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Abstract. The aim of this work is to completely describe two families of
Lie algebras whose Lie groups have negative sectional curvature. The first
family consists of Lie algebras satisfying the following property: given any
two vectors in the Lie algebra, the linear subspace spanned by them is a Lie
subalgebra. On the other hand, the second family consists of reduced Lie
algebras of Iwasawa type.
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Álgebras de Lie cuyos grupos de Lie tienen curvatura
seccional negativa

Resumen. El propósito de este trabajo es describir completamente dos familias
de álgebras de Lie cuyos grupos de Lie asociados tienen curvatura seccional
negativa. La primera familia consiste de álgebras de Lie que satisfacen la
siguiente propiedad: dados cualesquiera dos vectores en el álgebra de Lie, el
subespacio vectorial que generan es una subálgebra de Lie. Por otro lado, la
segunda familia consiste de álgebras de Lie de tipo Iwasawa reducidas.
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1. Introduction

First, let us emphasize that throughout this work, we understand that negative means
less than or equal to zero. In geometry, a really important problem is to determine which
connected Lie groups admit a left invariant Riemannian metric with negative sectional
curvature. The work of professors J. A. Wolf and E. Heintze shows that this problem
is closely related to the classification of connected, homogenous Riemannian manifolds
with negative curvature (see [13], [7]). So, motivated by this, the aim this work is to
completely describe two families of Lie groups with negative sectional curvature through
their Lie algebras.

In 1976 professor J. Milnor published the paper Curvature of Left Invariant Metrics on
Lie Groups (see [9]). In this survey, as its title suggests, he described the properties of
the curvature of a large class of Riemannian manifolds, namely, Riemannian Lie groups,
i.e., Lie groups endowed with a left-invariant Riemannian metric. In this work, professor
Milnor proved many results that are classic and well-known nowadays, and he also con-
jectured many new ones. Through the years some of these conjectures have been proved,
for example, Uesu (see [12], 1981) proved that in a Riemannian Lie group the central
elements u ∈ g are the only ones that satisfy K(u, v) ≥ 0 for all v ∈ g (see Corollary
1.3. in [9]); on the other hand, Cairns (see [4], 2017) recently stated that “motivated by
classic results (that is, motivated by [9]), we determine the subsets of a given nilpotent
Lie algebra g whose sign of Ricci curvature remains unchanged for an arbitrary choice of
a positive definite inner product on g”.

In particular, the work of professor Milnor [9] presented examples of Riemannian Lie
groups with constant negative sectional curvature. More precisely, in the special example
1.7, two equivalent conditions are given to ensure constant negative sectional curvature on
a connected Lie group, and these conditions are formulated in terms of the corresponding
Lie algebra:

(P1) For all x, y ∈ g, the Lie product [x, y] is always equal to a linear combination of x
and y,

(P2) There exists a linear map l ∈ g∗ such that, for all x, y ∈ g

[x, y] = l(x)y − l(y)x.

We need to point out that the (P1) and (P2) conditions have been studied in several
works. For example, in the work of Barnet (see [2]), a Lie algebra satisfying the (P1)
condition is called a Lie algebra of special type, and thus, a Lie group is called of spe-
cial type if its Lie algebra g is of special type. In this work, it is stated that every
left-invariant Riemannian metric on a Lie group of special type is of constant negative
sectional curvature (see the first paragraph in the introduction of [2]). A second example
can be found in the work of Reyes (see [11]), where the Lie groups associated to a Lie
algebra satisfying the (P2) condition are explicitly calculated. As the last examples, we
shall mention that in [6] and [8], a Lie algebra satisfying the (P1) condition is called a
modular Lie algebra because its associated lattice of subalgebras is a modular lattice.
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On the other hand, we are also interested in studying a second family of Lie groups
with negative sectional curvature. This family consists of Lie groups whose Lie algebras
are reduced Lie algebras of Iwasasa type. Following [14], all symmetric spaces of non-
compact type with a metric induced by the Killing form have contact Ricci curvature.
By the Iwasawa decomposition Theorem, these spaces can be identified with solvable Lie
groups whose Lie algebras are of Iwasawa type. Moreover, the results of R. Azencott and
E. Wilson imply that Lie groups of Iwasawa type always admit left invariant metrics of
non-positive sectional curvature (see [1]).

In order to completely describe both families of Lie groups, we shall use the very well-
known theory of Lie algebras. We shall use the well-known classification of nilpotent
Lie algebras given by Gong in [5], as well as the Lie algebra of derivations of these Lie
algebras.

This paper is organized as follows: Section 2 is devoted to understand the Lie algebras
that satisfy the (P1) condition, and to prove our main result given by Theorem 2.9.
Section 3 is devoted to completely describe the Lie algebras associated to Lie groups of
Iwasawa type. To do this, we consider two cases depending on whether the nilradical of
a Lie algebra is abelian or not. In the non-abelian case we use the existence of a maximal
abelian ideal contained in the nilradical to describe all reduced Lie algebras of Iwasawa
type. Finally, Section 4 is devoted to listing all low-dimensional Lie algebras of Iwasawa
type having an indecomposable nilradical.

2. Lie algebras satisfying the (P1) condition

Let g be a finite dimensional complex Lie algebra. We say that g satisfies the (P1)
condition if g satisfies the condition given by Milnor in [9], namely, given x, y ∈ g, the
Lie product [x, y] is always equal to a linear combination of x and y. This condition is
equivalent to the fact that the linear subspace ⟨x, y⟩ is a Lie subalgebra of g.

From the (P1) condition, the following Lemma is easy to prove:

Lemma 2.1. Let g be a Lie algebra. Then, the following statements are equivalent

1. Every 2-dimensional linear subspace of g is a Lie subalgebra of g.

2. Every linear subspace of g is a Lie subalgebra of g.

On the other hand, recall that the space of derivations of a Lie algebra g is given by
Der(g) := {D ∈ End(g) | D([x, y]) = [Dx, y] + [x,Dy] for all x, y ∈ g}, and a straightfor-
ward calculation shows that Der(g) is a Lie algebra. Now, let g and h be Lie algebras, we
say that g acts on h by means of derivations if there is a homomorphism of Lie algebras
ρ : g → Der(h). Then the vector space g⊕ h is a Lie algebra defining the Lie bracket as
follows:

[x+ a, y + b] := [x, y]g + ρ(x)(b)− ρ(y)(b) + [a, b]h,
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for all x, y ∈ g, a, b ∈ h. This Lie algebra is called the semidirect sum of g and h, and it
is denoted by

g⋉ h.

As a consequence of Lemma 2.1, we can state the following result:

Lemma 2.2. Let g be a Lie algebra satisfying the (P1) condition.

1. If h ⊂ g is a Lie subalgebra of g, then h satisfies the (P1) condition.

2. If h is an ideal of g, then g/h satisfies the (P1) condition.

3. If m is a Lie algebra satisfying the (P1) condition, then g ⊕ m satisfies the (P1)
condition.

4. For r ≥ 1, let ar be the r-dimensional abelian Lie algebra. If ρ : a1 → gl(ar) is
a linear representation such that ρ(a1) = λ Idar

, then a1 ⋉ρ ar satisfies the (P1)
condition.

Now, we can provide a characterization of a nilpotent Lie algebra in terms of its 2-
dimensional Lie subalgebras:

Lemma 2.3. Let g be a Lie algebra. Then the following conditions are equivalent:

1. g is a nilpotent Lie algebra,

2. Every 2-dimensional Lie subalgebra of g is an abelian Lie subalgebra.

Proof. Let h ⊂ g be a 2-dimensional Lie subalgebra. Clearly, such h is nilpotent and
thus, it is abelian. On the other hand, suppose that any 2-dimensional Lie subalgebra
of g is abelian. For any x ∈ g − {0} consider the linear transformation ad(x), and let
λ be one of its eigenvalues and y be the corresponding eigenvector. Since ⟨x, y⟩ is a
2-dimensional Lie subalgebra of g, it follows that λ = 0, that is, ad(x) is a nilpotent
linear transformation for all x ∈ g. Then g is a nilpotent Lie algebra. □✓✓✓

Lemma 2.4. Let g be a Lie algebra satisfying the (P1) condition. Then g is a solvable
Lie algebra.

Proof. Let us suppose that g = gL ⋉ Rad(g) where gL is a Levi subalgebra of g and
Rad(g) is the radical of g. Let xE ∈ gL be a nilpotent element, then the Morozov-
Jacobson Lemma implies that there exist elements xF , xH ∈ gL such that [xE , xF ] = xH .
In other words, if gL ̸= {0}, then g does not satisfy the (P1) condition. □✓✓✓

As usual, let us denote by NilRad(g) the maximal nilpotent ideal of a Lie algebra g.
Clearly, NilRad(g) ⊂ g.

Lemma 2.5. Let g be a solvable Lie algebra satisfying the (P1) condition. Then NilRad(g)
is abelian.
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Proof. From Lemma 2.2 follows that NilRad(g) satisfies the (P1) condition. Let
{u1, . . . , ur} be a basis of NilRad(g). Then, for each i ̸= j, Lemma 2.1 implies that
⟨ui, uj⟩ is a 2-dimensional Lie subalgebra of NilRad(g), then ⟨ui, uj⟩ is abelian, and
hence, [ui, uj ] = 0 for all i, j = 1, . . . , r. □✓✓✓

If g is a solvable Lie algebra satisfying the (P1) condition, let us denote by ar = NilRad(g)
its abelian nilradical. As a vector space, g can be decomposed as a direct sum of vector
spaces, g = h⊕ar, where h is a complementary subspace of ar. In this case, observe that
the Lie algebra structure of g is completely determined by the following data:

(1) a linear representation ρ : h → Der(ar), where we are thinking of h as an abelian
Lie algebra, and

(2) a set of skew-symmetric bilinear forms θi : h × h → F, (i = 1, . . . , r) satisfying
θi([x, y], z) + θi([y, z], x) + θi([z, x], y) = 0 for all x, y, z ∈ h.

Thus, if {a1, . . . , ar} is a basis for ar, the Lie bracket of g can be written in terms of the
data (ρ, θi) as follows:

[x+ a, y + b]g = ρ(x)b− ρ(y)a+

r∑

i=1

θi(x, y)ai, (1)

where x, y ∈ h and a, b ∈ ar.

Lemma 2.6. Let g be a solvable Lie algebra satisfying the (P1) condition. Let (ρ, θi) be
the data characterizing the Lie bracket of g, as in Equation (1). Then:

1. θi(x, y) = 0 for all x, y ∈ g (i = 1, . . . , r), i.e., h is an abelian Lie algebra.

2. ρ(x) is a semisimple linear transformation for all x ∈ h. Moreover ρ(x) = λx Idar .

Proof. We have that, as vector space, g = h⊕ ar, where ar is the nilradical of g and h is
a complementary subspace of ar. Let {a1, . . . , ar} be a basis for ar. From Equation (1)
follows that for any x, y ∈ h, [x, y]g =

∑r
i=1 θ

i(x, y)ai ∈ ⟨x, y⟩ if and only if θi(x, y) = 0
for all i = 1, . . . , r. Hence, h is an abelian Lie algebra.

Now, let x ∈ h and consider the linear transformation ρ(x). If we evaluate ρ(x) in any
basis element ai, we have that

ρ(x)(ai) = [x, ai] ∈ ⟨x, ai⟩ ⊂ [g, g] ⊂ NilRad(g) = ar,

therefore, there exists λi ∈ F such that ρ(x)(ai) = λiai.

On the other hand, let u ∈ ar be a linear combination of the basis elements {a1, . . . , ar},
that is, u =

∑r
i=1 ciai where ci ∈ F (i = 1, . . . , r). The previous argument shows that

λu = ρ(x)(u) =

r∑

i=1

λiciai.
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Thus, λci = λici for all i = 1, . . . , r and all ci ∈ F. Therefore, we get that λ = λi for all
i = 1, . . . , r and we conclude that

ρ(x) = λ Idar . □✓✓✓

Lemma 2.6 implies that a solvable Lie algebra satisfying the (P1) condition can be written
as the semidirect product of two abelian Lie algebras, namely, if ak denotes the abelian
Lie algebra h in (1) of Lemma 2.6, then g = ak⋉ρ ar. Thus, the next result follows easily:

Corollary 2.7. Let g = ak ⋉ρ ar be a solvable Lie algebra satisfying the (P1) condition.
Then, NilRad(g) = ar if and only if k = 1.

As a consequence, we get the main theorem of this section:

Theorem 2.8. Let g be a Lie algebra satisfying the (P1) condition. Then g is isomorphic
to one of the following Lie algebras:

1. a1,

2. a1,r := a1 ⋉ρ ar for r ≥ 1.

3. Lie algebras of Iwasawa type

We start with the following:

Definition 3.1. A simply connected solvable Lie group G is said to be of Iwasawa type
if its Lie algebra g satisfies the following conditions:

1. g = a+ n, where n = [g, g] and a is an abelian Lie subalgebra.

2. For any a ∈ a, the linear transformation ad(a) is semisimple (i.e. ad(a) is diago-
nalizable over C).

3. There exists a0 ∈ a such that the linear transformation ad(a0)|n has eigenvalues
with positive real parts.

If G is a Lie group of Iwasawa type, it is said that its Lie algebra g is of Iwasawa type.

It follows that a Lie algebra g of Iwasawa type satisfies conditions (1)-(3) of Definition
3.1 above. The aim of this section is to completely describe this kind of Lie algebras.

Lemma 3.2. Let g = a+ n be a Lie algebra of Iwasawa type. Then g can be decomposed
as a direct sum of Lie algebras, g = ar ⊕ h, where h = as + n is a Lie algebra of Iwasawa
type such that NilRad(h) = n and ar is an abelian Lie algebra such that a = ar ⊕ as.

Proof. Since g = a + n is a Lie algebra of Iwasawa type, it is clear that n = [g, g] ⊂
NilRad(g). Moreover, if n ̸= NilRad(g), then there exist a1, . . . , ar ∈ a such that

NilRad(g) = ⟨ad(a1)|n, . . . , ad(ar)|n⟩⋉ n.

This implies that ad(ai) = 0, i = 1, . . . , r, which proves the Lemma. □✓✓✓
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Observe that Lemma 3.2 reduces the problem of studying Lie algebras g of Iwasawa type
to the problem of studying Lie algebras of Iwasawa type satisfying that NilRad(g) = n.

Definition 3.3. A Lie algebra of Iwasawa type g = a+ n is called reduced if it satisfies
NilRad(g) = n.

From now on, without loss of generality, we can suppose that g is a reduced Lie algebra
of Iwasawa type.

Lemma 3.4. Let g be a solvable Lie algebra of Iwasawa type. Then Z(g) = {0}.

Proof. Note that Z(g) ⊆ n, and let x be a non-zero element in Z(g), then for all a ∈ a,
we have that ad(a)(x) = 0. □✓✓✓

To describe the reduced Lie algebras of Iwasawa type, Lemma 3.4 implies that it is
enough to study two cases: (a) reduced Lie algebras of Iwasawa type having an abelian
nilradical, and (b) reduced Lie algebras of Iwasawa type having a non-abelian nilradical.
Our next task is to study both cases.

3.1. Reduced Lie algebras of Iwasawa type having an abelian nilradical

Let us recall that the 2-dimensional Lie algebra ⟨e1, e2⟩ defined by [e1, e2] = e2 is called
the affine Lie algebra and it is denoted by af2.

Proposition 3.5. Let g = a+ n be a complex reduced Lie algebra of Iwasawa type having
an abelian nilradical. If dim a = dim n, then

g = a⋉ a = af2 ⊕ · · · ⊕ af2.

Proof. Clearly, from the assumption follows that n = a. Now, we can apply Theorem 3
from [10] to get the desired conclusion. □✓✓✓

Observe that in any other case, if g = a + n is a reduced Lie algebra of Iwasawa type
having an abelian nilradical, then dim a < dim n. Therefore, ad(a) ⊂ gl(n), and there
exists an invertible element with positive real part for each eigenvalue, and thus ad(a) is
a semisimple linear map for any a ∈ a.

Lemma 3.6. Let a and n be Lie algebras and let ρi : a → gl(n) be a linear representation,
i = 1, 2. Then ρ1 ≃ ρ2 if and only if, there exists an isomorphism T ∈ Aut(n) such that
ρ1(x) = T−1 ◦ ρ2(x) ◦ T for all x ∈ a.

Let g = a+ n be a Lie algebra of Iwasawa type having an abelian nilradical, then a = ar
and n = ak with r ≤ k. Let us suppose that r < k. Then we can state the following
result:

Proposition 3.7. Let gi = ar ⋉ρi
ak be a Lie algebra of Iwasawa type, i = 1, 2. Then

g1 ≃ g2 if and only if ρ1(ai) = ρ2(ai), i = 1, . . . , r, and ar = ⟨a1, . . . , ar⟩.
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3.2. Reduced Lie algebras of Iwasawa type having a non-abelian nilradical

Let g be a finite-dimensional Lie algebra. Let us denote by α(g) the maximal dimension
of an abelian subalgebra of g, and by β(g) the maximal dimension of an abelian ideal of
g. Both quantities α(g) and β(g) are useful invariants associated to g. In this direction,
let us recall a result proved by Burde and Ceballos (see [3]):

Theorem 3.8. Let g be a solvable Lie algebra over an algebraically closed field F of
characterstic zero. Then β(g) = α(g).

On the other hand, suppose that g = a+ n is a complex reduced Lie algebra of Iwasawa
type. Let t be a commutative subalgebra of Der(n) consisting of semisimple endomor-
phisms. Such t is called a torus on n. Then we define Rank(n) as the dimension of a
maximal torus over n.

Now, from Theorem 3.8 we can obtain the following Corollary:

Corollary 3.9. Let g = a + n be a complex reduced Lie algebra of Iwasawa type. Then
there exists an abelian ideal b ⊆ n such that dim a ≤ dim b. Moreover, dim a ≤ Rank(n).

Although there is not a complete classification of nilpotent Lie algebras, from Theorem
3.8 we can conclude that if g is a complex reduced Lie algebra of Iwasawa type, then g
is a semidirect sum of Lie algebras, namely,

g = ar ⋉ (U ⊕ as)

where n = U ⊕ as and as is a maximal abelian ideal of n and U is a complementary
subspace of as, i.e., r ≤ s and moreover

r ≤ Rank(U ⊕ as).

Remark 3.10. Let n = U ⊕ as be an idecomposable nilpotent Lie algebra. To construct
a Lie algebra g of Iwasawa type from such n, the fact that r ≤ Rank(U ⊕ as) indicates
that we can only add a tours ar to n if and only if r ≤ Rank(n).

In the next section, we will use Remark 3.10 to provide a complete list of low-dimensional
complex Lie algebras of Iwasawa type.

4. Low-dimensional reduced Lie algebras of Iwasawa type

The goal of this section is to construct all low-dimensional complex Lie algebras of Iwa-
sawa type. For doing this, we will use the well-known classification of low-dimensional
indecomposable nilpotent Lie algebras, and we proceed in the following way: first, for
each indecomposable nilpotent Lie algebra n we compute its maximal abelian ideal as,
and as a consequence we obtain the invariant α(n). Then, for such indecomposable n, we
compute its Lie algebra of derivations, Der(n), and the subspace of semisimple deriva-
tions in n, DerS(g), i.e., we obtain Rank(n). Finally, we apply Remark 3.10 to construct
the reduced complex Lie algebras of Iwasawa type.
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4.1. Low-dimensional indecomposable nilpotent Lie algebras

Following the notation used by Gong (see [5]), we provide the complete list of indecom-
posable non-isomorphic nilpotent Lie algebras n having dimension less than or equal to
5. In this list, Ni,j,k denotes the k-th algebra of dimension i and rank j. When there is
only one algebra with the specified dimension and rank, we simply denote it by Ni,j .

Dimension 1, N1,1 := F = a1.

Dimension 3, N3,2 := h3, [e2, e3] = e1.

Dimension 4, N4,2, [e1, e2] = e3, [e1, e3] = e4.

Dimension 5

1. N5,1, [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5.
2. N5,2,1, [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5.
3. N5,2,2, [e1, e2] = e4, [e1, e4] = [e2, e3] = e5.
4. N5,2,3, [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5.
5. N5,3,1 = h5, [e1, e2] = [e3, e4] = e5.
6. N5,3,2, [e1, e2] = e4, [e1, e3] = e5.

In the following table we describe an indecomposable nilpotent Lie algebra g, β(g),
Rank(g) and, in the last column we describe a basis for the subspace of semisimple
derivations in g, DerS(g).

Now, for each indecomposable nilpotent Lie algebra n having dimension less or equal
than five, straightforward calculations allow us to obtain β(n) the maximal dimension of
an abelian ideal of n, Rank(g) the dimension of a maximal torus over n, and a basis for
DerS(n) the subspace of semisimple derivations in n. This information is summarized in
Table 1 below.

n β(n) Rank(n) DerS(n)

N1,1 1 1 Diag(a)
N3,2 2 2 Diag(a, b, a+ b)
N4,2 2 2 Diag(a, b, a+ b, 2a+ b)
N5,1 3 1 Diag(a, 2a, 3a, 4a, 5a)
N5,2,1 3 2 Diag(a, b, a+ b, 2a+ b, 3a+ b)
N5,2,2 3 2 Diag(a, b, 2a, a+ b, 2a+ b)
N5,2,3 3 2 Diag(a, b, a+ b, 2a+ b, a+ 2b)
N5,3,1 3 3 Diag(a, b, c− a, c− b, c)
N5,3,2 4 3 Diag(a, b, c, a+ b, a+ c)

Table 1. Indecomposable nilpotent Lie algebras having dimension less or equal than 5.

These examples of low-dimensional indecomposable nilpotent Lie algebras suggest the
following definition:
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Definition 4.1. Let g = a + n be a complex reduced Lie algebra of Iwasawa type. We
say that a is maximal if dim a = Rank n.

Lemma 4.2. Let g = a + n be a complex non-maximal reduced Lie algebra of Iwasawa
type. Then there exists a complex maximal reduced Lie algebra of Iwasawa type h = b+n
such that g ⊂ h.

Observe that Lemma 4.2 implies that we only need to construct maximal reduced Lie
algebras of Iwasawa type. Thus we can state the following result:

Theorem 4.3. Let g = a+ n be a complex Lie algebra of Iwasawa type such that n is an
indecomposable nilpotent Lie algebra and a is a maximal abelian Lie algebra. Then g is
isomorphic to:

1. dim g = 2, g ≃ af2 = a1 ⋉ a1.

2. dim g = 5, g ≃ a2 ⋉N3,2.

3. dim g = 6, g ≃ a2 ⋉N4,2, a1 ⋉N5,1.

4. dim g = 7, g ≃ a2 ⋉N5,2,1, a2 ⋉N5,2,2, a2 ⋉N5,2,3.

5. dim g = 8, g ≃ a3 ⋉N5,3,1, a3 ⋉N5,3,2.
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