otherwise.

Now we look at the case when m > 1 is composite but not a prime power, so we assume
that it has prime factorization m =

∏s
i=1 p

ei
i (s ≥ 2).

Theorem 2.3. When gcd(r,m)=1, Om(r) = lcm(Op
e1
1
(r), Op

e2
2
(r), . . . , Opes

s
(r)).

Proof. Let us suppose b := lcm(Op
e1
1
(r), Op

e2
2
(r), . . . , Opes

s
(r)). We need to prove the

following.

1. rb ≡ 1 (mod m). For any i ≤ s we know that r
O

p
ei
i

(r) ≡ 1 (mod peii ) and Op
ei
i
(r) |

b, so rb ≡ 1 (mod peii ), i.e. peii | rb− 1. Since peii and p
ej
j are relatively prime when

i 6= j, we conclude that m | rb − 1.

2. b is the minimal number satisfying the equation rx ≡ 1 (mod p) Assume rx ≡ 1
(mod m). This implies rx ≡ 1 (mod peii ) for any i ≤ s, so Op

ei
i
(r) | x. Therefore

b | x, so by (1) b is the minimum we claim. □✓✓✓

Notice that, by the Chinese remainder theorem, the map Zm →
⊕s

i=1 Zp
ei
i

that sends a

to the tuple (a1, . . . , as) of residues modulo peii is a ring isomorphism, and when restricted
to Um it gives a group isomorphism onto ⊕s

i=1Up
ei
i

. So the previous result can be seen as
a particular case of the following fact: if G =

⊕k
i=1 Gi is a direct sum of groups of finite

order and ā = (a1, . . . , ak) ∈ G, then OG(ā) = lcm(OG1
(a1), . . . , OGk

(ak)). (A similar
proof works.)

As a consequence, we obtain the following modular equation using Euler’s phi function.
1The standard definition is rp−1 ≡ 1 (mod p2), which is equivalent thanks to Theorem 2.1: If

Op2 (r) ̸= Op(r) then Op2 (r) = pOp(r), which does not divide p− 1.
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Corollary 2.4. If gcd(r,m) = 1 and

c =
φ(m)

gcd(φ(pe11 ), φ(pe22 ), . . . , φ(pess ))

then rc ≡ 1 (mod m).

Proof. Since lcm(a1, a2, . . . , am) · gcd(a1, a2, . . . , am) | a1a2 · · · am, by Theorem 2.3 we
can prove that

Om(r) | lcm(φ(p1
e1), φ(p2

e2), . . . , φ(ps
es))

and lcm(φ(p1
e1), φ(p2

e2), . . . , φ(ps
es)) | c.

The theorem follows immediately. □✓✓✓

The previous result can be generalized as well in the context of direct sums of groups: if
ā ∈ G and c = #G

gcd(#G1,...,#Gk)
then āc = 1G, i.e. OG(ā) | c.

From here until the end of this section, we assume that p is a prime and gcd(r, p) = 1.
We look at the effect of the power of Op(r) in F×

p , namely, properties of kOp(r) for
k ∈ Fp. In fact, these properties come from more general results. First, we show that
{kOp(r) : k ∈ F×

p } gives the full set of np(r)-th roots of 1 modulo p, which can be
generalized as follows.

Theorem 2.5. Let n ≥ 1 be an integer. Then all the n-th roots of unity can be obtained
from the set

A :=
{
a

p−1
gcd(n,p−1) : a ∈ F×

p

}
Moreover, if rp is a primitive root of p then the set above coincides modulo p with

B :=
{
rp

ℓ p−1
gcd(n,p−1) : 0 ≤ ℓ < gcd(n, p− 1)

}
,

and their members are pairwise incongruent modulo p.

Proof. We define m(n) := p−1
gcd(n,p−1) and b := rp

m(n). For any a ∈ F×
p , if a ≡ rp

k (mod p)

then am(n) ≡ rp
km(n) (mod p). If we put k = d · gcd(n, p − 1) + ℓ for some d ∈ Z and

0 ≤ ℓ < gcd(n, p− 1), then km(n) = d(p− 1)+ ℓm(n). So we get am(n) ≡
(
rp

m(n)
)ℓ ≡ bℓ

(mod p). This shows A ⊆ B (modulo p). The converse inclusion is trivial.

By Theorem 1.2, the equation xn ≡ 1 (mod p) has exactly gcd(n, p− 1)-many solutions
in Fp. On the other hand, since Op(b) = gcd(n, p− 1), it is clear that

(
bℓ
)n ≡ 1 (mod p)

for all 0 ≤ ℓ < gcd(n, p − 1), and that the bℓ are pairwise incongruent modulo p. This
shows that B is the complete set of n-th roots of unity. □✓✓✓

Corollary 2.6. The set of solutions for the equation xnp(r) ≡ 1 (mod p) (i.e. the set of
np(r)-th roots of unity modulo p) is{

aOp(r) : a ∈ F×
p

}
=

{
rp

ℓOp(r) : 0 ≤ ℓ < np(r)
}

(modulo p).
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Recall the following properties of roots of unity modulo p.

Lemma 2.7. Let n ≥ 1 and assume that a is an n-th root of 1 modulo p. Then:

(a) If a ≡ 1 (mod p) then
n−1∑
i=0

ai ≡ n (mod p).

(b) If a 6≡ 1 (mod p) then
n−1∑
i=0

ai ≡ 0 (mod p).

Proof. Property (a) is trivial; since

(a− 1)

n−1∑
i=0

ai = an − 1 ≡ 0 (mod p),

it is clear that a 6≡ 1 (mod p) implies (b). □✓✓✓

As a consequence, we can show the behaviour of the sum of kOp(r) for 1 ≤ k ≤ p− 1, or
even more generally:

Theorem 2.8 (See e.g. [8, Pg. 67]). Let n ∈ Z+ . Then:

(a) p− 1 | n ⇔
p−1∑
k=1

kn ≡ p− 1 (mod p).

(b) p− 1 ∤ n ⇔
p−1∑
k=1

kn ≡ 0 (mod p).

Proof. Fix a primitive root rp of p, and for each 1 ≤ k < p choose ek < p− 1 such that
rp

ek ≡ k (mod p). We have the following:

p−1∑
k=1

kn ≡
p−1∑
k=1

(rp
ek)n ≡

p−1∑
k=1

(
rp

n
)ek ≡

p−2∑
i=0

(
rp

n
)i

(mod p).

Note that any member of F×
p is a (p − 1)-th root of 1, so we can apply Lemma 2.7 to

conclude:

(a) if rpn ≡ 1 (mod p) then
p−2∑
i=0

(
rp

n
)i ≡ p− 1 (mod p);

(b) if rpn 6≡ 1 (mod p) then
p−2∑
i=0

(
rp

n
)i ≡ 0 (mod p).

It is easy to verify that rpn ≡ 1 (mod p) is equivalent to p−1 | n, so the result follows. □✓✓✓
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Corollary 2.9. Let r ∈ Z such that gcd(r, p) = 1. Then:

(a) Op(r) = p− 1 ⇔
p−1∑
k=1

kOp(r) ≡ p− 1 (mod p).

(b) Op(r) 6= p− 1 ⇔
p−1∑
k=1

kOp(r) ≡ 0 (mod p).

3. Groups associated with quadratic residues

This section is dedicated to the proof of Theorem A.

Recall the Legendre symbol
(

r
p

)
as presented in Equation (1.4). It is known that the map

F×
p → U4, r 7→

(
r
p

)
is a group homomorphism, where U4 = {1,−1} as a multiplicative

group,2 so

L∗
p :=

{
a ∈ F×

p :

(
a

p

)
= 1

}
(3.1)

is a subgroup of F×
p of order p−1

2 (half of the order of F×
p ).

We look at the following converse situation: given an integer r, characterize the odd
primes p relatively prime with r such that

(
r
p

)
= 1. This is associated with np(r) in the

following sense.

Lemma 3.2. Let p be an odd prime, r ∈ Z such that gcd(r, p) = 1. Then the following
statements are equivalent:

(i)
(

r
p

)
= 1.

(ii) x2 ≡ r (mod p) has a solution.

(iii) r
p−1
2 ≡ 1 (mod p).

(iv) np(r) is even.

Proof. The equivalence (i) ⇔ (ii) follows from the definition of Lagrange’s symbol. The
others are a direct consequence of Corollary 1.3 (applied to n = 2). □✓✓✓

First, we look at the case when r = q is a prime. If q = 2 we have the following situation.

Theorem 3.3. If p is an odd prime then the following statements are equivalent.

(i)
(

2
p

)
= 1.

(ii) p ≡ ±1 (mod 8).
2This is isomorphic to the additive group Z2.
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Some notes about power residues modulo prime 11

(iii) 2
p−1
2 ≡ 1 (mod p).

(iv) np(2) is even.

Proof. (i) ⇔ (ii) is known, see Theorem 1.5. The rest follows by Lemma 3.2. □✓✓✓

We aim to generalize Theorem 3.3 for any r in the place of 2, concretely, to find a
condition like in (ii) that characterizes

(
r
p

)
for any odd prime p relatively prime with r.

An observation about the case r = 2: Denote L8 := {1,−1} as a subgroup of U8. Note
that this is the only subgroup of U8 of order 2 (half of the order of U8) that contains
−1. Theorem 3.3 says that

(
2
p

)
= 1 iff p ≡ c (mod 8) for some c ∈ L8, which validates

Theorem A for r = 2.

Assume that r = q is an odd prime. If p 6= q is an odd prime then, by the quadratic
reciprocity law: (

q

p

)
= (−1)

q−1
2

p−1
2

(
p

q

)
. (3.4)

We start assuming q ≡ −1 (mod 4),3 in which case(
q

p

)
= (−1)

p−1
2

(
p

q

)
.

Therefore,
(

q
p

)
= 1 iff one of the following cases hold:

(i) p ≡ 1 (mod 4) and p ≡ a (mod q) for some a ∈ L∗
q (see Equation (3.1)), or

(ii) p ≡ −1 (mod 4) and p ≡ b (mod q) for some b ∈ Uq ∖ L∗
q .

For any odd prime q0: by the Chinese remainder theorem, the map Fq0 : Z4q0 → Z4⊕Fq0

that sends any x to the pair (x0, x1) of remainders modulo 4 and q0 respectively, is a
ring isomorphism. When this map is restricted to U4q0 it becomes a group isomorphism
onto U4 ⊕ F×

q0 .

Coming back to our argument, using the previous terminology we conclude that
(

q
p

)
= 1

iff p ≡ c (mod 4q) for some c ∈ U4q0 such that c satisfies one of the following conditions:

(⋆)q1: Fq(c) = (1, a) for some a ∈ L∗
q (by (i)), or

(⋆)q2: Fq(c) = (−1, b) for some b ∈ Uq ∖ L∗
q (by (ii)).

Let L4q be the set of c ∈ U4q satisfying either (⋆)q1 or (⋆)q2. Since

L′
(4,q) := {(e, a) ∈ U4 ⊕ Uq : either e = 1 and a ∈ L∗

q , or e 6= 1 and a /∈ L∗
q}

3Although the easy case is q ≡ 1 (mod 4), we decided to start with the other case for convenience of
the presentation.
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is a subgroup of U4 ⊕ Uq and L4q is the inverse image under Fq of this subgroup, we
conclude that L4q is a subgroup of U4q.

Moreover, L4q has order q− 1, which is half of the order of U4q, and −1 ∈ L4q: Since L∗
q

has order q−1
2 , it is clear that the order of L′

(4,q) is double, that is, q − 1, and this is the
order of L4q; note that Fq(−1) = (−1,−1) and −1 /∈ L∗

q because q ≡ −1 (mod 4), so it
satisfies (⋆)q2 and we get −1 ∈ L4q.

We turn to the case when q ≡ 1 (mod 4). By Equation (3.4) we obtain that
(

q
p

)
=

(
p
q

)
,

so
(

q
p

)
= 1 iff p ≡ a (mod q) for some a ∈ L∗

q . Using the ring isomorphism Fq introduced
before, define

L4q := {c ∈ U4q : Fq(c) = (e, a) for some e ∈ U4 and a ∈ L∗
q}.

Since this is the inverse image under Fq of U4 ⊕ L∗
q and this is a subgroup of U4 ⊕ Uq

of size q − 1, we conclude that L4q is a subgroup of U4q of order q − 1 (half of the order
of U4q). Even more, −1 ∈ L4q because Fq(−1) = (−1,−1) and, since q ≡ 1 (mod 4),
−1 ∈ L∗

q .

The previous argument is then summarized in the following result, which generalizes
Theorem 3.3 and concludes the proof of Theorem A.

Theorem 3.5. Let q 6= p be prime numbers with p odd. Then
(

q
p

)
= 1 iff p ≡ c (mod 4q)

for some c ∈ L4q.

Moreover, L4q is the unique subgroup of U4q with order q − 1 (half of the order of U4q)
that contains −1.

Proof. According to the previous discussion, it remains to show that, whenever q is an
odd prime, L4q is the unique subgroup of U4q as in the statement. So let G be a subgroup
of U4q of order q − 1 with −1 ∈ G. This indicates that (−1) := {1,−1} is a subgroup of
G, so when taking quotients

U4q/G ∼= (U4q/(−1))/(G/(−1)).

Note that U4q/(−1) ∼= U2q and G/(−1) is a subgroup of U4q/(−1) of order q−1
2 . So it is

enough to show that U2q contains only one subgroup of order q−1
2 .

By the Chinese remainder theorem, U2q is isomorphic to U2⊕F×
q , which is isomorphic to

F×
q itself. Since F×

q is a cyclic group, it only contains one subgroup of order q−1
2 , which

concludes the proof. □✓✓✓

Now we turn to the more general case r ∈ Z+. If r is a square then trivially
(

r
p

)
= 1 for

any odd prime p relatively prime with r; if r =
∏s

i=1 q
ei
i is the prime factorization of r

and r is not a square, and p is an odd prime relatively prime with r, then by (1.7):(
r

p

)
=

s∏
i=1

(
qi
p

)ei

=
∏
i∈S

(
qi
p

)
=

(∏
i∈S qi

p

)
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Some notes about power residues modulo prime 13

where S := {i : ei is odd}.
Therefore, the general case reduces to when r is square free, that is, it has its prime
factorization of the form q1 · · · qm (when all prime powers are 1). Since(

r

p

)
=

m∏
i=1

(
qi
p

)

we obtain that
(

r
p

)
= 1 iff the number of elements of the set

{
i :

(
qi
p

)
= −1

}
is even.

We can express this in terms of the groups L4q thanks to Theorem 3.5.

Theorem 3.6. Let r ∈ Z+.

(a) If r is a square then
(

r
p

)
= 1 for any odd prime p with gcd(p, r) = 1.

(b) Assume that r is not a square and r =
∏s

i=1 q
ei
i is its prime factorization. If S :=

{i : ei is odd} then, for any odd prime p with gcd(p, r) = 1,
(

r
p

)
= 1 iff the number

of elements of the set

{i ∈ S : p ≡ b (mod qi) for some b ∈ U4qi ∖ L4qi}

is even.

We develop the case r = q1 · · · qm (prime factorization) a bit more. Consider the ring
homomorphism F ′

r : Z →
⊕m

i=1 Z4qi that sends x to the tuple (x1, . . . , xm) where x ≡ xi

(mod 4qi) for any i. Although the kernel of this map is (4r)Z, the image is not everything:
as a consequence of the Chinese remainder theorem (for non-coprime moduli),4

F ′
r[Z] =

{
(x1, . . . , xm) ∈

m⊕
i=1

Z4qi : xi ≡ xj (mod 4) for all i, j

}
.

Therefore, the map Fr : Z4r → F ′
r[Z] defined by Fr(a) = F ′

r(a), is a ring isomorphism.
If we restrict this map to U4r, we get a group isomorphism onto

U ′
(4,r) := F ′

r[Z] ∩
m⊕
i=1

U4qi =

{
(x1, . . . , xm) ∈

m⊕
i=1

U4qi : xi ≡ xj (mod 4) for all i, j

}
.

According to (b), define

L′
(4,r) := {(x1, . . . , xm) ∈ U ′

(4,r) : the number of elements of the set
{i : xi ∈ U4qi ∖ L4qi} is even}.

And let L4r = {x ∈ U4r : Fr(x) ∈ L′
(4,r)}. Therefore, for any odd prime p with

gcd(p, r) = 1,
(

r
p

)
= 1 iff p ≡ c (mod 4r) for some c ∈ L4r.

4This holds even when some qi is 2. Recall that the Chinese remainder theorem (for non-coprime
moduli) states that a system of congruences x ≡ ai (mod ni) (1 ≤ i ≤ m) has a solution iff ai ≡ aj
(mod gcd(ni, nj)) for all i, j, and the solution (if it exists) is unique modulo lcm(n1, . . . , nm) (this is a
generalization of [5, §2.4, Thm. 2.9] that can be easily proved by induction).
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14 Yuki Kiriu & Diego A. Mejía

It is easy to check that L′
(4,r) is a subgroup of U ′

(4,r) of half order, so L4r is a subgroup
of U4r of half order. Moreover, −1 ∈ L4r because {i : −1 ∈ U4qi ∖ L4qi} is empty by
Theorem 3.5 (so it has zero elements). To summarize:

Theorem 3.7. Let r ∈ Z+ with prime factorization r = q1 · · · qm. Then there is a
subgroup L4r of U4r of half order, containing −1, such that for any odd prime p with
gcd(p, r) = 1,

(
r
p

)
= 1 iff p ≡ c (mod 4r) for some c ∈ L4r.

However, it may be that L4r is not the only subgroup of U4r of half order containing
−1. For example, consider r = 15: L60 = {±1,±7,±11,±17}, but {±1,±11,±19,±29}
is another subgroup of U60 of half order containing −1.

To finish this section, we consider negative integers. If r ∈ Z+ and p is an odd prime
with gcd(r, p) = 1 then (

−r

p

)
=

(
−1

p

)(
r

p

)
.

Since
(

−1
p

)
= 1 iff p ≡ 1 (mod 4),

(
−r
p

)
can be easily calculated by Theorem 3.6.

4. Preliminaries about modules and fields

Throughout this section, we fix an arbitrary integral domain R, r ∈ R and a natural
number n. We first discuss the ring quotient Rr

n := R[x]/(xn − r). It is very common
to look at this ring quotient when R is a field and xn − r is irreducible in R[x], in which
case Rr

n is a field. But in this work we also want to look at the situation when xn − r is
reducible in R[x], in which case Rr

n is not an integral domain. In any case:

Lemma 4.1. The ring Rr
n is a free R-module with basis {1, u, . . . , un−1} where u := x

(mod (xn − r)), even more Rr
n is an R-algebra.

Proof. Recall that R[x] satisfies the division algorithm with monic polynomials: for any
f(x), g(x) ∈ R[x], if g(x) is of the form xm + am−1x

m−1 + . . .+ a0 (m = 0 is allowed, in
which case g(x) = 1) then there are unique q(x), t(x) ∈ R[x] such that f(x) = q(x)g(x)+
t(x) and t(x) has degree smaller than g(x).

Now, if 0 6= f(x) ∈ R[x] has degree smaller than n then, by applying the previous division
algorithm to g(x) = xn − r, we obtain that f(x) = q(x)g(x) + t(x) for unique q(x) and
t(x), the latter with degree smaller than n. Hence q(x) = 0: if q(x) 6= 0 has degree
m ≥ 0, then q(x)g(x), and thus f(x), have degree n+m, which contradicts that f(x) has
degree smaller than n. Therefore t(x) = f(x) 6= 0, meaning that f(x) is not a multiple
of xn − r (otherwise, t(x) = 0 by the division algorithm with monic polynomials).

Let R′ be the R-submodule of R[x] generated by {1, x, . . . , xn−1}, which is a free R-
module. The previous paragraph shows that the surjective R-module homomorphism
R′ → Rr

n that sends each xi to ui has kernel equal to the zero ring, so it is an R-module
isomorphism. This shows that Rr

n is a free R-module with basis {1, u, . . . , un−1}.

It is clear that Rr
n is an R-algebra. □✓✓✓
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Some notes about power residues modulo prime 15

If xn − r is reducible in R[x] then Rr
n is not an integral domain, but it is an integral

domain when R is a unique factorization domain and xn − r is irreducible in R[x]. In
general, Rr

n can be expressed as a ring of matrices Mr
n(R) such that the determinant

works as the norm of the elements of the ring.

Definition 4.2. (1) For x̄ = (x0, . . . , xn−1) ∈ Rn define

Mr
n(x̄) :=


x0 rxn−1 rxn−2 . . . rx2 rx1

x1 x0 rxn−1 . . . rx3 rx2

...
...

...
. . .

...
...

xn−2 xn−3 xn−4 . . . x0 rxn−1

xn−1 xn−2 xn−3 . . . x1 x0


and denote its determinant by Dr

n(x̄).

(2) If z ∈ Rr
n we denote Mr

n(z) := Mr
n(x̄) and Dr

n(z) := Dr
n(x̄) where x̄ =

(x0, . . . , xn−1) ∈ Rn is the unique tuple such that z =
∑n−1

i=0 xiu
i.

(3) Define Mr
n(R) := {Mr

n(x̄) : x̄ ∈ Rn}. When R is understood from the context we
just write Mr

n.

These matrices actually describe the shift endomorphisms in Rr
n:

Lemma 4.3. If z ∈ Rr
n then the matrix Mr

n(z) characterizes the endomorphism Rr
n → Rr

n

given by w 7→ zw. Concretely, Mr
n(z) is the unique matrix with the following property:

if w =
∑n−1

i=0 xiu
i for some x̄ ∈ Rn, then zw =

∑n−1
i=0 yiu

i where ȳ = Mr
n(z)x̄.

As a consequence Mr
n is a subring of the ring of n × n matrices with entries in R, even

more, Mr
n is commutative and so it is an R-algebra. In fact, it characterizes Rr

n.

Lemma 4.4. The function Mr
n : Rr

n → Mr
n is an R-algebra isomorphism, and the map

Dr
n : Rr

n → R satisfies Dr
n(zz

′) = Dr
n(z)D

r
n(z

′) for any z, z′ ∈ Rr
n.

The function Dr
n has the role of a norm for Rr

n. In fact, when F is a field and xn − r is
irreducible in F [x], F r

n is a field and Dr
n is its norm as an F -extension.

We list the exact form of some few Dr
n(x̄) with x̄ ∈ Rn:

Dr
2(x̄) =x0

2 − x1
2r;

Dr
3(x̄) =x0

3 + x1
3r + x2

3r2 − 3x0x1x2r;

Dr
4(x̄) =x0

4 − x1
4r + 4x0x1

2x2r − 2x0
2x2

2r − 4x0
2x1x3r + x2

4r2 − 4x1x2
2x3r

2+

2x1
2x3

2r2 + 4x0x2x3
2r2 − x3

4r3.

We can also talk about conjugates in Rr
n. In field extensions like Q(i) and Q(

√
2), the

conjugate z̄ of some element z satisfies that zz̄ is the norm of z. In the general case
we can look at the matrix characterization: for any matrix A of dimensions n× n (with
entries in R), A · adj(A) = |A|In where In is the identity matrix of dimensions n × n,
adj(A) is the adjugate of A and |A| is the determinant of A. Since the determinant acts as
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a norm, then adj(A) works as the (analog of the) conjugate of A. Recall that the matrix
A is invertible if there is some unique matrix A−1 of dimensions n×n, with entries in R,
such that AA−1 = A−1A = In. Recall that A is invertible iff |A| is a unit in R, in which
case A−1 = |A|−1adj(A). In Mr

n(R) we obtain:
Lemma 4.5. If A ∈ Mr

n(R) then adj(A) ∈ Mr
n(R). In particular, if A ∈ Mr

n(R) is
invertible (as a matrix) then A−1 ∈ Mr

n(R).

Proof. An analog of the Caley-Hamilton Theorem indicates that

(−1)n−1adj(A) = An−1 + cn−1A
n−2 + · · ·+ c1In

where cn−1, . . . , c0 ∈ R and λn + cn−1λ
n−1 + · · ·+ c0 is the characteristic polynomial of

A. If A ∈ Mr
n then (−1)n−1adj(A) ∈ Mr

n by the expression above, so adj(A) ∈ Mr
n.

In particular, when A is invertible, A−1 = |A|−1adj(A) ∈ Mr
n.

We also present an elementary proof in the case when A ∈ Mr
n(R) is invertible as a

matrix with entries in F , where F is the field of fractions of R. Choose z ∈ R such that
A = Mr

n(z). Since A is invertible, by Lemma 4.3 the map w 7→ zw is an automorphism on
F r
n , so there is some z′ ∈ F such that zz′ = 1, hence w 7→ z′w is the inverse of the previous

map. Therefore A−1 = Mr
n(z

′) ∈ Mr
n(F ), which implies that adj(A) = |A|A−1 ∈ Mr

n(F ).
But adj(A) is a matrix with entries in R, so adj(A) ∈ Mr

n(R). □✓✓✓

Now that we know a bit more about the structure of Rr
n, we now look at sufficient and

necessary conditions for the polynomial xn − r to be irreducible.
Lemma 4.6. If xn − r is irreducible in R[x] then: whenever q | n is prime, xq − r = 0
does not have a solution in R.

Proof. Assume that q | n is prime and xq − r = 0 has a solution v in R, that is, vq = r
in R. Then, in R[x],

xn − r = xq n
q − vq = (x

n
q − v)(x

n
q (q−1) + . . .+ vq−1),

so xn − r is reducible. □✓✓✓

We will prove the converse in some cases of interest by using the following result. From
now on, fix a field F and r ∈ F .
Theorem 4.7 (See [4, Ch. VI §9]). The polynomial xn − r is irreducible in F [x] iff the
following two conditions hold.

(i) If q | n is prime then the equation xq − r = 0 does not have a solution in F .

(ii) If 4 | n then the equation 4x4 + r = 0 does not have a solution in F .

Proof. The cited reference states and proves that (i) and (ii) implies that xn − r is
irreducible in F [x]. The converse implication is true for any ring R and it is easy to
prove. Assume that r ∈ R. Lemma 4.6 shows that xn − r irreducible in R[x] implies (i).
To show that (ii) is also implied we prove that, whenever 4 | n and 4u4 + r = 0 for some
u ∈ R, xn − r is reducible in R[x]. Since n = 4k for some k ≥ 1, we get

xn − r = (xk)4 + 4u4 = ((x2)k − 2uxk + 2u2)((x2)k + 2uxk + 2u2). □✓✓✓
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Some notes about power residues modulo prime 17

Corollary 4.8. Let q be a prime and let F be a field. Then xq − r = 0 does not have a
solution in F iff xq − r is irreducible in F [x].

Condition (ii) can be suppressed when we look at fields of prime characteristic.

Theorem 4.9. Let p be a prime and assume that 4 ∤ n or 4 | p − 1 or p = 2. If F has
characteristic p then xn− r is irreducible in F [x] iff, for any prime q | n, xq − r = 0 does
not have a solution in F .

Proof. We showed one direction in Lemma 4.6. To see the converse, assume that, for
any prime q | n, xq − r = 0 does not have a solution in F , which means that (i) of
Theorem 4.7 is valid. By using the same theorem, it is enough to show that (ii) holds,
that is, the equation 4x4 + r = 0 does not have a solution in F when 4 | n.
Assume that 4 | n, so either 4 | p− 1 or p = 2 by hypothesis. In the case 4 | p− 1 assume
towards a contradiction that 4x4 + r = 0 has a solution x0 ∈ F . So −r = 4x4

0 = (2x2
0)

2.
Let y0 := 2x2

0, so y20 = −r.
On the other hand, by properties of the Legendre symbol,(

−1

p

)
= (−1)

p−1
2 = 1 (because 4 | p− 1),

which means that −1 ≡ z20 (mod p) for some z0 ∈ Fp. Hence, r = (−r)(−1) = (y0z0)
2,

that is, the equation x2 − r = 0 has a solution in F , but this is not true by hypothesis:
since 2 is prime and 2 | n, x2 − r = 0 does not have a solution in F .
In the case p = 2 we have 4x4 + r = r. If 4x4 + r = 0 has a solution in F then r = 0,
but 4 | n so the hypothesis says that the equation x2 = 0 does not have a solution in F ,
which is absurd. □✓✓✓

Corollary 4.10. Let p be a prime and assume that n | p − 1. If F has characteristic p
then xn − r is irreducible in F [x] iff, for any prime q | n, xq − r = 0 does not have a
solution in F .

Proof. Immediate by Theorem 4.9 because 4 | n implies 4 | p− 1 when p is odd. □✓✓✓

In some cases, we can also characterize irreducibility of xn − r in Q[x].

Theorem 4.11. Let n be a natural number. If r ∈ Q and r > 0 then xn − r is irreducible
in Q[x] iff xq − r = 0 does not have a solution in Q for any prime q | n.

Proof. This is a direct consequence of Theorem 4.7 since condition (ii) there is always
satisfied. □✓✓✓

The previous result actually applies to any ordered field.
To finish this section, we show that irreducible in Fp[x] is stronger than irreducible in
Q[x] when r ∈ Z.

Corollary 4.12. Let p be a prime, r ∈ Z and n ∈ Z+. If r ≡ r0 (mod p) and xn − r0 is
irreducible in Fp[x] then xn − r is irreducible in Q[x].
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Proof. Assume that xn − r0 is irreducible in Fp[x]. We first prove that xq − r = 0 does
not have a solution in Q for any prime q | n. Using Lemma 4.6 with R = Fp, we know
that xq − r0 = 0 does not have a solution in Fp for any prime q | n, which implies that
the equation xq − r = 0 does not have a solution in Z, so neither in Q: if a, b ∈ Z are
relative prime, b > 0, and

(
a
b

)q − r = 0, then aq = rbq, which implies that b = 1 (if b > 1
then r = 0, so a = 0 and, since gcd(a, b) = 1, b = 1, contradiction), thus xq − r has a
solution in Z.
In the case r > 0 the result follows by Theorem 4.11; in the case n ∤ 4, the result follows
by Theorem 4.7; and when r = 0, we must have n = 1 (because we assumed xn − r0
irreducible in Fp[x]) and then xn − r = x is irreducible in Q.
So it remains to consider the case when r < 0 and n | 4. Here it remains to show that
(ii) of Theorem 4.7 holds for F = Q. Towards a contradiction, assume that 4a4 + r = 0
for some a ∈ Q. Since r ∈ Z and a4 = −r

4 , we must have that a ∈ Z. Therefore, modulo
p we get that 4x4 + r0 = 0 has a solution in Fp, but this contradicts (ii) of Theorem 4.7
for xn − r0 in Fp[x]. □✓✓✓

5. Power residues

In this section we show the main results concerning power residues. We start with
Theorem B.

Theorem 5.1. Let p be a prime, n ∈ Z+, r ∈ Z and let r0 ∈ Fp such that r ≡ r0 (mod p).

(a) The polynomial xn − r0 is irreducible in Fp[x] iff the equation Dr
n(x0, . . . , xn−1) ≡ 0

(mod p) does not have a non-trivial solution in the integers.

(b) If xn−r is reducible in Q[x] then Dr
n(x̄) = 0 has a non-trivial solution in the integers.

(c) If n ≥ 2 and the equation xn ≡ r (mod p) has a solution, then Dr
n(x0, . . . , xn−1) ≡ 0

(mod p) has a non-trivial solution in the integers. Even more, this solution satisfies
−p

1
n < xi < p

1
n for all 0 ≤ i < n.

Proof. Set F := Fp. We first show (a). Assume that xn − r0 is irreducible in F [x]. Then
F r0
n = F (u) is a field extension of F with u := n

√
r0, which is isomorphic to Mr0

n (F )
by Lemma 4.4. Let x̄ = (x0, . . . , xn−1) 6= (0, . . . , 0) with xi ∈ Fp (0 ≤ i < n), and set
A := Mr0

n (x̄). By Lemma 4.5 A−1 ∈ Mr0
n , so Dr0

n (x̄) 6= 0 in Fp, that is, Dr
n(x̄) 6≡ 0

(mod p).

For the converse, assume that xn − r0 is reducible in F [x]. Then F r0
n is not an integral

domain, so there are non-zero z, w ∈ F r0
n such that zw = 0. Then, by Lemma 4.4,

Dr
n(z)D

r
n(w) ≡ 0 (mod p), so either Dr

n(z) ≡ 0 (mod p) or Dr
n(w) ≡ 0 (mod p).

To see (b): if xn − r is reducible in Q[x] then there are non-zero z, w ∈ Qr
n such that

zw = 0. Even more, we can find non-zero vectors x̄, ȳ ∈ Zn such that z′w′ = 0 where
z′ =

∑n−1
i=0 xiu

i and w′ =
∑n−1

i=0 yiu
i (here u determines the basis of Qr

n as a Q-vector
space). Therefore Dr

n(x̄)D
r
n(ȳ) = 0, so Dr

n(x̄) = 0 or Dr
n(ȳ) = 0.

Now we show (c). Assume that xn ≡ r (mod p) has a solution t, that is, tn ≡ r (mod p).
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Consider the set
S := {x ∈ Z : 0 ≤ x < p

1
n }

and let
Sn := {(x0, . . . , xn−1) : xi ∈ S (0 ≤ i < n)}.

Note that Sn has more than p elements (because n ≥ 2). Now define the function
f : Sn → Fp by

f(x0, . . . , xn−1) ≡ x0 + x1t+ · · ·+ xn−1t
n−1 (mod p).

Since Fp has p many elements, Sn has more elements than Fp, so by the pigeonhole princi-
ple there are two (m0, . . . ,mn−1) 6= (m′

0, . . . ,m
′
n−1) in Sn such that f(m0, . . . ,mn−1) =

f(m′
0, . . . ,m

′
n−1). For 0 ≤ i < n let ai := m′

i −mi, so

f(a0, . . . , an−1) ≡ f(m′
0, . . . ,m

′
n−1)− f(m0, . . . ,mn−1) ≡ 0 (mod p),

ā := (a0, . . . , an−1) 6= (0, . . . , 0) and −p
1
n < ai < p

1
n , We show that ā is as desired.

We proceed in a similar way as in the proof of (a) first assuming that xn−r is irreducible
in Q[x]. Then K := Qr

n = Q(v) is a field extension of Q with v = n
√
r, and it is isomorphic

to Mr
n(Q) by Lemma 4.4. Set A := Mr

n(ā). Since this matrix is not zero, it is invertible,
so A−1 ∈ Mr

n(Q), and even more B := adj(A) ∈ Mr
n(Z) by Lemma 4.5. So choose ȳ ∈ Zn

such that B = Mr
n(ȳ).

Since K is Q[x]/(q(x)) with q(x) := xn − r, we have that A = Mr
n(g(x) (mod (q(x))))

and B = Mr
n(h(x) (mod (q(x)))) where

g(x) := a0 + a1x+ · · ·+ an−1x
n−1,

h(x) := y0 + y1x+ · · ·+ yn−1x
n−1.

Since AB = |A|In, we get that xn − r divides g(x)h(x) − |A| in Q[x], and actually
in Z[x] because both polynomials have coefficients in Z and xn − r is monic. Then
g(x)h(x) = j(x)q(x) + |A| for some j(x) ∈ Z[x].

To finish the proof, note that g(t)h(t)−|A| = (tn− r)j(t) ≡ 0 (mod p), so g(t)h(t) ≡ |A|
(mod p). On the other hand, we know that g(t) ≡ f(a0, . . . , an−1) ≡ 0 (mod p) so
|A| ≡ 0 (mod p), that is, Dr

n(a0, . . . , an−1) ≡ 0 (mod p).

For the general proof of (c) we work in F r
n , which is isomorphic to Mr

n(F ). Again set
A := Mr

n(ā) which is in Mr
n(F ), so B := adj(A) ∈ Mr

n(F ) by Lemma 4.5. Like above,
since AB = |A|In we have two polynomials g(x), h(x) ∈ F [x], which g(x) as above, such
that xn − r divides g(x)h(x) − |A|, so g(x)h(x) = j(x)q(x) + |A| for some j(x) ∈ F [x].
Exactly as in the last part of the previous argument, we conclude that Dr

n(ā) ≡ 0
(mod p). □✓✓✓

Thanks to the results in Section 4, the previous result takes a simple form when n is a
prime.

Corollary 5.2. Let p and q be primes. Then the equation xq ≡ r (mod p) has a solution
iff the equation Dr

q(x0, . . . , xn−1) ≡ 0 (mod p) has a non-trivial solution.
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Proof. The direction from left to right follows from Theorem 5.1(c). For the converse,
if the equation xq ≡ r (mod p) does not have a solution then the polynomial xq − r0
is irreducible in Fp[x] by Corollary 4.8 where r0 ∈ Fp is the residue of r modulo p, so
Dr

q(x0, . . . , xn−1) ≡ 0 (mod p) does not have a non-trivial solution by Theorem 5.1(a).
□✓✓✓

The next result is Theorem C, which is a weakening of (2) ⇒ (1) of Problem 1.9. This
actually checks this implication when n is a prime (for any r ∈ Z).

Theorem 5.3. Assume that p is a prime, r ∈ Z, r ≡ r0 (mod p) with r0 ∈ Fp and n ≥ 2.
If the polynomial xn− r0 is irreducible in Fp[x] then Dr

n(x0, . . . , xn−1) = p does not have
a solution in the integers.
In particular, if q is a prime and xq ≡ r (mod p) does not have a solution then
Dr

q(x0, . . . , xq−1) = p does not have a solution in the integers.

Proof. By Theorem 5.1, if xn − r0 is irreducible in Fp[x] then Dr
n(x0, . . . , xn−1) ≡ 0

(mod p) does not have a non-trivial solution. Thus, if Dr
n(x0, . . . , xn−1) = p has a

solution a0, . . . , an−1 ∈ Z, then every ai must be a multiple of p. But this implies that
Dr

n(a0, . . . , an−1) is a multiple of pn, so it cannot be equal to p because n ≥ 2. □✓✓✓

We can use Theorem 5.1 to solve Problem 1.9 for n = 2, i.e., Theorem 1.8. In fact, this
is valid for −1 and −2 in the place of 2, which yield well known results.

Theorem 5.4. Let r ∈ {−2,−1, 2}. If p is a prime then the equation x2 ≡ r (mod p)
has a solution iff the equation Dr

2(x0, x1) = p has a solution in the integers.

Proof. One implication follows by Theorem 5.3 because 2 is prime. So we show that,
whenever x2 ≡ r (mod p) has a solution, the equation Dr

2(x0, x1) = p has a solution in
the integers, for r ∈ {−2,−1, 2}.
By Corollary 5.2, the equation Dr

2(x0, x1) ≡ 0 (mod p) has a non-trivial solution (a, b).
Hence p divides Dr

2(a, b) = a2 − b2r. According to Theorem 5.1(c), we can find a and b

between −p
1
2 and p

1
2 .

Case r = 2. We claim that −2p < a2 − 2b2 < p. Two cases: if a2 ≥ 2b2 then 0 ≤
a2 − 2b2 ≤ a2 < p; if a2 < 2b2 then −2p < −2b2 ≤ a2 − 2b2 < 0, so the claim follows.
Now, since −2p < D2

2(a, b) = a2−2b2 < p and p | D2
2(a, b), we must have that D2

2(a, b) =
−p (it can not be zero because p must not divide both a and b).
Note that D2

2(1, 1) = 12 − 2 · 12 = −1, so

p =

∣∣∣∣a 2b
b a

∣∣∣∣ · ∣∣∣∣1 2
1 1

∣∣∣∣ = ∣∣∣∣a+ 2b 2(a+ b)
a+ b a+ 2b

∣∣∣∣
Hence x0 := a+ 2b and x1 = a+ b form an integer solution of D2

2(x0, x1) = p.

Case r = −1. It is clear that 0 < a2 + b2 < 2p, so a2 + b2 = p.

Case r = −2. Note that 0 < a2 + 2b2 < 3p, so either a2 + 2b2 = p or a2 + 2b2 = 2p.
In the first case we are done; in the second case a must be even, so a = 2a0 for some
a0 ∈ Z, and 2p = a2 + 2b2 = 4a20 + 2b2, hence D−2

2 (b, a0) = p. □✓✓✓
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6. Discussions

Problem 1.9 cannot be generalized by simply replacing 2 by any r ∈ Z. For n = 2, it is
known it is fine for r ∈ {−2,−1, 2} as shown in Theorem 5.4, but other values of r are
problematic. For example, 3y2+ p is never a square when p ≡ 3 (mod 4) (because it is 3
or 2 modulo 4), so D3

2(x, y) = p does not have a solution for those p. However, there are
primes p ≡ 3 (mod 4) such that x2 ≡ 3 (mod p) has a solution, for example, p = 11. In
this case, it could be conjectured that the equation D3

2(x, y) = p has a solution iff x2 ≡ 3
(mod p) has a solution and p ≡ 1 (mod 4). This motivates:

Problem 6.1. For n ≥ 2 (particularly n = 2) and r ∈ Z (or just free of n-powers), what
are suitable necessary and sufficient conditions for a prime p to get that Dr

n(x̄) = p has
a solution in the integers?

As discussed in the introduction, the solution of Problem 1.9 should be related to the
characterization of primes (or irreducible) elements in Z[ n

√
2], which looks very complex

for general values of n. In the post [10] it is hinted that Problem 1.9 is true for n = 3 by
looking at Z[ 3

√
2] with tools that we did not deal with in this paper.

Some results of Section 5 can be generalized when xn − r is replaced by any monic
polynomial in Z[x]. If R is an integral domain and q(x) ∈ R[x] is a monic polynomial of
degree n > 0, the theory in the first part of Section 4 can be generalized in the context
of Rq(x) := R[x]/(q(x)):

(I) Rq(x) is a free R-module (and an R-algebra) with basis {1, u, . . . , un−1} where
u := x (mod (q(x)))

(II) For any z ∈ Rq(x) there is a unique matrix Mq(x)(z) that characterizes the endo-
morphism Rq(x) → Rq(x), w 7→ zw as in Lemma 4.3.

(III) Set Mq(x) := Mq(x)(R) = {Mq(x)(z) : z ∈ Rq(x)}. The function Mq(x) : Rq(x) →
Mq(x) is an R-algebra isomorphism.

(IV) For any z ∈ Rq(x) set Dq(x)(z) := |Mq(x)(z)|. Then, for any z, z′ ∈ Rq(x),

Dq(x)(zz
′) = Dq(x)(z)Dq(x)(z

′).

When x̄ = (x0, . . . , xn1) ∈ R, denote Dq(x)(x̄) := Dq(x)(z) where z =
∑n−1

i=0 xiu
i ∈

Rq(x).

(V) If A ∈ Mq(x)(R) then adj(A) ∈ Mq(x)(R).

Using this theory, we obtain the following results (with similar proofs as in Section 5).

Theorem 6.2. Let p be a prime, q(x) ∈ Z[x] a monic polynomial of degree n > 0, and let
q0(x) ∈ Fp[x] be the polynomial resulting from q(x) by changing its coefficients by their
residues modulo p. Then:

(1) q0(x) is irreducible in Fp[x] iff the equation Dq(x)(x0, . . . , xn−1) ≡ 0 (mod p) does
not have a non-trivial solution in the integers.
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(2) If q(x) is reducible in Q[x] then the equation Dq(x)(x̄) = 0 has a non-trivial solution
in the integers.

(3) If n ≥ 2 and the equation q0(x) ≡ 0 (mod p) has a solution then the equation
Dq(x)(x0, . . . , xn−1) ≡ 0 (mod p) has a non-trivial solution in the integers with
−p

1
n < xi < p

1
n for any i.

(4) If n ≥ 2 and q0(x) is irreducible in Fp[x] then the equation Dq(x)(x̄) = p does not
have a solution in the integers.

As a digression, the equation D2
3(x0, x1, x2) = p motivates the following.

Problem 6.3. Assume that a, b, c ∈ {1, 2, 3} and that p is a prime. Does the equation
xa + 2yb + 4zc = p have a solution in the integers?

Primes p where a solution was not found
(a, b, c) with FindInstance among the first

1000 primes
(2, 3, 3) 2069, 5303, 6101
(3, 2, 3) 2207, 2383
(3, 3, 2) 2039, 2083, 3371, 4027, 6143, 6997, 7699
(3, 3, 3) 4079, 4091, 6449, 7507

Table 1. Instances among the first 1000 primes where a solution of xa + 2yb + 4zc = p was not found
in Wolfram Mathematica with the command FindInstance, in the case when at least two of a, b, c are
equal to 3.

First four primes p where a
(a, b, c) solution was not found with

FindInstance
(2, 2, 3) 22691, 25903, 27191, 27241
(2, 3, 2) 37571, 39191, 41263, 44357
(3, 2, 2) 24907, 51043, 51637, 53717

Table 2. First four prime p instances where a solution of xa +2yb +4zc = p was not found in Wolfram
Mathematica with the command FindInstance, in the case when only one of a, b, c is equal to 3.

For any p ∈ Z (not necessarily prime): it is easy to find a solution when either a, b or
c is equal to 1; and the case a = b = c = 2 has a positive answer, as mentioned in [1,
§13.3, Prob. 8(a)].

So this leaves the case 2 ≤ min{a, b, c} ≤ max{a, b, c} = 3. By running computations in
Wolfram Mathematica with the command FindInstance (see below), a solution was not
found for some primes in all the subcases (but this is not a proof that the solution does
not exist).

FindInstance[x^a+2y^b+4z^c==p,{x,y,z},Integers]
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See details in Tables 1 and 2: in Table 1 we look at the case when at least two of a, b, c
are equal to 3, where solutions were not found for some primes below 10000; in Table 2
we look at the case when only one of a, b, c is equal to 3, where solutions were not found
for some primes beyond 20000.
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