Fibonacci and Lucas numbers of the form

$$
-2^{a}-3^{b}-5^{c}+7^{d}
$$

Sofía Ibarra ${ }^{a}$, Luis Manuel Rivera ${ }^{b}$,
${ }^{a}$ Universidad Nacional Autónoma de México, Ciudad de México, México.
${ }^{b}$ Universidad Autónoma de Zacatecas, Unidad Académica de Matemáticas, Zacatecas, México.

Abstract

In this note we find all Fibonacci and Lucas numbers of the form $-2^{a}-3^{b}-5^{c}+7^{d}$ where a, b, c, d are non-negative integers, with $0 \leq \max \{a, b, c\} \leq d$. This result gives an answer to a question posed by Qu , Zeng and Cao.

Keywords: Fibonacci and Lucas sequences, linear form in logarithms, reduction method.

MSC2020: 11B39, 11D04, 11D45.

Números de Fibonacci y Lucas de la forma $-2^{a}-3^{b}-5^{c}+7^{d}$

Resumen. En esta nota se encuentran todos los números de Fibonacci y de Lucas de la forma $-2^{a}-3^{b}-5^{c}+7^{d}$, en donde a, b, c y d son enteros no negativos con $0 \leq \max \{a, b, c\} \leq d$. Este resultado da respuesta a una pregunta de Qu, Zeng y Cao.

Palabras clave: Números de Fibonacci y Lucas, formas lineales en logaritmos, método de reducción.

[^0]
1. Introduction

Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci numbers defined by the recurrence $F_{n+2}=F_{n+1}+F_{n}$ with initial conditions $F_{0}=0, F_{1}=1$. Let $\left(L_{n}\right)_{n \geq 0}$ be the Lucas sequence that has the same recurrence formula as the Fibonacci numbers, but with initial conditions $L_{0}=2$ and $L_{1}=1$. The study of diophantine equations that involves Fibonacci or Lucas numbers is a very rich area of research and has attracted the attention of many researchers, see, e.g., $[3,6,7,9,10,11,13]$ and the references therein. For example, Luo [11] proved that $1,2,21$, and 55 are the unique Fibonacci numbers that are also triangular numbers, and some years later he also found all Lucas numbers that are also triangular numbers [12]. Marques and Togbé [13] found all the Fibonacci and Lucas numbers that are of the form $2^{a}+3^{b}+5^{c}$, with $0 \leq \max \{a, b\} \leq c$. Later, Qu, Zeng and Cao [8] found all the Fibonacci and Lucas numbers that are of the form $2^{a}+3^{b}+5^{c}+7^{d}$, with $0 \leq \max \{a, b, c\} \leq d$, and posted the problem of finding Fibonacci and Lucas numbers of the form $-2^{a}-3^{b}-5^{c}+7^{d}$, with $0 \leq \max \{a, b, c\} \leq d$. In this note we solve this problem. Our main results are the following two theorems:

Theorem 1.1. All non-negative integer solutions (n, a, b, c, d) of the Diophantine equation

$$
\begin{equation*}
F_{n}=-2^{a}-3^{b}-5^{c}+7^{d} \tag{1}
\end{equation*}
$$

with $0 \leq \max \{a, b, c\} \leq d$ belong to the set

$$
\left\{\begin{array}{lll}
(0,0,0,1,1), & (1,1,1,0,1), & (2,1,1,0,1), \\
(4,1,0,0,1), & (7,1,2,2,2), & (8,1,0,2,2), \\
(9,0,2,1,2),
\end{array}\right\}
$$

Theorem 1.2. All non-negative integer solutions (n, a, b, c, d) of the Diophantine equation

$$
\begin{equation*}
L_{n}=-2^{a}-3^{b}-5^{c}+7^{d} \tag{2}
\end{equation*}
$$

with $0 \leq \max \{a, b, c\} \leq d$ belong to the set

$$
\{(0,0,1,0,1),(1,1,1,0,1),(2,1,0,0,1),(3,0,0,0,1),(5,2,2,2,2)\}
$$

2. Preliminaries and tools

In this section we present several known results that we will use in our proofs. First, let's remember some properties of Fibonacci and Lucas sequences.
Let $\gamma:=\frac{1+\sqrt{5}}{2}$ and $\mu:=\frac{1-\sqrt{5}}{2}$. The numbers γ and μ are the roots of the characteristic polynomial $x^{2}-x-1=0$. The well-known Binet's formulas are

$$
\begin{equation*}
F_{n}=\frac{\gamma^{n}-\mu^{n}}{\sqrt{5}} \quad \text { and } \quad L_{n}=\gamma^{n}+\mu^{n} \tag{3}
\end{equation*}
$$

which holds for all $n \geq 0$. Also, the inequalities

$$
\begin{equation*}
\gamma^{n-2} \leq F_{n} \leq \gamma^{n-1} \quad \text { and } \quad \gamma^{n-1} \leq L_{n} \leq 2 \gamma^{n} \tag{4}
\end{equation*}
$$

holds for all positive integers n.

Let α be an algebraic number of degree d. Let a be the leading coefficient of its minimal polynomial (over \mathbb{Z}) and let $\alpha_{1}, \ldots, \alpha_{d}$ denote the conjugates of α, with $\alpha_{1}=\alpha$. The logarithmic height of α is defined as

$$
h(\alpha)=\frac{1}{d}\left(\log |a|+\sum_{i=1}^{d} \log \max \left\{1,\left|\alpha_{i}\right|\right\}\right) .
$$

The following result is a lower bound for a linear form in logarithms due to Matveev [14].
Lemma 2.1. Let \mathbf{L} be a real number field of degree $d_{\mathbf{L}}, \alpha_{1}, \ldots, \alpha_{\ell} \in \mathbf{L}$ and let b_{1}, \ldots, b_{ℓ} be non-zero integers. Let $B \geq \max \left\{\left|b_{1}\right|, \ldots,\left|b_{\ell}\right|\right\}$. Let A_{1}, \ldots, A_{ℓ} be real numbers satisfying

$$
A_{i} \geq \max \left\{d_{\mathbf{L}} h\left(\alpha_{i}\right),\left|\log \alpha_{i}\right|, 0.16\right\} \quad \text { for all } \quad i=1, \ldots, \ell .
$$

If $\alpha_{1}^{b_{1}} \cdots \alpha_{\ell}^{b_{\ell}} \neq 1$. Then

$$
\left|\alpha_{1}^{b_{1}} \cdots \alpha_{\ell}^{b_{\ell}}-1\right|>\exp \left(-1.4 \times 30^{\ell+3} \times \ell^{4.5} \times d_{\mathbf{L}}^{2}\left(1+\log d_{\mathbf{L}}\right)(1+\log B) A_{1} \cdots A_{\ell}\right) .
$$

To reduce even more the bounds obtained with Matveev's result we use a version of Baker-Davenport lemma based on Lemma in [1]. We shall use the one given by Bravo, Gómez and Luca [2] that is a slightly variation of the one given by Dujella and Petho [4]. For a real number x, we write $\|x\|=\min \{|x-n|: n \in \mathbb{Z}\}$ for the distance from x to the nearest integer.

Lemma 2.2. Let M be a positive integer. Let $\alpha, \tau, A>0, B>1$ be given real numbers. Let p / q be a convergent of α such that $q>6 M$ and $\varepsilon:=\|q \tau\|-M\|q \alpha\|>0$. Then the inequality

$$
0<|n \alpha-m+\tau|<\frac{A}{B^{w}}
$$

does not have a solution in positive integers n, m and w in the ranges

$$
n \leq M \quad \text { and } \quad w \geq \frac{\log (A q / \varepsilon)}{\log B} .
$$

We also need the following result (Lemma 7 in [15]).
Lemma 2.3. If $m \geq 1, T>\left(4 m^{2}\right)^{m}$ and $T>x /(\log x)^{m}$, then

$$
x<2^{m} T(\log T)^{m} .
$$

3. Proof of Theorem 1

In order to simplify some calculations, with a Mathematica's program we have checked all the solutions for equation (1) in the range $0 \leq d \leq n \leq 20$ and $0 \leq n \leq d \leq 20$, that in fact are the solutions that appear in the statement of Theorem 1.1. So in the rest in the proof we assume that $\max \{n, d\}>20$. We start working with equation (1) and the first inequality of (4). From inequality $\gamma^{n-2} \leq F_{n}$ we have that $\gamma^{n-2} \leq F_{n}<7^{d}$ which implies
that $0.24(n-1)<d$. From $F_{n} \leq \gamma^{n-1}$ we obtain that $7^{d} \leq \gamma^{n-1}+3 \cdot 5^{d}<4 \cdot 5^{d} \cdot \gamma^{n-1}$ and this implies that

$$
d<\frac{\log (\gamma)(n-1)+\log (4)}{\log (7 / 5)}<1.44(n-1)+4.13<3 n
$$

because $n>2$. So we conclude that

$$
0.24 n-0.24<d<3 n
$$

By using equation (1) and Binet's formula we obtain

$$
\frac{\gamma^{n}}{\sqrt{5}}-7^{d}=-\left(2^{a}+3^{b}+5^{c}\right)+\frac{\mu^{n}}{\sqrt{5}}<0
$$

because $|\mu|<1$ and $2^{a} \geq 1$. Now

$$
\frac{\gamma^{n} 7^{-d}}{\sqrt{5}}-1=-\frac{\left(2^{a}+3^{b}+5^{c}\right)}{7^{d}}+\frac{\mu^{n}}{7^{d} \sqrt{5}}<0
$$

By using that $x^{d} / 7^{d} \leq 1 / 7^{0.1 d}$, for every $x \in\{2,3,5\}$, and that $\left|\mu^{n} /\left(7^{d} \sqrt{5}\right)\right|<1 / 7^{0.1 d}$, we obtain

$$
\begin{equation*}
\left|\frac{\gamma^{n} 7^{-d}}{\sqrt{5}}-1\right|<\frac{4}{7^{0.1 d}} \tag{5}
\end{equation*}
$$

Notice that this inequality is the same obtained by the authors of [8] and we can obtain equation (6) in the same way as they do. For the reader's convenience we repeated the calculations. We take $\ell:=3, \gamma_{1}:=\gamma, \gamma_{2}:=7, \gamma_{3}:=\sqrt{5}$ and $b_{1}:=n, b_{2}:=-d, b_{3}:=-1$. Then $\left.d_{\mathbf{L}}=[\mathbb{Q}(\sqrt{5}): \mathbb{Q})\right]=2$. Now, $h\left(\gamma_{1}\right)=1 / 2 \log \gamma, h\left(\gamma_{3}\right)=\log 7, h\left(\gamma_{3}\right)=\log \sqrt{5}$, and hence we can take $A_{1}:=0.5, A_{2}:=3.9$ and $A_{3}:=1.7$. Let $R:=\max \left\{\left|b_{1}\right|,\left|b_{2}\right|,\left|b_{3}\right|\right\}=$ $\max \{n, d, 1\}$. By Matveev's result (Lemma 2.1) we have that

$$
\begin{equation*}
\left|\frac{\gamma^{n} 7^{-d}}{\sqrt{5}}-1\right|>\exp (-C(1+\log R)) \tag{6}
\end{equation*}
$$

where $C=3.22 \times 10^{12}$. We have two cases
Case 1. $R=n$.
From equations (5) and (6) we obtain

$$
\begin{equation*}
\frac{4}{7^{0.1 d}}>\exp (-C(1+\log n)) \tag{7}
\end{equation*}
$$

Taking logarithms in equation (7) and using that $\log \gamma / \log 7(n-1)<d$ we obtain, after some straightforward calculations that

$$
\frac{n}{\log n}<2\left(\frac{C}{0.1 \log \gamma}+\frac{1}{2}\right)
$$

Now we use Lemma 2.3 to obtain that $\max \{d, n\}<8.8 \times 10^{15}$.
Case 2. $R=d$, that is $n \leq d$.

In this case, after taking logarithms to equation (6) we get

$$
\log 4-0.1 \log 7 d>-C(1+\log d)
$$

that is

$$
0.1 \log 7 d-\log 4<C(1+\log d)<c(2 \log d)
$$

because $d \geq 3$. After some straightforward calculations we obtain

$$
\frac{d}{2 \log n}<2\left(\frac{C}{0.1 \log 7}+8\right)
$$

and by using Lemma 2.3 we get

$$
n \leq d<2.06052 \times 10^{15}
$$

Now we will reduce the bounds previously obtained. Let

$$
\Lambda_{F}:=n \log \gamma-d \log 7-\log \sqrt{5}
$$

Note that $\Lambda_{F}<0$ because

$$
e^{\Lambda_{F}}-1=\frac{\gamma^{n} 7^{-d}}{\sqrt{5}}-1=\frac{-\left(2^{a}+3^{b}+5^{c}\right)+\mu^{n}}{7^{d}}<0
$$

We have that $1-e^{\Lambda_{F}}=\left|e^{\Lambda_{F}}-1\right|<1 / 2$ which implies that $e^{\Lambda_{F}}<2$. Therefore

$$
0<\left|\Lambda_{F}\right|<e^{\left|\Lambda_{F}\right|}-1=e^{\left|\Lambda_{F}\right|}\left|e^{\Lambda_{F}}-1\right|<2 \frac{4}{7^{0.1 d}}
$$

Thus

$$
|n \log \gamma-d \log 7-\log \sqrt{5}|<\frac{8}{7^{0.1 d}}
$$

Dividing by $\log 7$ we get

$$
\left|n \frac{\log \gamma}{\log 7}-d-\frac{\log \sqrt{5}}{\log 7}\right|<\frac{8}{\log 7 \times 7^{0.1 d}}
$$

Now we use Lemma 2.2 with $\alpha=\frac{\log \gamma}{\log 7}, m=d, \tau=-\frac{\log \sqrt{5}}{\log 7}, A=8 / \log 7, B=1.2$ (in [8] was proved that α is irrational). We take $M=8.8 \times 10^{15}$, and with the use of Mathematica we observe that $q_{39}=119059818885400441$ (the denominator of the p_{39} / q_{39} convergent of α) satisfies $q_{39}>6 M$ and $\epsilon=0.419601$. Therefore, if (n, a, b, c, d) is a solution in positive integers to equation 1 , then $d<229$ and hence $n<928$. Applying again Lemma 2.2, but now with $M=928$, we obtain $q_{8}=21064$ and $\epsilon=0.07494895$ which implies that $d<77$ and hence $n<314$.

Finally, we use a program written in Mathematica to determine all the solutions in the range $d<77$ and $n<314$ considering both cases $n>d$ and $d \geq n$. In both cases all the solutions are given in the statement of Theorem 1.

4. Proof of theorem 2

With a Mathematica's program we have checked all the solutions for equation (2) in the range $0 \leq d \leq n \leq 20$ and $0 \leq n \leq d \leq 20$. So, in the rest of the proof we assume that $\max \{n, d\} \geq 20$.
From Binet's formula for the Lucas sequence and equation (2) we obtain

$$
\gamma^{n}-7^{d}=-\left(2^{a}+3^{b}+5^{c}\right)-\mu^{n}<0
$$

because $|\mu|<1$ and $2^{a} \geq 1$. Now, dividing by 7^{d} we obtain

$$
\gamma^{n} 7^{-d}-1=-\frac{\left(2^{a}+3^{b}+5^{c}\right)}{7^{d}}-\frac{\mu^{n}}{7^{d}}<0 .
$$

From which we deduce that

$$
\begin{equation*}
\left|\gamma^{n} 7^{-d}-1\right|<\frac{4}{7^{0.1 d}} \tag{8}
\end{equation*}
$$

Now, combining the second inequality of (4) with (2) we obtain $\gamma^{n-1}<7^{d}$ and $(7 / 5)^{d}<$ $5 \gamma^{n}$, which together implies that $0.24 n-0.24<d<2 n$ (for the second inequality we use that $n>9$). Equation (8) is the same inequality obtained by Qu, Zeng and Cao [8] and hence we apply Matveev's result (Lemma 2.1) exactly as in [8] by taking $\ell:=2, \gamma_{1}:=\gamma$, $\gamma_{2}:=7$, and $b_{1}:=n, b_{2}:=-d$. Thus $d_{\mathbf{L}}=[\mathbb{Q}(\sqrt{5}): \mathbb{Q}]=2$ and $h\left(\gamma_{1}\right)=1 / 2 \log \gamma$, $h\left(\gamma_{2}\right)=\log 7$. We can take $A_{1}:=0.5, A_{2}:=3.9$ and $B:=\max \{n, d\}$. By using Lemma 2.1 and after some calculations we obtain

$$
\begin{equation*}
\left|\gamma^{n} 7^{-d}-1\right|>\exp (-C(1+\log B)) \tag{9}
\end{equation*}
$$

where $C=1.02 \times 10^{10}$. We use equations (8) and (9) to obtain

$$
\begin{equation*}
d<\frac{C(1+\log B)+\log 4}{0.1 \log 7} \tag{10}
\end{equation*}
$$

Now, we proceed by cases.
Case 1: $d \geq n$
To simplify equation (10) we use that $1+\log d<2 \log d$ (because $d>3$). After some calculations we obtain $d / \log d<(2 C+\log 4) /(0.1 \log 7)$ and by using Lemma 2.2 we obtain $d<5.33 \times 10^{12}$.
Case 2: $n \geq d$.
We have that

$$
0.24 n-0.24<d<\frac{C(1+\log n)+\log 4}{0.1 \log 7}
$$

After some straightforward calculations (and using that $n>3$) we apply Lemma 2.2 to obtain $n<2.27 \times 10^{13}$.

Now we will reduce the bounds. As in [8], we define

$$
\Lambda_{L}:=n \log \gamma-d \log 7
$$

Notice that $\Lambda_{L}<0$. For $d>3,\left|e^{\Lambda_{L}}-1\right|<1 / 2$, which implies that $\left|e^{\Lambda_{L}}\right|<2$. Let $\Lambda:=e^{\Lambda_{L}}-1$. Then we have

$$
0<\left|\Lambda_{L}\right|<\left|e^{\left|\Lambda_{L}\right|}-1\right|=e^{\left|\Lambda_{L}\right|}|\Lambda|<2 \times \frac{4}{7^{0.1} d}
$$

Dividing by $\log 7$ we obtain

$$
\begin{equation*}
0<\left|\frac{n \log \gamma}{\log 7}-d\right|<\frac{4.2}{1.2^{d}} \tag{11}
\end{equation*}
$$

Now we proceed in a similar way that in [8]. Let $\left[a_{0}, a_{1}, \ldots,\right]=[0,4,22,1,5, \ldots]$ be the continued fraction of $\log \gamma / \log 7$, and let p_{i} / q_{i} be its i th convergent. We have obtained that $n<2.27 \times 10^{13}$ and using Mathematica we observe that $q_{29}<2.27 \times 10^{13}<q_{30}$. If $a_{M}:=\max \left\{a_{i}: i=0,1, \ldots, 30\right\}$, then $a_{M}=a_{14}=35$. Now we use properties of continued fractions similarly as in [8] and [5, page 10] to obtain

$$
\begin{equation*}
\left|\frac{n \log \gamma}{\log 7}-d\right|>\frac{1}{\left(a_{M}+2\right) n}=\frac{1}{37 n} \tag{12}
\end{equation*}
$$

From equations (11) and (12) we have

$$
\frac{1}{37 n}<\left|\frac{n \log \gamma}{\log 7}-d\right|<\frac{4.2}{1.2^{d}}
$$

and hence

$$
\frac{1}{37 n}<\frac{4.2}{1.2^{d}}
$$

from which, by using $n<2.27 \times 10^{13}$, we obtain

$$
\begin{equation*}
d<\frac{\log (4.2 \times 37 n)}{\log 1.2}<197 \tag{13}
\end{equation*}
$$

Now we proceed by cases.
Case 1: If $n \leq d$, then $n<197$, and using that $d<2 n$ we obtain $98<n<197$.
Case 2: When $d \leq n$ we use $0.24 n-0.24<d$ to obtain $n<822$. And using this last inequality we obtain

$$
\begin{equation*}
d<\frac{\log (4.2 \times 37 n)}{\log 1.2}<65 \tag{14}
\end{equation*}
$$

and hence $136<n<272$. We write a program in Mathematica to obtain all the solutions in the ranges obtained in Case 1 and Case 2 and the results are showed in the statement of Theorem 2.

Acknowledgements: The authors would like to thank the reviewer for her/his useful corrections.

References

[1] Baker A. and Davenport H., "The equations $3 X^{2}-2=Y^{2}$ and $8 X^{2}-7=Z^{2}$ ", Q. J. Math. Oxf., 20 (1969), No. 2, 129-137. doi: 10.1093/qmath/20.1.129
[2] Bravo J.J., Gómez C.A. and Luca F., "Powers of two as sums of two k-Fibonacci numbers", Miskolc Math. Notes, 17 (2016), No. 1, 85-100. doi: 10.18514/MMN.2016.1505
[3] Bugeaud Y., Mignotte M. and Siksek S., "Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers", Ann. Math., 163 (2006), No. 3, 969-1018. doi: 10.4007/annals.2006.163.969
[4] Dujella A. and Petho A., "A generalization of a theorem of Baker and Davenport", Quart. J. Math. Oxford, 49 (1998), No. 3, 291-306. doi: 10.1093/qmathj/49.3.291
[5] García-Lomelí A.C. and Hernández S., "Powers of two as sums of two Padovan numbers", Integers, 18 (2018), No. A84. doi: 10.5281/zenodo. 10682666
[6] Hernández S.H., "The Fibonacci numbers of the form $2^{a} \pm 2^{b}+1$ ", Fibonacci Quart., 56 (2018), No. 4, 354-359.
[7] Hernández S.H., Luca F. and Rivera L.M., "On Pillai's problem with the Fibonacci and Pell sequences", Bol. Soc. Mat. Mex., 25 (2019), No. 3, 495-507. doi: 10.1007/s40590-018-0223-9
[8] Qu Y., Zeng J. and Cao Y., "Fibonacci and Lucas Numbers of the Form $2^{a}+3^{b}+5^{c}+7^{d}$ ", Symmetry, 10 (2018), No. 10, 509. doi: 10.3390/sym10100509
[9] Luca F., "Fibonacci numbers of the form $k^{2}+k+2$ ", in Applications of Fibonacci Numbers (Howard F.T.), Springer, Dordrecht, 1999, Vol. 8, 241-249. doi: 10.1007/978-94-011-42717_24
[10] Luca F. and Szalay L., "Fibonacci numbers of the form $p^{a} \pm p^{b}+1$ ", Fibonacci Quart., 45 (2007), 98-103.
[11] Luo M., "On triangular Fibonacci numbers", Fibonacci Quart., 27 (1989), 98-108.
[12] Luo M. , "On triangular Lucas numbers", in Applications of Fibonacci Numbers, (Howard F.T.) Springer, Dordrecht, 1991, 231-240. doi: 10.1007/978-94-011-3586-3_26
[13] Marques D. and Togbé A., "Fibonacci and Lucas numbers of the form $2^{a}+3^{b}+5^{c}$ ", Proc. Japan Acad. Ser. A Math. Sci., 89 (2013), No. 3, 45-50. doi: 10.3792/pjaa.89.47
[14] Matveev E.M., "An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II", Izv. Math., 64 (2000), No. 6, 1217-1269. doi: 10.1070/IM2000v064n06ABEH000314
[15] Sánchez S.G. and Luca F., "Linear combinations of factorials and S-units in a binary recurrence sequence", Ann. Math. Québec, 38 (2014), 169-188. doi: 10.1007/s40316-014-0025-z

[^0]: E-mail: ${ }^{a}$ sofiaibarratrejo@gmail.com, ${ }^{b}$ luismanuel.rivera@gmail.com ${ }^{\boxtimes}$.
 Received: 27 November 2023, Accepted: 23 May 2024.
 To cite this article: S. Ibarra and L.M. Rivera, Fibonacci and Lucas numbers of the form $-2^{a}-3^{b}-5^{c}+7^{d}$,
 Rev. Integr. Temas Mat., 42 (2024), No. 1, 43-50. doi: 10.18273/revint.v42n1-2024004

