
∮
Revista Integración

Escuela de Matemáticas

Universidad Industrial de Santander

Vol. 42, N◦ 2, 2024, pág. 55–65

Some characterizations of the internal

structure of Whitney levels

David Maya �,

Universidad Autónoma del Estado de México, Facultad de Ciencias, Toluca, México.

Dedicated to Samuel Maya Sánchez

Abstract. Let X be a continuum, and let C(X) denote the hyperspace of
all subcontinua of X. It is known that there exist monotone maps µ from
C(X) into [0,∞) such that µ({x}) = 0 for each x ∈ X, and if A is a proper
subcontinuum of B, then µ(A) < µ(B). The subcontinua µ−1(t) of C(X)
are called Whitney levels of C(X). In this paper, a class of closed subsets
of X is employed to characterize the Whitney levels of C(X) possessing one
of the following properties: irreducibility, decomposability, being a Wilder
continuum, aposyndesis, semiaposyndesis, n-aposyndesis, finite aposyndesis,
and connectedness colocal.

Keywords: Aposyndesis, connectedness colocal, decomposability, hyperspace
of the subcontinua irreducibility, Whitney level, Wilder continuum.

MSC2020: 54F15, 54F16, 54F65.

Algunas caracterizaciones de la estructura interna de

niveles de Whintey

Resumen. Sea X un continuo. Denotamos por C(X) al hiperespacio de
todos los subcontinuos de X. Se sabe que existen funciones continuas
monótonas µ desde C(X) hacia [0,∞) tales que µ({x}) = 0, y si A es un
subcontinuo propio de B, entonces µ(A) < µ(B). Los subcontinuos µ−1(t)
de C(X) son llamados niveles de Whitney. In este artículo, por medio de
una clase de subconjuntos cerrados de X se caracterizan los niveles de
Whitney que poseen alguna de las siguientes propiedades: ser irreducible, ser
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descomponible, aposindético, semiaposindético, aposindético con respecto a
conjuntos finitos, ser colocalmente conexo.

Palabras clave: Aposindesis, conexidad colocal, continuo descomponible, con-
tinuo de Wilder, hiperespacio de los subcontinuos, irreducibilidad, niveles de
Whitney.

1. Introduction

A continuum is a non-degenerate compact connected metric space. In [13] and [14],
Hassler Whitney contructed special types of functions on spaces of sets to study families
of curves. In [9], J. L. Kelley made significant use of Whitney maps in the study of
hyperspaces of continua. Several authors have investigated the relationship between
Whitney maps and the topological structure of the hyperspace of all nonempty closed
subsets of a continuum, as well as the hyperspace of all subcontinua of a continuum. In
particular, the arc structure of these hyperspace is closely related to the Whitney maps.

A Whitney level for the hyperspace of all subcontinuum of a continuum is a fiber of
a Whitney map. Each Whitney level is a continuum. A practical approach in this
study is to examine the topological properties of Whitney levels as subspace of the
hyperspace of all subcontinua of a continuum, induced by the topological properties
of the ground continuum, and vice versa. The literature contains an extensive list of
references addressing this problem (see list of references of [7, Section VIII] for example).

In [6], the author proves a basic theorem that characterizes separating points of the
Whitney levels of the hyperspace of all subcontinua of a continuum X as subcontinua
of X that separates X in a specific manner. Then, he uses the basic theorem to obtain
some information about the Whitney level for the hyperspace of all subcontinua of X
if X is indecomposable, arc-like, circle-like, of type A, or hereditarily of type A′. This
motivated the characterizations of the points on the edge of Whitney level presented in
[3].

In continuum theory, there are properties related to the subcontinua of a continuum. A
continuum X is:

irreducible if there exist points p, q ∈ X such that the unique subcontinuum of X
containing p and q is X itself.

decomposable if X is the union of two proper subcontinua.

a Wilder continuum if for any three distinct points x, y, and z of X, there exists a
subcontinuum of X containing x and exactly one of y and z,

semiaposyndetic if for every two distinct points x and y of X, there exists a sub-
continuum M of X such that the interior of M contains one of x and y, and X \M
contains the other point.

aposyndetic if for every two points x and y of X, x is an interior point of a sub-
continuum M of X such that M omits y.
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Some characterizations of the internal structure of Whitney levels 57

n-aposyndetic if for every subset A of X having exactly n elements, and a point
x ∈ X \A, x is an interior point of a subcontinuum M of X such that M is disjoint
from A.

colocally connected if X has a basis of open subsets with connected complement.

The interrelationship among these notions has been studied in [1], [4], [8], and [11].
The class of aposyndetic continua is a subclass of both the class of colocally connected
continua and the class of n-aposyndetic continua. Aposyndesis implies semiaposyndesis.
Each semiaposyndetic continuum is a Wilder continuum. Every Wilder continuum is
decomposable.

The aim of this paper is to present characterizations of Whitney levels that satisfy one of
the aforementioned properties, based on topological properties of the ground continuum.
Some characterization theorems are used in the arguments of some examples.

2. Preliminaries and auxiliary results

Let X be a continuum with metric d. The symbol B(ε, x) denotes the open ball in X of
radius ε > 0 centered on x ∈ X. For a subset A of X, set N(ε,A) =

⋃
{B(ε, a) : a ∈ A}.

Let C(X) be the collection of all subcontinua of a continuum X. Define H : C(X) ×
C(X) → [0,∞) by H(A,B) = g.l.b.{ε > 0 : A ⊆ N(ε,B), B ⊆ N(ε,A)}. In [7,
Theorem 2.2, p. 11], . The metric space (C(X), H) is the hyperspace of all subcontinua

of X

Theorem 2.1. [7, Corollary 14.10, p. 114] Let X be a continuum. The metric space
(C(X), H) is an arcwise continuum.

Theorem 2.2. Let X be a continuum. If A,B ∈ C(X) and ε > 0, then H(A,B) < ε if
and only if A ⊆ N(ε,B) and B ⊆ N(ε,A).

Proof. Set E(A,B) = {ε > 0 : A ⊆ N(ε,B), B ⊆ N(ε,A)}. First, assume that
H(A,B) < ε. Then ε is not a lower bound of E(A,B). Hence, there exists δ ∈ E(A,B)
such that δ < ε. Thus, A ⊆ N(δ,B) ⊆ N(ε,B) and B ⊆ N(δ,A) ⊆ N(ε,A). Next, as-
sume that A ⊆ N(ε,B) and B ⊆ N(ε,A). This guarantees that C = {N(δ,A) : δ ∈ (0, ε)}
is an open cover of the subcontinuum B of X. A finite subcover of C allows us to choose
δB ∈ (0, ε) such that B ⊆ N(δB , A). Similarly, there exists δA ∈ (0, ε) such that
A ⊆ N(δA, B). Set δ = max{δA, δB} to get an element of E(A,B) ∩ (0, ε). Therefore,
H(A,B) ≤ δ < ε. �XXX

Throughout this paper, Theorem 2.2 will be used without mentioning it explicitly.

Let X be a continuum. A Whitney map µ for C(X) is a continuous function µ : C(X) →
[0,∞) satisfying µ({p}) = 0 for each p ∈ X, and µ(A) < µ(B) whenever A is a proper
subset of B. If X is a continuum, then there exist Whitney maps for C(X) (see [7,
Theorem 13.4, p. 107]).

Let X be a continuum. A Whitney level for C(X) is any subset of C(X) that is of the
form µ−1(t), where µ is some Whitney map for C(X) and t ∈ [0, µ(X)).

Vol. 42, No. 2, 2024]



58 D. Maya

Theorem 2.3. [7, Theorem 19.9, p. 160] If X is a continuum, then each Whitney level
for C(X) is a subcontinuum of C(X).

The next result follows from [7, Theorem 14.6, p. 112]. It will be used frequently through-
out the paper without mentioning explicitly.

Lemma 2.4. Let X be a continuum. If A is a Whitney level for C(X), then each element
of X is contained in an element of A.

Lemma 2.5. Let X be a continuum and let A be a Whitney level for C(X). If F is a
closed subset of A and K ∈ A \ F , then there exists δ > 0 such that each element of F
intersects X \N(η,K) for each η ∈ (0, δ].

Proof. Seeking a contradiction, suppose to the contrary. So, for each n ∈ N, there exist
ηn ∈ (0, 1

n
] and Fn ∈ F such that Fn ⊆ N (ηn,K). The compactness of A allows us to

assume that the sequence (Fn)n∈N converges. Set F = limFn. Then F ∈ F . Let us
prove that F ⊆ K.

Let x ∈ F and let ε > 0. Then there exists m ∈ N such that 1

m
< ε

2
and H(Fm, F ) < ε

2
.

This implies that F ⊆ N( ε
2
, Fm) and Fm ⊆ N( ε

2
,K). Hence, there exists z ∈ Fm∩B( ε

2
, x)

and there exists y ∈ B( ε
2
, z) ∩K. Thus, y ∈ B(ε, x) ∩K. In conclusion, x is a point of

the closure of K. Therefore, x ∈ K. This proves that F is a subset of K.

Finally, the unique element of A contained in K is K. This proves K ∈ F . A contradic-
tion. �XXX

Lemma 2.6. Let E be a nonempty closed subset of a continuum X and let F be a closed
subset of a Whitney level A for C(X). If each element of F intersects E, then the union
of all components of E containing a point of an element of F is a closed subset of X.

Proof. Let G be the union of all components of E containing a point of an element of
F and let (xn)n∈N be a convergent sequence of elements of G. For each n ∈ N, let
Cn be the component of E containing xn and let Fn ∈ F be such that Cn ∩ Fn 6= ∅.
The compactness of C(X) allows us to assume that (Cn)n∈N and (Fn)n∈N converge. If
x = limxn, C = limCn and F = limFn, then C is a subcontinuum of X such that
x ∈ C ⊆ E and C ∩ F 6= ∅. Hence, the component of E containing x intersects an
element of L. This proves that x ∈ G. So, G is a closed subset of X. �XXX

Let X be a continuum, and let A be a Whitney level for C(X). A nonempty closed
subset G of X is an A-subcontinuum of X if for each pair of nonempty disjoint closed
subsets R and S of X such that G = R ∪ S, there exists an element A ∈ A such that
A ∩R 6= ∅ and A ∩ S 6= ∅. This notion is introduced in [3].

Lemma 2.7. Let G be a nonemtpy closed subset of a continuum X and let L be a sub-
continuum of a Whitney level A for C(X). If each element of L intersects G and each
component of G contains a point of an element of L, then G is an A-subcontinuum of
X.

[Revista Integración



Some characterizations of the internal structure of Whitney levels 59

Proof. In light of Lemma 2.6, G is a closed subset of X. Now, assume that R and S
are nonempty disjoint closed subsets of X such that G = R ∪ S. So, each T ∈ L fulfills
T intersects G. So, either T ∈ Λ(S) or T ∈ Λ(R) for each T ∈ L. This proves that
L ⊆ Λ(S) ∪ Λ(R). Next, each component D of G satisfies either D ⊆ S or D ⊆ R. If D
is a component of G containing a point of S, then D intersects an element L of L and
hence, L ∈ L ∩ Λ(S). Similarly, L ∩ Λ(R) 6= ∅.

This proves that the subcontinuum L of A is contained in the union of the closed subsets
of Λ(S) and Λ(R) of A and L intersects both Λ(S) and Λ(R). Hence, Λ(S) is not disjoint
from Λ(R). Thus, A has an element that intersects both R and S. Therefore, G is an
A-subcontinuum of X. �XXX

Let X be a continuum and let A be a Whitney level for C(X). For a subset C of X, let

ΛA(C) = {A ∈ A : A ∩ C 6= ∅}.

If there is no risk of confusion, the subindex will be removed for short. This means that
the symbol Λ(C) will be used instead of ΛA(C). If C is a nonempty closed subset of X,
then Λ(C) is a nonempty closed subset of A.

Lemma 2.8. Let X be a continuum and let A be a Whitney level for C(X). If M is a
subcontinuum of X contained in an element of A, then Λ(M) is an arcwise subcontinuum
of A.

Proof. Let K ∈ A be such that M ⊆ K and let L ∈ Λ(M). Then L ∩K 6= ∅. Choose
p ∈ L ∩ K. By [12, Theorem 3.6, p. 575], there exists a map ϕ : [0, 1] → A such that
ϕ(0) = K, ϕ(1) = L, and p ∈ ϕ(t) ⊆ K ∪ L for each t ∈ [0, 1]. Hence, each element of
Λ(M) and K are elements of an arc contained in Λ(M). �XXX

Lemma 2.9. Let X be a continuum and let A be a Whitney level for C(X). If C is an
A-subcontinuum of X, then Λ(C) is a subcontinuum of A.

Proof. It only remains to prove that Λ(C) is connected. Let Σ and Ψ be nonempty closed
subsets of A such that Λ(C) = Σ ∪Ψ. Set S = {x ∈ C : x is a point of a member of Σ}
and R = {x ∈ C : x is a point of a member of Ψ} to get nonempty closed subsets of X
contained in C. Now, if x ∈ C and T ∈ A contains x, then either T ∈ Σ or T ∈ Ψ.
Hence, C is the union of S and R. Since C is an A-subcontinuum of X, there exists an
element F of A such that F ∩ S 6= ∅ and F ∩ R 6= ∅. Then either F ∈ Σ or F ∈ Ψ.
Assume that F ∈ Σ. Choose w ∈ F ∩ R and E ∈ Ψ containing w. Lemma 2.8 ensures
that there exists a map such that ϕ(0) = F , ϕ(1) = E, and w ∈ ϕ(t) for each t ∈ [0, 1].
Then ϕ([0, 1]) is a subset of Λ(C). Hence, the connected space [0, 1] is the union of
the nonempty closed subsets ϕ−1(Σ) and ϕ−1(Ψ). So, there exists s ∈ [0, 1] such that
ϕ(s) ∈ Σ ∩Ψ. In conclusion, Λ(C) is connected. �XXX

3. Main results

Notice that a continuum X is colocally connected if and only if for each point x ∈ X and
each closed subset F of X omitting x, there exists a subcontinuum L of X such that L
omits x and contains F .

Vol. 42, No. 2, 2024]



60 D. Maya

Theorem 3.1. Let X be a continuum and let A be a Whitney level for C(X). Then A
is a colocally connected continuum if and only if for each A ∈ A and each closed subset
F of X disjoint from A, there exists an A-subcontinuum G of X disjoint from A and
containing F .

Proof. Assume that A is a colocally connected continuum. Let A ∈ A and let F be
a nonempty closed subset of X disjoint from A. Then Λ(F ) is a closed subset of A
omitting A. Hence, there exists a subcontinuum ∆ of A omitting A and containing Λ(F ).
Lemma 2.5 allows us to take η > 0 such that each element of ∆ intersects X \N(η,A)
and F is disjoint from N(η,A). Let G be the union of components of X \ N(η,A)
containing a point of an element of ∆. Notice that G contains F . Apply Lemma 2.6 to
infer that G is a closed subset of X. This and Lemma 2.7 together guarantee that G is
an A-subcontinuum of X. The proof of the first part is complete.

In order to prove the second part, let A ∈ A and let F be a closed subset of A omitting A.
Use Lemma 2.5 to choose η > 0 such that each element of F intersects X \N(η,A). Then
X\N(η,A) is a closed subset of X disjoint from A. Thus, there exists an A-subcontinuum
G of X disjoint A and containing X \N(η,A). Use Lemma 2.9 to deduce that Λ(G) is
a subcontinuum of A. Finally, since each element of F intersects X \ N(η,A), F is a
subset of Λ(G). Therefore, A is colocally connected. �XXX

The continuum X exhibited in [7, Figure 36, p. 241] is nonaposyndetic, whereas each
Whitney level for C(X) is aposyndetic. This fact is strengthened by proving that each
Whitney level for C(X) is colocally connected using Theorem 3.1. Recall that each
colocally connected continuum is aposyndetic.

Example 3.2 (E. Matsuhashi). Let C0 = {(x, y) ∈ R
2 | x2 + y2 = 1}, and for each n ∈ N,

let Cn = {(x, y) ∈ R
2 : (x− 1

n
)2 + y2 = (1 + 1

n
)2}. Set X = C0 ∪

⋃
{Cn : n ∈ N}. Notice

that X is a nonaposyndetic continuum.

Let A be a Whitney level, let A ∈ A and let F be a closed subset of X disjoint from
A. If (−1, 0) /∈ A, then there exists δ > 0 such that X \ N(δ,A) is a subcontinuum of
X containing F ∪ {(−1, 0)}. This proves that under the assumption (−1, 0) /∈ A, there
exists an A-subcontinuum of X disjoint from A containing F .

Next, assume that (−1, 0) ∈ A. Choose δ > 0 such that F is disjoint from N(δ,A) and
each component of X \ N(δ,A) is an arc. Let us prove that G = X \ N(δ,A) is an
A-subcontinuum of X.

Let R and S be nonempty disjoint closed subsets of X such that G = R ∪ S. Choose
n,m ∈ N ∪ {0} such that R ∩ Cn 6= ∅ and S ∩ Cm 6= ∅. Then there exists an arc I in
Cn ∪ Cm contained in an element K of A starting in R and ending in S. So, K is an
element of A that intersects both R and S. Thus, G is an A-subcontinuum of X.

The required properties in Theorem 3.1 hold. Hence, A is a colocally connected contin-
uum.

A continuum X is freely decomposable if for each pair of distinct points x and y of X,
there exist subcontinua A and B such that X = A ∪ B, x ∈ A \ B and y ∈ B \ A. Free
decomposability and aposyndesis are equivalent (see [10, Theorem 1.4.28]).
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Theorem 3.3. Let X be a continuum and let A be a Whitney level for C(X). Then A
is freely decomposable if and only if for each pair of distinct points A and B of A, there
exist A-subcontinua G and J of X such that each element of A disjoint from G intersects
J , each element of A disjoint from J intersects G, G is disjoint from B, and J is disjoint
from A.

Proof. Assume that A is freely decomposable. Let A and B be distinct elements of A.
Then there exist subcontinua ∆ and Σ of A such that A = ∆ ∪ Σ, A ∈ ∆ ⊆ A \ {B}
and B ∈ Σ ⊆ A \ {A}. Use Lemma 2.5 to obtain η > 0 such that each element of ∆
intersects X \N(η,B) and each element of Σ intersects X \N(η,A). Let G be the union
of all components of X \ N(η,B) containing a point of an element of ∆ and let J be
the union of all components of X \N(η,A) containing a point of an element of Σ. Then
G and J are closed subsets of X by Lemma 2.6. Notice that G is disjoint from B and
J is disjoint from A. Apply Lemma 2.7 to infer that G and J are A-subcontinua of X.
Observe that if K ∈ A is disjoint from J , then K cannot be an element of Σ and so K
must be an element of ∆. This proves that each element of A disjoint from J intersects
G. Thus, G and J satisfy the required properties.

Now, let A and B be distinct elements of A. Assume that there exist A-subcontinua G
and J of X satisfying each element of A disjoint from G intersects J , each element of
A disjoint from J intersects G, G is disjoint from B, and J is disjoint from A. Invoke
Lemma 2.9 to infer that Λ(G) and Λ(J) are subcontinua of X. Notice that A = Λ(G) ∪
Λ(J), A ∈ Λ(G) ⊆ A \ {B}, and B ∈ Λ(J) ⊆ A \ {A}. In conclusion, A is freely
decomposable. �XXX

The next result is an immediate consequence of the last theorem and the equivalence
between aposyndesis and free decomposability.

Corollary 3.4. Let X be a continuum and let A be a Whitney level for C(X). Then A
is aposyndetic if and only if for each pair of distinct point A and B of A, there exist
A-subcontinua G and J of X such that each element of A disjoint from G intersects J ,
each element of A disjoint from J intersects G, G is disjoint from B, and J is disjoint
from A.

Theorem 3.5. Let X be a continuum and let A be a Whitney level of C(X). Then A
is semiaposyndetic if and only if for each distinct elements A and B of A, there exist a
A-subcontinuum G of X and a closed subset F of X such that each element of A disjoint
from F intersects G, and each one of F and G intersects only one of A and B.

Proof. First, assume that A is semiaposyndetic and let A and B be distinct elements of
A. Assume that there exists a subcontinuum W of A such that A is an interior point of
of W, and A \W contains B. Use Lemma 2.5 to get η > 0 satisfying each element of W
intersects X \N(η,B) and each element of the closure of A \W intersects X \N(η,A).
Let G be the union of all components of X \ N(η,B) containing a point of an element
of W. Then G intersects A and G is disjoint from B. Lemma 2.6 guarantees that G is
a closed subset of X. Apply Lemma 2.7 to conclude that G is an A-subcontinuum of
X. Set F = X \N(η,A) to get a nonempty closed subset of X that intersects B and is
disjoint from A. If K ∈ A is disjoint from F , then K cannot be an element of the closure
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of A \W, in other words, K is an interior point of W and so K intersects G. Thus, G
and F satisfy the required properties.

Now, let A and B be distinct elements of A. Assume that there exist an A-subcontinuum
G of X and a closed subset F of X such that each element of A disjoint from F intersects
G, each one of F and G intersects only one of A and B. Suppose that G intersects A
and G is disjoint from B. Then F intersects B and F is disjoint from A. Lemma 2.9
ensures that Λ(G) is a subcontinuum of A. Notice that B ∈ A\Λ(G) and A ∈ A\Λ(F ).
Observe that if K ∈ A \ Λ(F ), then K ∈ G. This proves that the open subset A \ Λ(F )
of A contains A and is a subset of the subcontinuum Λ(G) of A contained in A \ {B}.
Therefore, A is semiaposyndetic. �XXX

Similar arguments given in the proof of the last result can be used to prove the next
theorem, and they will be repeated for completeness.

Theorem 3.6. Let X be a continuum, let A be a Whitney level of C(X), and let n ∈ N.
Then A is n-aposyndetic if and only if for each subset F of A having at most n elements
and for each A ∈ A\F , there exist an A-subcontinua G of X and a closed subset F of X
such that each element of A disjoint from F intersects G, each element of F is disjoint
from G, and F is disjoint from A.

Proof. Assume that A is n-aposyndetic. Let F be a subset of X having at most n-
elements and let A ∈ A \ F . Then there exists a subcontinuum of W of A such that A
is an interior point of W and W is disjoint from F . Lemma 2.5 guarantees that there
exists η > 0 such that each element of the closure of A \W intersects X \N(η,A) and
each element of W intersects to X \

⋃
{N(η,B) : B ∈ F}. Set F = X \ N(η,A) to

get a closed subset of X disjoint from A and let G be the union of all components of
X \

⋃
{N(η,B) : B ∈ F} having at least one point of an element of W. By Lemma 2.6,

G is a closed subset of X. Use Lemma 2.7 to infer that G is an A-subcontinuum of X.
Observe that each element of F is disjoint from G. Now, if D ∈ A is disjoint from F ,
then D is not an element of the closure of A\W, in other words, D must be an element
of W, and so, D intersects G. Thus, F and G satisfy the required properties. This ends
the proof of the first part.

Now, in order to prove that A is n-aposyndetic, let F be a subset of X having at most
n-elements, and let A ∈ A \ F . Choose an A-subcontinuum G of X and a closed subset
F of X such that each element of A disjoint from F intersects G, each element of F is
disjoint from G, and F is disjoint from A. Apply Theorem 2.9 to prove that Λ(G) is a
subcontinuum of A. Notice that Λ(G) is disjoint from F and A ∈ A\Λ(F ). Each element
of A \Λ(F ) intersects G. In other words, A \Λ(F ) is an open subset of A that contains
A and is contained in Λ(G). Therefore, A is an interior point of the subcontinuum Λ(G)
of A and Λ(G) is disjoint from F . Thus, A is n-aposyndetic. �XXX

A continuum X is finite set aposyndetic provided X is n-aposyndetic for each n ∈ N.
The next result is an immediate consequence of the last theorem.

Corollary 3.7. Let X be a continuum and let A be a Whitney level of C(X). Then A is
finite set aposyndetic if and only if for each finite subset F of A and for each A ∈ A\F ,
there exist an A-subcontinua G of X and a closed subset F of X such that each element
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of A disjoint from F intersects G, each element of F is disjoint from G, and F is disjoint
from F .

Theorem 3.8. Let X be a continuum and let A be a Whitney level of C(X). Then A is
a Wilder continuum if and only if for each different elements T , P and Q of A, there
exists an A-subcontinuum G of X satisfying T intersects G and G intersects exactly one
of P and Q.

Proof. Assume that A is a Wilder continuum. Take different elements T , P and Q
of A. Suppose that there exists a subcontinuum L of A containing T and satisfying
P ∈ L ⊆ A\{Q}. Lemma 2.5 allows to find η > 0 such that each element of L intersects
X \ N(η,Q). Let G be the union of all components of X \ N(η,Q) containing a point
of an element of L. Notice that G is disjoint from Q and G intersects both P and T .
Lemma 2.6 and Lemma 2.7 together prove that G is an A-subcontinuum of X. Therefore,
G satisfies the required properties.

In order to prove the second part, let P , Q and T be different elements of A. The
assumption guarantees the existence of an A-subcontinuum G of X such that T intersects
G and G intersects exactly one of P and Q. Use Lemma 2.9 to get that Λ(G) is a
subcontinuum of A. Notice that T ∈ Λ(G) and Λ(G) contains exactly one of P and Q.
This proves that A is Wilder. �XXX

Theorem 3.9. Let X be a continuum and let A be a Whitney level of C(X). Then A
is decomposable if and only if there exist A-subcontinua G and J of X such that each
element of A disjoint from G interesects J , G is disjoint from an element of A, and J
is disjoint from an element of A.

Proof. Assume that A is the union of the proper subcontinua K and L. Choose A ∈ A\K
and B ∈ A\L. Lemma 2.5 allows us to choose η > 0 such that each element of K intersects
X \ N(η,A) and each element of L intersects X \ N(η,B). Let G be the union of all
components of X \N(η,A) containing a point of a member of K and let J be the union
of all components of X \N(η,B) containing a point of an element of L. Use Lemma 2.6
to conclude that G and J are closed subsets of X. Invoke Lemma 2.7 to infer that G and
J are A-subcontinua of X. Notice that G is disjoint from A and J is disjoint from B.
Finally, if D ∈ A is disjoint from G, then D cannot be an element of K and so D ∈ L.
This implies that each element of A disjoint from G intersects J . This proves the first
part.

Now, assume that G and J are A-subcontinua of X such that each element of A disjoint
from G intersects J , G is disjoint from an element of A, and J is disjoint from an element
of A. This and Lemma 2.9 together guarantee that Λ(G) and Λ(J) are proper subcontinua
of A and A is the union of Λ(G) and Λ(J). Therefore, A is decomposable. �XXX

Example 3.10. There exists an indecomposable continuum X such that each Whitney
level for C(X) is decomposable.

Let X be the continuum described in [5, Example 2, p. 360]; i. e., X is a slight modifica-
tion of the well known buckethandle continuum, but it contains a simple triod with vertex
p and end points the usual end point of the buckethandle continuum r, q and s pictured
in Figure 1 (compare with [2, Fig. 1, p. 7]).
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r

s
p

q

Figure 1. Continuum X

Now, let A be a Whitney level for C(X). Choose A,B ∈ A satisfying A is triod omitting
q, and B is an arc having end point s and omitting p. Choose η > 0 such that N(η,A) ⊆
X \ {q} and N(η,B) ⊆ X \ {p}. Let G be the component of X \ N(η,B) containing r
and let J = X \N(η,A). Notice that G is a A-subcontinuum of X disjoint from B, J is
a nonempty closed subset of X disjoint from A, and each element of A disjoint from G
intersects J . If R and S are nonempty closed subsets of X such that J = R ∪ S, then
there exists an arc I contained in X such that I intersects both R and S. So, J is an
A-subcontinuum of X. Apply Theorem 3.9 to conclude that A is decomposable.

The paper concludes with the following theorem.

Theorem 3.11. Let X be a continuum and let A be a Whitney level of C(X). Then
A is irreducible if and only if there exist elements P and Q of A such that each A-
subcontinuum G of X containing a point of P and a point of Q intersects each element
of A.

Proof. Assume that A is irreducible. Then there exist elements P and Q of A such that
the unique subcontinuum of A containing P and Q is A. Let G be an A-subcontinuum
of G such that G contains a point of P and a point of Q. Lemma 2.9 ensures that Λ(G)
is a subcontinuum of A. Notice that P and Q are elements of Λ(G). So, A and Λ(G)
coincide. Hence, each element of A intersects G.

Now, assume that P and Q are elements of A such that each A-subcontinuum G of
X containing a point of P and a point of Q intersects each element of A. Let K be
a subcontinuum of A containing P and Q. Assume that there exists A ∈ A \ K. Use
Lemma 2.5 to choose η > 0 such that each element of K intersects X \ N(η,A). So,
X\N(η,A) intersects both P and Q. Let G be the union of all components of X\N(η,A)
having a point of an element of K. Notice that A is disjoint from G and G intersects
both P and Q. Apply Lemma 2.6 to infer that G is a closed subset of X. Lemma 2.7
ensures that G is an A-subcontinuum of X. This is a contradiction. Therefore, K and
A coincide. In conclusion, A is irreducible. �XXX

[Revista Integración



Some characterizations of the internal structure of Whitney levels 65

References

[1] Camargo J. and Macías S., “On Wilder, strongly Wilder, continuumwise Wilder, D,D∗, and
D∗∗ continua”, Bull. Malays. Math. Sci. Soc., 47 (2024), No. 3, 95-13. doi: 10.1007/s40840-
024-01688-2

[2] Camargo J., Maya D. and Pellicer-Covarrubias P., “Noncut subsets of the hyperspace of
subcontinua”, Topology Appl., 305 (2022), 107867-18. doi: 10.1016/j.topol.2021.107867

[3] Capulín F., Maya D. and Rios O. I., “Points on the edge of Whitney levels”, preprint.

[4] Espinoza B. and Matsuhashi E., “D-continua, D∗-continua, and Wilder continua”, Topology

Appl., 285 (2020), 107393-25. doi: 10.1016/j.topol.2020.107393

[5] Goodykoontz Jr. J. T., “More on connectedness im kleinen and local connectedness in
C(X)”, Proc. Amer. Math. Soc., 65 (1977), No. 2, 357-364. doi: 10.2307/2041923

[6] Hughes C. B., “Some properties of Whitney continua in the hyperspace C(X)”, Topology
Proceedings, Alabama, USA, 1, 209-219, 1976.

[7] Illanes A. and Nadler Jr. S. B.,Hyperspaces: Fundamentals and Recent Advances, CRC
Press, 1999.

[8] Imamura H., Matsuhashi E. and Oshima Y., “Some theorems on decomposable continua”,
Topology Appl., 343 (2024), 108794-14. doi: 10.1016/j.topol.2023.108794

[9] Kelley J. L., “Hyperspaces of a continuum”, Trans. Amer. Math. Soc., 52 (1942), 22-36.
doi: 10.2307/1990151

[10] Macías S., Set function T . An account on F. B. Jones’ contributions to topology, Springer
Nature, vol. 67, 2021. doi: 10.1007/978-3-030-65081-0

[11] Matsuhashi E. and Oshima Y., “Some decomposable continua and Whitney levels of their
hyperspaces”, Topology Appl., 326 (2023), 108395-9. doi: 10.1016/j.topol.2022.108395

[12] Rogers, Jr. J. T., “Whitney continua in the hyperspace C(X)”, Pacific J. Math., 58 (1975),
No. 2, 569-584. doi: 10.2140/pjm.1975.58.569

[13] Whitney H., “Regular families of curves. I”, Proc. Natl. Acad. Sci. USA, 18 (1932), No. 3,
275-278. doi: 10.1073/pnas.18.3.275

[14] Whitney H., “Regular families of curves. II”, Proc. Natl. Acad. Sci. USA, 18 (1932), No. 4,
340-342. doi: 10.1073/pnas.18.4.340

Vol. 42, No. 2, 2024]


