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Abstract. In this note we find all Fibonacci and Lucas numbers of the
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1. Introduction

Let (F,,)n>0 be the Fibonacci numbers defined by the recurrence F, 1o = F, 41+ F,, with
initial conditions Fy =0, Fy = 1. Let (L, )n>0 be the Lucas sequence that has the same
recurrence formula as the Fibonacci numbers, but with initial conditions Ly = 2 and
Ly = 1. The study of diophantine equations that involves Fibonacci or Lucas numbers
is a very rich area of research and has attracted the attention of many researchers, see,
e.g., [3,6,7,9,10, 11, 13] and the references therein. For example, Luo [11] proved that
1,2,21, and 55 are the unique Fibonacci numbers that are also triangular numbers, and
some years later he also found all Lucas numbers that are also triangular numbers [12].
Marques and Togbé [13] found all the Fibonacci and Lucas numbers that are of the form
20+ 3 +5¢ with 0 < max{a,b} < c. Later, Qu, Zeng and Cao [8] found all the Fibonacci
and Lucas numbers that are of the form 2% + 3% +5¢ + 79, with 0 < max{a,b,c} < d, and
posted the problem of finding Fibonacci and Lucas numbers of the form —2¢ —3% —5¢4+7¢,
with 0 < max{a,b,c} < d. In this note we solve this problem. Our main results are the
following two theorems:

Theorem 1.1. All non-negative integer solutions (n,a,b, c¢,d) of the Diophantine equation

F,=-2*-3"—5°47 (1)
with 0 < max{a, b, c} < d belong to the set

Theorem 1.2. All non-negative integer solutions (n,a,b, c¢,d) of the Diophantine equation

L, =-2%—3"—5°47 (2)
with 0 < max{a, b, c} < d belong to the set

{(07 0’ 17 07 1)7 (]" ]" 1707 1)’ (27 1707 O’ 1)7 (37 07 0’ O’ 1)7 (5’ 27 27 27 2)} °

2. Preliminaries and tools
In this section we present several known results that we will use in our proofs. First,
let’s remember some properties of Fibonacci and Lucas sequences.

Let v := 1"'2—‘/5 and p = 1_7‘/5 The numbers v and p are the roots of the characteristic
polynomial 2 — z — 1 = 0. The well-known Binet’s formulas are

,yn _ ’un
V5

which holds for all n > 0. Also, the inequalities

F, = and L, =+"+ u", (3)

’Yn_Q <F, S’Yn_l and ’Yn_l <L,< 2'7n (4)

holds for all positive integers n.
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Let « be an algebraic number of degree d. Let a be the leading coeflicient of its minimal
polynomial (over Z) and let a,...,aq denote the conjugates of o, with ay = . The
logarithmic height of « is defined as

d
h(a) = é (log la| + Zlogmax{l, |041-}> .

i=1
The following result is a lower bound for a linear form in logarithms due to Matveev [14].

Lemma 2.1. Let L be a real number field of degree dy,, oy, ...,y € L and let by, ..., by be
non-zero integers. Let B > max{|b1],...,|b¢|}. Let Aq,..., Ay be real numbers satisfying

A; > max{ dr h(o;), |logay|, 0.16} for all i=1,...,L

If o -~-a2‘* #1. Then

labt - abt — 1] > exp (—1.4 x 3073 x £45 x df (1 + logdy)(1 +log B) Ay -+ Af) .

To reduce even more the bounds obtained with Matveev’s result we use a version of
Baker-Davenport lemma based on Lemma in [1]. We shall use the one given by Bravo,
Goémez and Luca [2] that is a slightly variation of the one given by Dujella and Petho [4].
For a real number z, we write ||| = min{|z —n| : n € Z} for the distance from z to
the nearest integer.

Lemma 2.2. Let M be a positive integer. Let a, 7, A >0, B > 1 be given real numbers.
Let p/q be a convergent of « such that ¢ > 6M and € := ||g7|| — M||q|| > 0. Then the
inequality

Bw
does not have a solution in positive integers n, m and w in the ranges

- log (Aqg/e)
~ logB

O<|na—m+r71|<

n<M and

We also need the following result (Lemma 7 in [15]).

Lemma 2.3. If m>1, T > (4m?)™ and T > x/(logx)™, then

x < 2T (logT)™.

3. Proof of Theorem 1

In order to simplify some calculations, with a Mathematica’s program we have checked
all the solutions for equation (1) in the range 0 < d <n <20 and 0 < n < d < 20, that in
fact are the solutions that appear in the statement of Theorem 1.1. So in the rest in the
proof we assume that max{n,d} > 20. We start working with equation (1) and the first
inequality of (4). From inequality y*~2 < F,, we have that "2 < F,, < 7 which implies
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that 0.24(n — 1) < d. From F,, <~"~! we obtain that 7¢ <"1 +3.5% < 4.57. 4771
and this implies that

log(v)(n — 1) + log(4)
log(7/5)

because n > 2. So we conclude that

d< <1.44(n—1)+4.13 < 3n,

0.24n — 0.24 < d < 3n.

By using equation (1) and Binet’s formula we obtain

,yn d a b c "
T _d = (274304 5% +
V5 ( :

because |p| < 1 and 2% > 1. Now

o,

S

,yn7—d_1__(2a+3b+5c) /1'” “0
V5 - 7 TG

By using that 2¢/7% < 1/7%1¢  for every z € {2,3,5}, and that |u"/(7%V/5)| < 1/7%14,
we obtain

,yn'?fd 4
v ‘< —o1d- (5)

Notice that this inequality is the same obtained by the authors of [8] and we can obtain
equation (6) in the same way as they do. For the reader’s convenience we repeated the
calculations. We take £ := 3, v := 1, 72 := 7, 73 := /5 and by :=n, by := —d, by := —1.
Then dr, = [Q(v/5): Q)] = 2. Now, h(y1) = 1/2log~, h(y3) = log7, h(v3) = log /5, and
hence we can take Ay := 0.5, Ay := 3.9 and A3 := 1.7. Let R := max{|b1],|bz|, |bs]} =
max{n,d, 1}. By Matveev’s result (Lemma 2.1) we have that

77 - 1‘ > exp (—C (1 + log R)) (6)
\/g p g )
where C' = 3.22 x 10'2. We have two cases

Case 1. R =n.

From equations (5) and (6) we obtain

704ﬁ > exp (—C (1 +1logn)). (7)

Taking logarithms in equation (7) and using that log~/log 7(n — 1) < d we obtain, after
some straightforward calculations that

<o ¢ +1
logn 0.1logy 2

Now we use Lemma 2.3 to obtain that max{d,n} < 8.8 x 10'5.

Case 2. R=d, thatisn <d.
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In this case, after taking logarithms to equation (6) we get
log4 — 0.1log 7d > —C(1 + log d),

that is
0.1log7d — log4 < C(1 +1logd) < c(2logd),

because d > 3. After some straightforward calculations we obtain

d <2 70 +8
2logn 0.1log7 ’

and by using Lemma 2.3 we get

n <d < 2.06052 x 10'°.

Now we will reduce the bounds previously obtained. Let
Ap :=nlog~y — dlog 7 — log /5.
Note that Ar < 0 because

ARl CA k. e 1230 I o
V5 - 7

We have that 1 — e*r = |eAr — 1| < 1/2 which implies that e** < 2. Therefore

err 1= < 0.

4
0<|Ap| <elhrl —1=erljehr 1) <2

70.1d"
Thus .
Inlog~y — dlog7 —log V5| < —01d"
Dividing by log 7 we get
nlogv o log V5 8
log 7 log 7 log 7 x 70-1d°
Now we use Lemma 2.2 with a = igi?, m=d, T = fl(l)fg\ég, A =8/log7, B=1.2

(in [8] was proved that « is irrational). We take M = 8.8 x 10'°, and with the use
of Mathematica we observe that gsg = 119059818885400441 (the denominator of the
P39/q39 convergent of «) satisfies gzg > 6M and e = 0.419601. Therefore, if (n,a,b, ¢, d)
is a solution in positive integers to equation 1, then d < 229 and hence n < 928. Applying
again Lemma 2.2, but now with M = 928, we obtain gs = 21064 and ¢ = 0.07494895
which implies that d < 77 and hence n < 314.

Finally, we use a program written in Mathematica to determine all the solutions in the
range d < 77 and n < 314 considering both cases n > d and d > n. In both cases all the
solutions are given in the statement of Theorem 1.
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4. Proof of theorem 2

With a Mathematica’s program we have checked all the solutions for equation (2) in the
range 0 < d <n<20and 0 <n <d<20. So, in the rest of the proof we assume that
max{n,d} > 20.

From Binet’s formula for the Lucas sequence and equation (2) we obtain
,yn_7d:_(2a+3l>+5c)_un <0,
because |u| < 1 and 2% > 1. Now, dividing by 7¢ we obtain

e _ (2a+3b+5c) Mn

From which we deduce that

4
|7n7_d - 1‘ < 70.1d" (8)

Now, combining the second inequality of (4) with (2) we obtain 4"~! < 7% and (7/5)% <
5™, which together implies that 0.24n —0.24 < d < 2n (for the second inequality we use
that n > 9). Equation (8) is the same inequality obtained by Qu, Zeng and Cao [8] and
hence we apply Matveev’s result (Lemma 2.1) exactly as in [8] by taking £ := 2, 71 := 1,
Yo =7, and by := n,by := —d. Thus dr, = [Q(+/5): Q] = 2 and h(y1) = 1/2log~,
h(v2) = log7. We can take A; := 0.5, Az := 3.9 and B := max{n,d}. By using
Lemma 2.1 and after some calculations we obtain

[y"77* = 1] > exp (—C(1 + log B)).. (9)
where C' = 1.02 x 101°. We use equations (8) and (9) to obtain

C(1+1log B) +log4

d<
0.1log7

(10)

Now, we proceed by cases.
Case 1: d>n

To simplify equation (10) we use that 1+ logd < 2logd (because d > 3). After some
calculations we obtain d/logd < (2C + log4)/(0.1log7) and by using Lemma 2.2 we
obtain d < 5.33 x 10!2.

Case 2: n > d.

We have that
C(1+1logn) + log4

0.1log7

0.24n - 024 <d <

After some straightforward calculations (and using that n > 3) we apply Lemma 2.2 to
obtain n < 2.27 x 10'3.

Now we will reduce the bounds. As in [8], we define

Ap :=nlogy —dlogT7.
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Notice that A;, < 0. For d > 3, |e*t — 1| < 1/2, which implies that [e*L]| < 2. Let
A := e’ — 1. Then we have

4
0<|AL| <|el — 1] =ePelA] < 2 x ——

7014
Dividing by log 7 we obtain
nlog~y 4.2
— —. 11
log 7 ‘ < 1.2d (11)
Now we proceed in a similar way that in [8]. Let [ag,a1,...,] =[0,4,22,1,5,...] be the

continued fraction of log~y/log 7, and let p;/¢; be its ith convergent. We have obtained
that n < 2.27 x 10'3 and using Mathematica we observe that gag < 2.27 x 10'3 < g30.
If aps := max{a;: i = 0,1,...,30}, then apy = a4 = 35. Now we use properties of
continued fractions similarly as in [8] and [5, page 10] to obtain

1 1 1
DOBY _gl> = (12)
log 7 (ap +2)n 3Tn
From equations (11) and (12) we have
1 nlog~y 4.2
— —d| < ==
37n log 7 ’ 1.24
and hence
142
3Tn ~ 1.24°
from which, by using n < 2.27 x 103, we obtain
log(4.2 x 37
g < 02X 3T 0. (13)

log 1.2

Now we proceed by cases.
Case 1: If n < d, then n < 197, and using that d < 2n we obtain 98 < n < 197.

Case 2: When d < n we use 0.24n — 0.24 < d to obtain n < 822. And using this last
inequality we obtain
log(4.2 x 37n)

d
< log 1.2

< 65. (14)

and hence 136 < n < 272. We write a program in Mathematica to obtain all the solutions
in the ranges obtained in Case 1 and Case 2 and the results are showed in the statement
of Theorem 2.

Acknowledgements: The authors would like to thank the reviewer for her/his useful
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