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Abstract. We introduce a method to obtain self-consistent, axially symmet-
ric disklike stellar models in the first post-Newtonian (1PN) approximation.
By using in the field equations of the 1PN approximation a distribution
function (DF) corresponding to a Newtonian model, two fundamental equa-
tions determining the 1PN corrections are obtained. The rotation curves of
the corrected models differs from the classical ones and the corrections are
clearly appreciable with values of the mass and radius of a typical galaxy.
On the other hand, the relativistic mass correction can be ignored for all
models.
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Resumen. Presentamos un método para obtener modelos estelares discoi-
dales, axialmente simétricos, auto-consistentes en la primera aproximacion
post-Newtoniana (1PN). Usando en las ecuaciones de campo de la apro-
ximacion 1PN una funcion de distribucion conocida (DF) que corresponde
a un modelo Newtoniano, se obtienen dos ecuaciones fundamentales para
determinar las correcciones 1PN. Las curvas de rotacién de los modelos co-
rregidos difieren de las cléasicas y las correcciones son claramente apreciables
con los valores de la masa y el radio de una galaxia tipica. Por otro lado, la
correccion relativista de la masa se puede ignorar para todos los modelos.
Palabras claves: Primer aproximacion post-newtoniana, dinamicas estelar y
galactica.
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1. Introduction

The stars observed in the universe tend to cluster in huge self-gravitating systems, being
the galaxies among the most noticeable and studied of them. Galaxies can be described
by models whose mass is distributed symmetrically about an axis to a finite distance of it,
i.e., the galaxy radius. Particularly useful models are those restricted to a plane or thin
disk, since for many galaxies like the Milky Way its height is small compared to its radius.
For galaxies in general, the average time between collisions or individual meetings (mean
collision time) is greater than the system’s life time. Many of the current models take
Newton’s law as their field equations [15, 16, 21, 22, 6, 10, 7, 8, 2, 9, 17]. However, many
models have been developed recently under general relativity [12, 13, 14, 3, 4, 19, 20, 23],
being one of the main motivations for including corrections made by general relativity
the actual incompatibility between the rotation curves of theoretical models and the ones
observed.

The post-Newtonian approximation introduces general relativity through a series over
the speed (v/c¢). For Minkowski’s background metric, the first post-Newtonian corrections
(IPN) are included taking the terms

2 4
goo ~ —1+ goo + oo, (1)
3
4io = gi0, (2)
2
9ij = 0ij+ Gijs (3)

where the upper index denotes the order of the power of (v/c) of the term. Using

harmonic coordinates, the 1PN order potentials are defined as

2

Joo = —2¢/c2, (4)
Gio = G/, (5)
o0 = —2(¢ + )/ (6)

Henceforth, we consider only the stationary case, so the explicit time-dependent terms

along with the potential vector ¢ disappear in all equations.

The stationary field equations in the 1PN approximation are

4rG O
Vi =— T, (7)
2 2
V) = 4nG(T + T%), (8)

where, in the classical limit, potential ¢ vanishes and ¢ tends to the Newtonian potential

[Revista Integracién



Axially Symmetric Post-Newtonian Stellar Systems 3

¢n. Whereas that

dv 1
= V-3 [V (2¢% + ) +4v(v - V¢) —v*V¢] 9)
is the stationary equation of motion.

A complete statistical description is achieved by knowing the distribution function
(DF) of the system. The DF satisfies a continuity equation in the phase space called the
Boltzmann equation. In the 1PN approximation, the collisionless Boltzmann equation
(CBE) for a many identical particles system is given by [1§]
op , . O oF

¢ iy 1 OV )

2y _ ¥
(46 + %) oxd ozt ) Ovt

LOF 0 OF 1(a¢ . (10)

dr' Qa2 \ Oz

According to Jeans theorem [1], the solution of colissionless Boltzmann equation is any
function of the integrals of motion. Now, it is easy to verify that two isolated integrals a

1PN system with axial symmetry are given by

E= %’UQ + o, (11)
where
d=¢+ @ (12)
and
L. = Ruge™/" ~ Ruy(1 - ¢/c?), (13)

which can be interpreted as the 1PN generalizations of energy and the z component of
angular momentum, respectively.

In addition, the DF must satisfy the condition of self-consistently generating the macro-
scopic mean values. In the post-Newtonian approximation, the following components of

the energy-momentum tensor are need:

0
T% (x,t) = 02/F(x,v,t)d3v, (14)

72“00 + 12“” = 2/(1}2(x7 t) + ¢(x, 1)) F(x, v, t)d>v. (15)

Therefore, in the post-Newtonian approximation, self-consistent equilibrium models are
defined by two scalar potentials, ¢ and v, together with a DF that satisfies 1PN CBE
and relations (14) - (15) generating self-consistently the 1PN components of the energy-
momentum tensor. In this paper we present a method to obtain post-Newtonian axially

symmetric equilibrium models. The method uses thin disk models, allowing to solve the
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two differential equations with the Hunter’s method [5], as shown in the next section.
The solution of the field equations is obtained considering equations in vacuum, in which
case, the energy-momentum tensor vanishes and the content of matter is expressed as a
boundary condition on the fields in the disk, as shown below. Finally, in section 3 the

first axially symmetric models in the 1PN approximation are presented.

2. Formulation of the method

For thin disks of finite radius the components of the energy-momentum tensor can be

written as

;00 = 2¥N(R)4(z), (16)
%00 + % =0o(R)(2), (17)

for 0 < R < a, where ¢ is the Dirac delta function, and being zero for R > a. Therefore,
the field equations reduce to two Laplace equations for the fields ¢ and . It is demanded
that the fields are even functions of z,

¢(R’ Z) = d)(R? 72)7 w(Rv Z) = ¢(R7 72)7 (18)

and therefore, that the first derivatives with respect to z are odd functions of z.

Using Gauss’ theorem with (16) and (17) gives,

S8 = (?): (19)

o(R) = ﬁ (Z_f)z:m . (20)

The problem is defined with the following boundary conditions: fields vanish at infinity,
and at z = 0 its derivatives depend on the energy-momentum tensor components accord-
ing to (19) and (20) for 0 < R < @ and vanishing for R > a. Applying Hunter’s method
to each of the 1PN field equations, one can obtain exact analytical expressions for the
potentials. The Hunter’s method consists on obtaining solutions of the Laplace equation

in oblate spheroidal coordinates. The oblate coordinates are related to the cylindrical by

R=ay(1+&)(1-7n?), (21)
z = aén, (22)

where 0 < € < oo and —1 < 7 < 1. The disk is placed at £ = 0, where, n?> = 1 — R?/a?.
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Following Hunter [5], the general solution of each Laplace equation satisfying previous

boundary conditions can be written as

B(Em) ==Y Azn2n(€) Pan(n), (23)
n=0
for the ¢ potential, and
w(& 77) = - Z B2nq2n(€)P2n(n)7 (24)
n=0

for the 1 potential, where As,, and Ba,, are the constants required for each model, Py, ()
are the Legendre polynomials and qa,, (€) = i2"t1Qa,, (i€) are Legendre functions of second
kind. Note that when using classical models, the expression for ¢ can be written taking

constants of the form
A2n = CQn + DQn/C27 (25)

where the Cy,, constants define the Newtonian potential ¢ and the constants Ds,, define
the correction ¢pyn. So that taking the limit ¢ — oo, ¢ = ¢ + ¢pn is reduced to the

Newtonian part only. The corresponding expressions for ¥ and ¢ in oblate coordinates

are
1 o0
S = oraGh 7;) Az (20 + 1)q204+1(0) Pan (1), (26)
1 o0
= SraGr ; Ban (20 + 1)g2041(0) Pan (). (27)

Accordingly, > can also be written as the sum of a Newtonian part and a post-Newtonian

correction: ¥ = Xy + Xpn.

In order to obtain self-consistent models of axially symmetric thin disks in equilibrium,
it is used a DF of the form F = f(R,vg,v,)d(2)d(v,), which is zero for R > a. The DF

reproduces ¥ and o through the equations
E(R) = //f(R7 vPthp)dURd’U(ﬁH (28)

o(R) :4//Ef(R,vR,vw)ddevw—2quNEN7 (29)

where E is the integral of motion defined by (11). As in the Newtonian case, one could

define a relative energy and a relative potential as

e=—FE+ g, (30)
U =—-04 P, (31)
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where @ is a constant that is chosen so that ¢ and ¥ are always positive, i.e., such that
f>0for0<e<W.

The method to obtain self-consistent post-Newtonian models is to take (28) with (26) as
the first fundamental equation and (29) with (27) as the second fundamental equation.
In accordance with the order of magnitude of the approach, the second fundamental
equation is solved using the Newtonian terms and then the first fundamental equation is
solved using the terms up to 1PN order. Finally, note that for the second fundamental

equation, the constants can be obtained directly by

41 +1 27aG
Bo; P d 32
2T 4+ 2 q2i4+1(0 / 2i (o dn, (82)

where the integral depends on the particular model. On the other hand, in the first
fundamental equation, the constants also appear on the right side of the equation (hence,
it is necessary to obtain the constants differently for each model) and, in general, we can
not use an explicit expression as done above. However, it is found that for all models
treated it is finally possible to obtain expressions analog to (32) for the first fundamental
equation, see (57) - (59) and (74) - (75). The DF in the 1PN approximation presents the
same functional dependence on the integrals of motion that in the Newtonian models,
that is, one uses the same DF but now with the 1PN energy and angular momentum. Of
course, this is for the sake of correspondence with the Newtonian limit. Note that the

correspondence principle must be satisfied by both the DF and its integrals.

It is possible to obtain alternative expressions for > and ¢ considering in particular the
case where the DF depends on a linear combination of energy and angular momentum
called Jacobi’s integral, J = QL, — E. Jacobi’s integral is interpreted classically as the
energy measured from a frame of reference rotating with angular speed 2 [1]. In terms

of the relative energy (30), we can write Jacobi’s integral as
J=e+QL, —.(0), (33)
where ¥, (0) is the 1PN relative-effective potential evaluated in 1 = 0, defined by
U =T+ 10°R* (1 -2¢/c%). (34)
The Jacobi’s integral takes values between zero and J;,45, with

1 55 5 20 Q%a%¢
Jma,:\IleQan (17§ - . (35)

c2

Now, given that 2ndJ = dvgdv,, the relation (28) can be written as

S —or / T d (36)
0
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Then, by using the expression

/ / v, fdvrdv, = 27(v,) /0 BT (37)

the second fundamental equation can be written as

Jmaz
o =220 — 0%a* — ¢n +2aQV/1 — n2(v,)) XN — 87 / Jf(J)dJ, (38)
JO

with X given by (26) with A, = Ca,.
Finally, the circular speed necessary for the rotation curve can be obtained considering

(9) for circular orbits. In that case, the circular speed is equal to vg and perpendicular
to the gradient of the field ¢. Therefore, the 1PN equation of motion (9) reduces to

@{ Ra¢] a{¢+2¢2+¢} . (39)
z=0 z=0

142220 - &
R +028R OR c?

Then, in accordance with the 1PN order of approximation, the expression for the circular

oo} 4¢ R 09 R oy
=/[R= |14+ - 5= = — . 40
Ve \/ OR ( + 2 20R * 2 OR S (40)
Note that in the limit ¢ — oo, the previous expression reduces to that of Newtonian

theory v, = \/ROdnN/OR.

speed is

3. Application to the Generalized Kalnajs Disks

We will now apply the previous formalism to the family of Generalized Kalnajs Disks
(GKD) introduced by Gonzéalez and Reina in [2|. This family is characterized by mass

densities of the form

3M 2m—1

E(m) —
2ma?

where the index m of the model is any positive integer. The potential qﬁ%n) is given by

(23) by taking the Newtonian limit in (25) and using

MGTY2(4n + 1)(2m +1)!
a22m+1(2n + 1) (m — n)IT(m + n + 2)g2n+1(0)

o5 = (42)

m

n)=0f0rn>m.

for n < m, and C,
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3.1. The 1PN model for the m =1 GKD

The first disk of the family, the disk with m = 1, is the well known Kalnajs disk [10],

with the mass distribution

3Mn
() = 4
N 2ma? (43)
Then, as was shown by Kalnajs [11], the DF depends on the Jacobi’s integral as
3M —~1/2

where F = 3rGM /4a3. Now, for the Kalnajs disk it holds that (v,) = R, so that the
disk spins like a rigid body.
Inserting expressions (43) and (44) into the second fundamental equation (38), and

integrating the DF, one easily obtains the following system of equations:

By — By + By =0, (45)
2 2 M2
3By — 10B4 = 6 M GaQ? — %, (46)
By = JCME g o2 (47)
47 714042 “
Likewise, for the first fundamental equation we have
I G2M2Q)?
Dy — D Dy=——— 4
0 2 + Dy 8a2((2 — )’ (48)
15
vDy + 9Dy = By — §B47 (49)
Dy = 30p,  3TEME e (50)
X4g = 16 4 4 2 a,
where
3(02 _ 02) _
_ 0¥~ 0?) —9nMG 51)
ITMG
135mMG/8 — 80a3(Q2 — Q2) ;
- ° 2
v 9T MG ’ (52)
70[128a3(02 — 02) — 277 MG
X= 864 MG ' (53)

Therefore, we have a system of linear equations with an upper triangular matrix for the

constants of each potential, ¥ and ¢py.
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Solving for the constants explicitly, we obtain

~ 3G°M’m(15m — 1)

By = 2aGM (7 — 1)Q? 4
0 =2aGM(m —1) 2002 ; (54)
3G2M?r (217 — 2)

Y. 2
By = 2aGM (T — 10)Q° — g (55)
18GM (GMn  5a*Q?
By = - 56
*7 35 ( 8a 3 ) ’ (56)
D — 27G3 w2 M3 47709G3 72 M3
07 7842 (aP0? — 3GMn) 44842 (1284302 — 357G M)
3G%m(1 4+ 80m)M? 9 (28G3 M3 — 95G3 M3 7?) (57)
320a2 2842 (8a302 — 21GMn) '
Dy — 3G%r(Tr — 13)M? 9 (28G3M37® — 95G3 M3 n?) (58)
T 2802 28a2 (8a302 — 21GMm)
27G? M2 (184Q%a® + 39GM
Dy = ™ ( a 7r) 7 (59)

140a? (1284392 — 357TGM)

which defines the potential v, and the correction ¢py, respectively. Hence we can get
all the parameters of interest, in particular, we observed that the mass correction, X py,
is negligible compared with the classical mass . In contrast, the 1PN rotation curve
obtained with (40), is visibly separated from the Newtonian one from a certain radius,
the difference being maximum at the edge of the disk (see Fig. 1), where the difference
between both reaches 10.3% approximately. Those have been obtained with the typical
values of a galaxy such as the Milky Way.

3.2. The 1PN model for the m = 2 GKD

The procedure for the second disk is pretty much the same that for the first one. Again,

the DF has a simple form when written as a function of Jacobi’s integral,

oM 1063 \Y*
Oa ) , (60)

1) = V3a2 (G3M37r11J
for a mean circular speed (vy,) = QR = /15mGM/32a3R. This DF could be easily

integrated to self-consistently obtain the mass density of the model, which also can be
obtained from (41) with m = 2,

21 3/2 "3
@) _ 5M (1 _ R_) _ 5Mn (61)

N 2ma? a2 2ma?

the associated gravitational potential is given by the Newtonian limit ¢n of (23) with
(42) and m = 2.
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Mass Density
020 T
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SO0

0 S 10 Lwl0® 15x10% Ll 251080 dw 1o
R im)

Figure 1. First we plot the Newtonian and 1PN mass density for the m = 1
GKD. The two curves seem to be superposed meaning that the mass correc-
tion is negligible. Then we plot the Newtonian (dashed line) and 1PN (full
line) rotation curves for the same disk. The 1PN corrections are clearly no-
torious reaching a maximum at the border of the disc. Parameter values are:
M =4 x10%%g, a =3 x 10°m, Q=2 x 10" 13 Hz.

Again, we replace the Newtonian terms into the second fundamental equation (38) to
obtain

4 4
> Baa(2n + 1)g2011(0) Pon(n) = Y Com™, (62)

n=0 n=0
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where C’U = C’g =0 and
25m210!G2 M2

C4 - 160&2 9 (63)
- 7572101G2 M2
C6 = = 60a2 (64)
- T5m2101G2 M2

T (65)

Multiplying (62) with a Legendre polynomial, integrating with respect to 7, and using
the orthogonality properties of the Legendre polynomials, we get

4 ~ .
C927211(4 HI'(2 1
JEAE o AIS £ S RN CURS R— (66)
— @n+1(0)2n+ 1)I(i —n+ DI +n+3/2)
We also could have used the expression (32).
After rearranging the terms, the first fundamental equation can be written as
4 A
Z{DQn [192nP2n(77) + q2n(0)P2n(0)} - BQnQQn(O)PQn (T]) - 0271,,7271} = Oa (67)
n=0
where,
m(25 + 1)
Do = , 68
: 32a2q2n+1 (0) - q2n(0) ( )
., 6751 G2 M?
Co=——— 0,0 69
0 4096(12 + w( ) )7 ( )
A 1575m2G2 M>
- _ il 7
N 4096a2 (70)
A 112572G? M?
_ 1
Ca 204842 (71
A 202572G2M?
Co=——"—""""""5— 72
0 4096a2 (72)
A 202572G2 M2
S TR (73)
Integrating and using orthogonality relations, the constants Dy, are given by
Z \/_0212 2i- 1(471 + 1)F(2j + 1) BQnQQn(O) (74)
Yo, 2n+ DI —n+ DT +n+3/2) Yon
for n > 0, and
1 VG272 (25 4+ 1)
Dy = Do;q2i(0) P;(0) |, 75
7 Yo+ 7/2 Z T(i+ 1)I(i + 3/2) Z 2:2i(0) P2 (0) (75)
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which defines the correction ¢py to the Newtonian potential. The mass densities and
rotation curves are plotted at Figure 2, note that the rotation curve is not only quantita-
tive, but qualitatively different, presenting its maximum value more closely to the center
of the disk and going upwards at the border. This is due to the fact that the 1PN curve

includes more terms than the Newtonian one.

Mass Density

3

o (Kg/nr)

005

000
0 S0 110 15k 10™ 2107 25x 107 3107

Rim})

Circular Velocity

120000

100000

0000

Vo imfs)

GO0

40000

20000

4]
o 5x10™ L l0™ L5x10™ e 10 25x10" 3w

R (m)

Figure 2. We plot the Newtonian and 1PN mass density, as well as the
Newtonian (dashed line) and 1PN (full line) rotation curves for the m = 2
GKD, with parameter values: M = 4 x 10%*kg, a = 3 x 1029m, Q = 2 x
1013 Hz. As we can see, the two graphics of mass density appear to be
superposed, while that the 1PN rotation curve behaves completely different
to the Newtonian one.
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