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Abstract. Let (Pn)n⩾0 be the Padovan sequence given by P0 = 0, P1 = P2 = 1
and the recurrence formula Pn+3 = Pn+1 + Pn for all n ⩾ 0. In this note, we
completely solve the Diophantine equation

Pn = 6a ± 6b ± 6c

in non-negative integers (n, a, b, c) with a ⩾ b ⩾ c ⩾ 0.
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Resumen. Sea (Pn)n⩾0 la sucesión de Padovan dada mediante P0 = 0, P1 =
P2 = 1 y la fórmula de recurrencia Pn+3 = Pn+1 + Pn se satisface para todo
n ⩾ 0. En este artículo se resuelve completamente la ecuación Diofántica

Pn = 6a ± 6b ± 6c

en enteros no negativos (n, a, b, c) con a ⩾ b ⩾ c ⩾ 0.
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1. Introduction

Let (Fn)n⩾0 be the Fibonacci sequence. It is given by the initial conditions F0 = 0,
F1 = 1 and the recurrence formula

Fn+2 = Fn+1 + Fn

holds for all n ⩾ 0. Let’s consider the Diophantine equation

Fn = xa ± xb + 1 (1)

in positive integers (n, x, a, b) with max{a, b} ⩾ 2. The case x = p with p being a prime
number is studied in [9] by Luca and Szalay. They show that such an equation has only
finitely many solutions. Then, the same conclusion is obtained by Laishram and Luca
in [7] where this time x is of the form pcqd where p and q are prime numbers. In [6], the
particular case x = 2 was completely solved.

There are many other instances of Diophantine equations of the same flavour as the
above one. For example, in [8] the Diophantine equation Fn = pa ± pb, where p is prime
number, is studied. And, in [12] the squares of the form 2a ± 2b ± 2c are found.

Now, let us consider the Padovan sequence (Pn)n⩾0, named after the architect R.
Padovan. It is the ternary recurrence sequence given by P0 = 0, P1 = P2 = 1 and
the recurrence formula

Pn+3 = Pn+1 + Pn, holds for all n ⩾ 0.

This is A000931 sequence in [11]. Its first few terms are

0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, . . .

Motivated by the above problems, in this note we study the Diophantine equation

Pn = 6a ± 6b ± 6c (2)

in the non-negative integers (n, a, b, c) with a ⩾ b ⩾ c ⩾ 0. To avoid numerical repeated
solutions we will assume that n ̸= 1, 2, 4. Note that for all non-negative integer a,
(3, a, a, 0) is clearly a solution to the case Pn = 6a − 6b +6c with a = b. Let us call these
trivial solutions of equation (2). Our result is the following:

Theorem 1.1. All non trivial solutions of equation (2) in non-negative integers (n, a, b, c)
with n ̸= 1, 2, 4 and a ⩾ b ⩾ c ⩾ 0 are

P6 = 60 + 60 + 60, P7 = 61 − 60 − 60, P27 = 64 − 63 + 60, P34 = 65 − 62 − 60.

2. Linear forms in logarithms, reduction method

In proving Theorem 1.1 we use lower bounds for linear forms in logarithms, and we use
the result due to Matveev explained in Theorem 2.1. Let α be an algebraic number of
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degree d, let a > 0 be the leading coefficient of its minimal polynomial over Z and let
α = α(1), . . . , α(d) denote its conjugates. The logarithmic height of α is defined as

h(α) =
1

d

(
log a+

d∑

i=1

logmax
{∣∣∣α(i)

∣∣∣ , 1
})

.

The basic properties of the function h are the following. For α, β algebraic numbers and
m ∈ Z we have

h(α+ β) ⩽ h(α) + h(β) + log(2),

h(αβ) ⩽ h(α) + h(β),

h(αm) = |m|h(α).

Now, let K be a real number field of degree dK, α1, . . . , αℓ ∈ K positive elements and
b1, . . . , bℓ ∈ Z \ {0}. Let B ⩾ max{|b1|, . . . , |bℓ|} and

Λ = αb1
1 · · ·αbℓ

ℓ − 1.

Let A1, . . . , Aℓ be real numbers with

Ai ⩾ max{dK h(αi), | logαi|, 0.16} for i = 1, 2, . . . , ℓ.

The following result is due to Matveev in [10] (see also Theorem 9.4 in [2]).

Theorem 2.1. (Matveev’s Theorem) Assume that Λ ̸= 0. Then

log |Λ| > −1.4 · 30ℓ+3 · ℓ4.5 · d2K · (1 + log dK) · (1 + logB)A1 · · ·Aℓ.

In this paper we always use ℓ := 3. Further K := Q(γ), where γ is given at the beginning
of Section 3, has degree dK = 3. So, once and for all we fix the constant

C := 1.4 · 303+3 · 34.5 · 32 · (1 + log 3) ≈ 2.70443× 1012.

Our second tool is a version of the reduction method of Baker-Davenport based on the
lemma in [1]. We shall use the following one given by Bravo, Gómez and Luca in [3]
(see also [4]). For a real number x, we write ∥x∥ for the distance from x to the nearest
integer.

Lemma 2.2. Let M be a positive integer. Let τ, µ, A > 0, B > 1 be given real numbers.
Assume that p/q is a convergent of τ such that q > 6M and ε := ∥µq∥ −M∥τq∥ > 0. If
(n,m,w) is a positive solution to the inequality

0 < |nτ −m+ µ| < A

Bw

with n ⩽ M then

w <
log(Aq/ε)

log(B)
.

Finally, the following result of Guzmán and Luca [5] will be very useful.

Lemma 2.3. If m ⩾ 1, T > (4m2)m and T > x/(log x)m. Then

x < 2mT (log T )m.
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3. Proof of Theorem 1.1

Let us to start with some basic properties of the Padovan sequence. For a complex
number z we write z for its complex conjugate. Let ω ̸= 1 be a cubic root of 1. Put

γ :=
3

√
9 +

√
69

18
+

3

√
9−

√
69

18
, δ := ω

3

√
9 +

√
69

18
+ ω

3

√
9−

√
69

18
.

It is clear that γ, δ, δ are the roots of the Q-irreducible polynomial X3 −X − 1. We also
have the Binet formula

Pn = c1γ
n + c2δ

n + c3δ
n
, (3)

which holds for all n ⩾ 0, where

c1 =
γ(γ + 1)

2γ + 3
, c2 =

δ(δ + 1)

2δ + 3
, c3 = c2. (4)

Formula (3) follows from the general theorem on linear recurrence sequences since the
above polynomial is the characteristic polynomial of the Padovan sequence. We note
that

γ = 1.32471 . . . , |δ| = 0.86883 . . . , c1 = 0.54511 . . . , |c2| = 0.28241 . . .

Further, the inequalities
γn−3 ⩽ Pn ⩽ γn−1, (5)

hold for all n ⩾ 1. These, formula (3) and inequalities (5) can be proved by induction.

Observe that the study of the non-trivial solutions of equation (2) reduces to the study
of equations of the following form:

Pn = t · 6a where t ∈ {1, 3} and a ⩾ 0; (6)
Pn = t · 6a ± t1 · 6b where t, t1 ∈ {1, 2}, t ̸= t1 and a > b ⩾ 0; (7)
Pn = 6a ± 6b ± 6c a > b > c ⩾ 0. (8)

An elementary analysis shows that the right hand side of each these equations is always
positive. So, we assume n ⩾ 1. As n ̸= 1, 2, 4, we assume throughout the proof that
n ⩾ 3 with n ̸= 4. The most involved case is equation (8), so we start with it.

3.1. Case (8)

Recall that n ⩾ 3, n ̸= 4 and a > b > c ⩾ 0. From inequalities (5) we obtain

γn−3 ⩽ Pn = 6a ± 6b ± 6c < 6a+1 and γn−1 ⩾ Pn = 6a ± 6b ± 6c > 6a−2.

So,

(n− 3)
log γ

log 6
< a+ 1 and (n− 1)

log γ

log 6
> a− 2. (9)

In particular note that a ⩽ n since (log γ/ log 6) < 1. Now, if n ⩽ 500 from (9) we see that
a ⩽ 80. Running a computer basic program in the range 0 ⩽ n ⩽ 500, 0 ⩽ c < b < a ⩽ 80
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we find the last two solutions written in Theorem 1.1. We will prove that these are all
of them in this case.

From now on, we assume n > 500. In this case, (9) gives a ⩾ 76. The first task is to
obtain an absolute upper bound on n. To this end, from the Binet formula (3) we rewrite
our equation as

c1γ
n − 6a = ±6b ± 6c − c2δ

n − c3δ
n
.

Dividing through by 6a, we obtain

∣∣c1γn6−a − 1
∣∣ < 1

6a−b−1
. (10)

Let Λ be the expression inside in the left hand side of (10). Now, if Λ = 0 then c1γ
n = 6a

and, by taking norms we conclude that the norm of c1 is an integer which is not. The
norm of c1 is 1/23. Hence Λ ̸= 0 and we apply Matveev’s inequality to it by taking

α1 = c1, α2 = γ, α3 = 6, b1 = 1, b2 = n, b3 = −a.

Thus B = n. The heights h(α2), h(α3) are log γ/3 and log 6, respectively. For α1 we use
the properties of the height to conclude

h(α1) ⩽ log γ + 5 log 2.

Thus, we take A1 = 11.3, A2 = 0.3, and A3 = 5.4. Then,

log |Λ| > −C · (1 + log n) · 11.3 · 0.3 · 5.4.

Comparing this with (10), we obtain

(a− b) log 6 < 4.95073× 1013(1 + log n). (11)

Again, from the Binet formula (3) we rewrite (2) and obtain

|c1γn − (6a−b ± 1)6b| < 6c+1.

Dividing through by 6a ± 6b we get
∣∣∣∣

c1
6a−b ± 1

γn6−b − 1

∣∣∣∣ <
6c+1

6a ± 6b
<

1

6a−c−2
, (12)

where we use 6a ± 6b > 6a−1. Let Λ1 be the expression inside of the absolute value on
the left side of (12). With an argument as given for Λ above, we see that Λ1 ̸= 0 and we
apply Matveev’s to it. To do this, we consider

α1 =
c1

6a−b ± 1
, α2 = γ, α3 = 6, b1 = 1, b2 = n, b3 = −b.

Thus, B = n. The heights of α2 and α3 are already calculated. For α1, we again use the
properties of the height and (11) to conclude that

h(α1) < h(c1) + h(6a−b ± 1) < 4.95074× 1013(1 + log n).
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So we take A1 = 1.48522× 1014(1 + log n) and A2, A3 as above. Hence, from Matveev’s
inequality we obtain

log |Λ1| > −C · (1 + log n) · (1.48522× 1014(1 + log n)) · 0.3 · 5.4,

which compared with (12) yields

(a− c) log 6 < 6.50701× 1026(1 + log n)2. (13)

In particular, since b < a, we also have an upper bound on (b− c) log 6.

Finally, from the Binet formula (3) we rewrite again (2) and obtain

|c1γn − (6a−c ± 6b−c ± 1)6c| < 1.

Dividing through by 6a ± 6b ± 6c we get
∣∣∣∣

c1
6a−c ± 6b−c ± 1

γn6−c − 1

∣∣∣∣ <
1

6a ± 6b ± 6c
<

1

6a−1
<

36

γn−3
<

1

γn−16
, (14)

where we use 6a+1 > γn−3 from (9). Let Λ2 be the expression inside of the absolute
value on the left side of (14). As above, Λ2 ̸= 0 and we apply Matveev’s inequality to it.
Now, we consider

α1 =
c1

6a−c ± 6b−c ± 1
, α2 = γ, α3 = 6, b1 = 1, b2 = n, b3 = −c.

Thus, B = n. The heights of α2 and α3 are already calculated. For α1, from (13) we
have

h(α1) < h(c1) + h(6a−c ± 6b−c ± 1) < 1.3014× 1027(1 + log n)2.

So we take A1 = 3.9042× 1027(1 + log n)2 and A2, A3 as above. Hence, from Matveev’s
inequality we obtain

log |Λ2| > −C · (1 + log n) · (3.9042× 1027(1 + log n)2) · 0.3 · 5.4,

which compared with (14) yields

n log γ < 1.7105× 1040(1 + log n)3.

Thus, n < 4.86629 × 1041(log n)3 and from Lemma 2.3 we get the following absolute
upper bound on n:

n < 3.44305× 1048. (15)

Now, the second step is to reduce this upper bound on n. To do this, we consider

Γ = n log γ − a log 6 + log c1,

and go to (10). Assume that a − b > 1. Note that eΓ − 1 = Λ ̸= 0. Thus, Γ ̸= 0. If
Γ > 0, we have that

0 < Γ < eΓ − 1 = |Λ| < 1

6a−b−1
.
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If on the other hand, Γ < 0, we then have that 1− eΓ = |Λ| < 1/2. Thus, eΓ < 2. Hence,

0 < |Γ| < e|Γ| − 1 = e|Γ||Λ| < 2

6a−b−1
.

Thus, in both cases, we have

0 < |Γ| < 2

6a−b−1
.

Dividing through by log 6, we obtain

0 < |nτ − a+ µ| < 7

6a−b
,

where
τ :=

log γ

log 6
and µ :=

log c1
log 6

.

Now, we apply Lemma 2.2. To do this, we take M = 3.44305× 1048, which from (15) is
the upper bound on n. With the help of Mathematica, we found that the convergent

p107
q107

=
6008326529102855602859915942776215564110897052594455

38284111839976923510301357492702780666215483977296698

of τ is such that q107 > 6M and ε = ||q107 ·µ|| −M ||q107 · τ || = 0.284414 > 0. Thus from
Lemma 2.2, with A := 7 and B := 6, we obtain that

a− b <
log(7 · q107/ε)

log 6
< 70.

Now, consider

Γ1 = n log γ − b log 6 + log

(
c1

6a−b ± 1

)
,

and go to (12). Assume that a− c > 2. Note that eΓ1 − 1 = Λ1 ̸= 0. Thus, Γ1 ̸= 0. As
in the above case by considering again the cases Γ1 > 0 and Γ1 < 0 we conclude that

0 < |Γ1| <
2

6a−c−2
.

Dividing through by log 6, we obtain

0 < |nτ − b+ µ| < 41

6a−c
,

where τ is as above and

µ :=
log
(
c1/(6

a−b ± 1)
)

log 6
.

Consider

µk :=
log
(
c1/(6

k ± 1)
)

log 6
, k = 2, 3, . . . , 69.

With Mathematica we find again that the 107−th convergent of τ is such that q107 > 6M
and εk ⩾ 0.0162182 for all k = 2, . . . , 69. We calculated log(q107 · 41/εk)/ log 6 for all
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k = 2, . . . , 69 and found that the maximum of these values is at most 71. Therefore
a− c ⩽ 71.

Finally, consider

Γ2 = n log γ − c log 6 + log

(
c1

6a−c ± 6b−c ± 1

)
,

and go to (14). Note that eΓ2 − 1 = Λ2 ̸= 0. Thus, Γ2 ̸= 0. Again as above, we can
conclude that

0 < |Γ2| <
2

γn−16
.

Dividing through by log 6, we obtain

0 < |nτ − c+ µ| < 101

γn
,

where, τ is as above and

µ :=
log(c1/(6

a−c ± 6b−c ± 1))

log 6
.

Consider

µj,k :=
log(c1/(6

j ± 6k ± 1))

log 6
, j = 3, . . . , 71, k < j.

Again, the 107-th convergent of τ is such that q107 > 6M and εj,k ⩾ 0.0000191955 for
all j = 3, . . . , 71, k < j. Finally, by calculating log(q107 · 101/εj,k)/ log γ for all these
cases we find that the maximum of these values is at most 485. Therefore n ⩽ 485 which
contradicts the assumption on n and finish the proof of this case.

3.2. Case (7)

This case also follows the same lines of argument as in Case (8). So, we will not write
all detailed calculations but only the result of the step.

As above, n ⩾ 3, n ̸= 4; t, t1 ∈ {1, 2}, t ̸= t1 and a > b ⩾ 0. The inequalities

γn−3 ⩽ Pn = t · 6a ± t1 · 6b < 6a+1 and γn−1 ⩾ Pn = t · 6a ± t1 · 6b > 6a−1,

where t, t1 ∈ {1, 2} and t ̸= t1, show that we can and we will use the same inequalities
given in (9). In particular a ⩽ n and with a basic computer program in the intervall
0 ⩽ n ⩽ 350 and 0 ⩽ b < a ⩽ 55 we obtain the solution P7 = 61 − 2 · 60 = 61 − 60 − 60

for this case written in Theorem 1.1. As above, we now show it is the only one.

Let n > 350. Thus a > 53. As above, from Binet’s formula equation (7) gives

∣∣∣c1
t
γn6−a − 1

∣∣∣ < 1

6a−b−1
. (16)
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Let Λ be the expression inside of the absolute value on the left side of (16). Now, being
Λ ̸= 0 we take

α1 =
c1
t
, α2 = γ, α3 = 6, b1 = 1, b2 = n, b3 = −a,

and apply Matveev’s to it. So, B = n. We already know the heights of α2 and α3 and
for α1 we have

h(α1) < h(c1) + h(t) < log γ + 6 log 2.

So we take A1 = 13.4 and A2 = 0.3, A3 = 5.4. Hence, from Matveev’s inequality we get

log |Λ1| > −C · (1 + log n) · 13.4 · 0.3 · 5.4,

which compared with (16) yields

(a− b) log 6 < 5.87079× 1013(1 + log n). (17)

From the Binet formula (3) we rewrite again (7) and obtain

∣∣∣∣
c1

t · 6a−b ± t1
γn6−b − 1

∣∣∣∣ <
1

t · 6a ± t16b
<

1

6a−1
<

36

γn−3
<

1

γn−16
, (18)

where we use 6a+1 > γn−3 from (9). Let Λ1 be the expression inside of the absolute
value on the left side of (18). Again, being Λ1 ̸= 0 we consider

α1 =
c1

t · 6a−b ± t1
, α2 = γ, α3 = 6, b1 = 1, b2 = n, b3 = −b.

and apply Matveev’s inequality with B = n. We know the heights of α2 and α3 and for
α1, (17) gives

h(α1) < h(c1) + h(t · 6a−b ± t1) < 5.8708× 1013(1 + log n).

So we take A1 = 1.76124×1014(1+log n) and A2, A3 as above. Then Matveev’s inequality
gives

log |Λ1| > −C · (1 + log n) · 1.76124× 1014(1 + log n) · 0.3 · 5.4,

which compared with (18) yields

(n− 16) log γ < 7.71631× 1026(1 + log n)2.

Thus, n < 1.09763 × 1028(log n)2 and from Lemma 2.3 we get the following absolute
upper bound on n:

n < 1.83028× 1032. (19)

Now we reduce this upper bound on n. Consider

Γ = n log γ − a log 6 + log
c1
t
,

and go to (16). Assume that a− b > 1. Note that eΓ− 1 = Λ ̸= 0. Thus, Γ ̸= 0 and with
the same above analysis we find that

0 < |Γ| < 2

6a−b−1
.
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Dividing through by log 6, we obtain

0 < |nτ − a+ µ| < 7

6a−b
,

where

τ :=
log γ

log 6
and µt :=

log
(
c1
t

)

log 6
for t = 1, 2.

With M = 1.83028× 1032 Mathematica finds that the 74-th convergent

p74
q74

=
1198756459074489626137082939257979

7638287653942657410690325642098828

of τ is such that q74 > 6M and εt = ||q74 · µt|| −M ||q74 · τ || > 0.107923 > 0 for t = 1, 2.
Thus from Lemma 2.2, with A := 7 and B := 6, we obtain that

a− b <
log(7 · q74/ε)

log 6
< 46.

Now consider

Γ1 = n log γ − b log 6 + log

(
c1

t · 6a−b ± t1

)
,

and go to (18). Then Γ1 ̸= 0 and we have

0 < |Γ1| <
2

γn−16
.

Dividing through by log 6, we obtain

0 < |nτ − b+ µ| < 101

γn
,

where τ is as above and

µ :=
log
(
c1/(t · 6a−b ± t1)

)

log 6
.

Let

µk,t,t1 :=
log
(
c1/(t · 6k ± t1)

)

log 6
, for k = 2, 3, . . . , 45 and t ̸= t1 ∈ {1, 2}.

Again, Mathematica finds that the 74-th convergent of τ is such that q74 > 6M and
εk,t,t1 ⩾ 0.00798086 for all k = 2, . . . , 45 and t ̸= t1 ∈ {1, 2}. Then the maximum of the
log(q74 · 101/εk,t,t1)/ log γ for all k = 2, . . . , 45 and t ̸= t1 ∈ {1, 2} is at most 311. So,
n ⩽ 311 which contradicts the assumption on n and finish the proof of this case.
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3.3. Case (6)

Again, n ⩾ 3, n ̸= 4. Now t ∈ {1, 3} and a ⩾ 0. We have the inequalities

γn−3 ⩽ Pn = t · 6a < 6a+1 and γn−1 ⩾ Pn = t · 6a > 6a−1,

where t ∈ {1, 3}. So, we use the same inequalities given in (9). Then a ⩽ n. In the interval
0 ⩽ n ⩽ 200 and 0 ⩽ a ⩽ 32 Mathematica gives the solution P6 = 3 · 60 = 60 + 60 + 60

listed in Theorem 1.1. We prove it is the only one in this case.

Let n > 200. Thus a > 29. From Binet’s formula equation (6) gives
∣∣∣c1
t
γn6−a − 1

∣∣∣ < 1

γn−10
. (20)

Let Λ be the expression inside of the absolute value on the left side of (20). As Λ ̸= 0
we take

α1 =
c1
t
, α2 = γ, α3 = 6, b1 = 1, b2 = n, b3 = −a.

and apply Matveev’s inequality to it with B = n. The height of α1 is

h(α1) < h(c1) + h(t) < log γ + 7 log 2.

So we take A1 = 15.4 and A2 = 0.3, A3 = 5.4 as above. Hence, from Matveev’s inequality
we obtain

log |Λ1| > −C · (1 + log n) · 15.4 · 0.3 · 5.4,

which compared with (20) and Lemma 2.3 yields

n < 3.24438× 1016. (21)

Now, consider
Γ = n log γ − a log 6 + log

c1
t
,

and go to (20). Note that eΓ − 1 = Λ ̸= 0. Thus, Γ ̸= 0 and we obtain in fact that

0 < |Γ| < 2

γn−10
.

Dividing through by log 6, we obtain

0 < |nτ − a+ µ| < 19

γn
,

where

τ :=
log γ

log 6
and µt :=

log
(
c1
t

)

log 6
for t = 1, 3.

Now, with M = 3.24438× 1016 Mathematica find that the 43-th convergent

p43
q43

=
53909443715906518

343502498150492101
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of τ is such that q43 > 6M and εt = ||q43 · µt|| −M ||q43 · τ || > 0.087677 > 0 for t = 1, 3.
Thus from Lemma 2.2, with A := 19 and B := γ, we obtain that

n <
log(19 · q43/ε)

log γ
< 163,

which contradicts the assumption on n and finish the proof of this case. This finish the
proof of Theorem 1.
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