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Abstract. We introduce a method to obtain self-consistent, axially symmet-
ric disklike stellar models in the first post-Newtonian (1PN) approximation.
By using in the field equations of the 1PN approximation a distribution
function (DF) corresponding to a Newtonian model, two fundamental equa-
tions determining the 1PN corrections are obtained. The rotation curves of
the corrected models differs from the classical ones and the corrections are
clearly appreciable with values of the mass and radius of a typical galaxy.
On the other hand, the relativistic mass correction can be ignored for all
models.
Keywords: Post-Newtonian approximation, galactic and stellar dynamics.
MSC2000: 83Cxx, 83C05, 83C15.
PACS numbers: 04.25.Nx, 98.10.+z.
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Resumen. Presentamos un método para obtener modelos estelares discoi-
dales, axialmente simétricos, auto-consistentes en la primera aproximación
post-Newtoniana (1PN). Usando en las ecuaciones de campo de la apro-
ximación 1PN una función de distribución conocida (DF) que corresponde
a un modelo Newtoniano, se obtienen dos ecuaciones fundamentales para
determinar las correcciones 1PN. Las curvas de rotación de los modelos co-
rregidos difieren de las clásicas y las correcciones son claramente apreciables
con los valores de la masa y el radio de una galaxia típica. Por otro lado, la
corrección relativista de la masa se puede ignorar para todos los modelos.
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1. Introduction

The stars observed in the universe tend to cluster in huge self-gravitating systems, being

the galaxies among the most noticeable and studied of them. Galaxies can be described

by models whose mass is distributed symmetrically about an axis to a finite distance of it,

i.e., the galaxy radius. Particularly useful models are those restricted to a plane or thin

disk, since for many galaxies like the Milky Way its height is small compared to its radius.

For galaxies in general, the average time between collisions or individual meetings (mean

collision time) is greater than the system’s life time. Many of the current models take

Newton’s law as their field equations [15, 16, 21, 22, 6, 10, 7, 8, 2, 9, 17]. However, many

models have been developed recently under general relativity [12, 13, 14, 3, 4, 19, 20, 23],

being one of the main motivations for including corrections made by general relativity

the actual incompatibility between the rotation curves of theoretical models and the ones

observed.

The post-Newtonian approximation introduces general relativity through a series over

the speed (v/c). For Minkowski’s background metric, the first post-Newtonian corrections

(1PN) are included taking the terms

g00 ≈ −1+
2
g00 +

4
g00, (1)

gi0 ≈ 3
gi0, (2)

gij ≈ δij+
2
gij , (3)

where the upper index denotes the order of the power of (v/c) of the term. Using

harmonic coordinates, the 1PN order potentials are defined as

2
g00 ≡ −2φ/c2, (4)
3
gi0 ≡ ζi/c

3, (5)
4
g00 ≡ −2(φ2 + ψ)/c4. (6)

Henceforth, we consider only the stationary case, so the explicit time-dependent terms

along with the potential vector ζ disappear in all equations.

The stationary field equations in the 1PN approximation are

∇2φ =
4πG

c2

0

T 00, (7)

∇2ψ = 4πG(
2

T 00 +
2

T ii), (8)

where, in the classical limit, potential ψ vanishes and φ tends to the Newtonian potential
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φN . Whereas that

dv

dt
= −∇φ− 1

c2
[
∇

(
2φ2 + ψ

)
+ 4v(v · ∇φ) − v2∇φ

]
(9)

is the stationary equation of motion.

A complete statistical description is achieved by knowing the distribution function

(DF) of the system. The DF satisfies a continuity equation in the phase space called the

Boltzmann equation. In the 1PN approximation, the collisionless Boltzmann equation

(CBE) for a many identical particles system is given by [18]

vi
∂F

∂xi
− ∂φ

∂xi

∂F

∂vi
− 1

c2

(
∂φ

∂xi
(4φ+ v2)− ∂φ

∂xj
vivj +

∂ψ

∂xi

)
∂F

∂vi
= 0. (10)

According to Jeans theorem [1], the solution of colissionless Boltzmann equation is any

function of the integrals of motion. Now, it is easy to verify that two isolated integrals a

1PN system with axial symmetry are given by

E =
1

2
v2 +Φ, (11)

where

Φ = φ+
2φ2 + ψ

c2
, (12)

and

Lz = Rvϕe
−φ/c2 ≈ Rvϕ(1 − φ/c2), (13)

which can be interpreted as the 1PN generalizations of energy and the z component of

angular momentum, respectively.

In addition, the DF must satisfy the condition of self-consistently generating the macro-

scopic mean values. In the post-Newtonian approximation, the following components of

the energy-momentum tensor are need:

0

T 00 (x, t) = c2
∫

F (x,v, t)d3v, (14)

2

T 00 +
2

T ii = 2

∫
(v2(x, t) + φ(x, t))F (x,v, t)d3v. (15)

Therefore, in the post-Newtonian approximation, self-consistent equilibrium models are

defined by two scalar potentials, φ and ψ, together with a DF that satisfies 1PN CBE

and relations (14) - (15) generating self-consistently the 1PN components of the energy-

momentum tensor. In this paper we present a method to obtain post-Newtonian axially

symmetric equilibrium models. The method uses thin disk models, allowing to solve the
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two differential equations with the Hunter’s method [5], as shown in the next section.

The solution of the field equations is obtained considering equations in vacuum, in which

case, the energy-momentum tensor vanishes and the content of matter is expressed as a

boundary condition on the fields in the disk, as shown below. Finally, in section 3 the

first axially symmetric models in the 1PN approximation are presented.

2. Formulation of the method

For thin disks of finite radius the components of the energy-momentum tensor can be

written as

0

T 00 = c2Σ(R)δ(z), (16)
2

T 00 +
2

T ii = σ(R)δ(z), (17)

for 0 ≤ R ≤ a, where δ is the Dirac delta function, and being zero for R > a. Therefore,

the field equations reduce to two Laplace equations for the fields φ and ψ. It is demanded

that the fields are even functions of z,

φ(R, z) = φ(R,−z), ψ(R, z) = ψ(R,−z), (18)

and therefore, that the first derivatives with respect to z are odd functions of z.

Using Gauss’ theorem with (16) and (17) gives,

Σ(R) =
1

2πG

(
∂φ

∂z

)

z=0+
, (19)

σ(R) =
1

2πG

(
∂ψ

∂z

)

z=0+
. (20)

The problem is defined with the following boundary conditions: fields vanish at infinity,

and at z = 0 its derivatives depend on the energy-momentum tensor components accord-

ing to (19) and (20) for 0 ≤ R ≤ a and vanishing for R > a. Applying Hunter’s method

to each of the 1PN field equations, one can obtain exact analytical expressions for the

potentials. The Hunter’s method consists on obtaining solutions of the Laplace equation

in oblate spheroidal coordinates. The oblate coordinates are related to the cylindrical by

R = a
√
(1 + ξ2)(1− η2), (21)

z = aξη, (22)

where 0 ≤ ξ < ∞ and −1 ≤ η ≤ 1. The disk is placed at ξ = 0, where, η2 = 1−R2/a2.
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Following Hunter [5], the general solution of each Laplace equation satisfying previous

boundary conditions can be written as

φ(ξ, η) = −
∞∑

n=0

A2nq2n(ξ)P2n(η), (23)

for the φ potential, and

ψ(ξ, η) = −
∞∑

n=0

B2nq2n(ξ)P2n(η), (24)

for the ψ potential, where A2n and B2n are the constants required for each model, P2n(η)

are the Legendre polynomials and q2n(ξ) = i2n+1Q2n(iξ) are Legendre functions of second

kind. Note that when using classical models, the expression for φ can be written taking

constants of the form

A2n = C2n +D2n/c
2, (25)

where the C2n constants define the Newtonian potential φN and the constants D2n define

the correction φPN . So that taking the limit c → ∞, φ = φN + φPN is reduced to the

Newtonian part only. The corresponding expressions for Σ and σ in oblate coordinates

are

Σ =
1

2πaGη

∞∑

n=0

A2n(2n+ 1)q2n+1(0)P2n(η), (26)

σ =
1

2πaGη

∞∑

n=0

B2n(2n+ 1)q2n+1(0)P2n(η). (27)

Accordingly, Σ can also be written as the sum of a Newtonian part and a post-Newtonian

correction: Σ = ΣN +ΣPN .

In order to obtain self-consistent models of axially symmetric thin disks in equilibrium,

it is used a DF of the form F = f(R, vR, vϕ)δ(z)δ(vz), which is zero for R > a. The DF

reproduces Σ and σ through the equations

Σ(R) =

∫ ∫
f(R, vR, vϕ)dvRdvϕ, (28)

σ(R) = 4

∫ ∫
Ef(R, vR, vϕ)dvRdvϕ − 2φNΣN , (29)

where E is the integral of motion defined by (11). As in the Newtonian case, one could

define a relative energy and a relative potential as

ε = −E +Φ0, (30)

Ψ = −Φ+ Φ0, (31)
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where Φ0 is a constant that is chosen so that ε and Ψ are always positive, i.e., such that

f > 0 for 0 < ε ≤ Ψ.

The method to obtain self-consistent post-Newtonian models is to take (28) with (26) as

the first fundamental equation and (29) with (27) as the second fundamental equation.

In accordance with the order of magnitude of the approach, the second fundamental

equation is solved using the Newtonian terms and then the first fundamental equation is

solved using the terms up to 1PN order. Finally, note that for the second fundamental

equation, the constants can be obtained directly by

B2i =
4i+ 1

4i+ 2

2πaG

q2i+1(0)

∫ 1

−1

P2i(η)ησdη, (32)

where the integral depends on the particular model. On the other hand, in the first

fundamental equation, the constants also appear on the right side of the equation (hence,

it is necessary to obtain the constants differently for each model) and, in general, we can

not use an explicit expression as done above. However, it is found that for all models

treated it is finally possible to obtain expressions analog to (32) for the first fundamental

equation, see (57) - (59) and (74) - (75). The DF in the 1PN approximation presents the

same functional dependence on the integrals of motion that in the Newtonian models,

that is, one uses the same DF but now with the 1PN energy and angular momentum. Of

course, this is for the sake of correspondence with the Newtonian limit. Note that the

correspondence principle must be satisfied by both the DF and its integrals.

It is possible to obtain alternative expressions for Σ and σ considering in particular the

case where the DF depends on a linear combination of energy and angular momentum

called Jacobi’s integral, J = ΩLz − E. Jacobi’s integral is interpreted classically as the

energy measured from a frame of reference rotating with angular speed Ω [1]. In terms

of the relative energy (30), we can write Jacobi’s integral as

J = ε+ΩLz −Ψe(0), (33)

where Ψe(0) is the 1PN relative-effective potential evaluated in η = 0, defined by

Ψe = Ψ+ 1
2Ω

2R2
(
1− 2φ/c2

)
. (34)

The Jacobi’s integral takes values between zero and Jmax, with

Jmax = Ψ− 1

2
Ω2a2η2

(

1− 2φ

c2

)

− Ω2a2φ

c2
. (35)

Now, given that 2πdJ = dvRdvϕ, the relation (28) can be written as

Σ = 2π

∫ Jmax

0

f(J)dJ. (36)
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Then, by using the expression

∫ ∫
vϕfdvRdvϕ = 2π〈vϕ〉

∫ Jmax

0

f(J)dJ, (37)

the second fundamental equation can be written as

σ = 2(2Φ0 − Ω2a2 − φN + 2aΩ
√
1− η2〈vϕ〉)ΣN − 8π

∫ Jmax

0

Jf(J)dJ, (38)

with ΣN given by (26) with A2n = C2n.

Finally, the circular speed necessary for the rotation curve can be obtained considering

(9) for circular orbits. In that case, the circular speed is equal to vφ and perpendicular

to the gradient of the field φ. Therefore, the 1PN equation of motion (9) reduces to

v2ϕ
R

[

1 +
R

c2
∂φ

∂R

]

z=0

=
∂

∂R

[

φ+
2φ2 + ψ

c2

]

z=0

. (39)

Then, in accordance with the 1PN order of approximation, the expression for the circular

speed is

vϕ =

√

R
∂φ

∂R

(

1 +
4φ

c2
− R

c2
∂φ

∂R

)

+
R

c2
∂ψ

∂R

⌋

z=0

. (40)

Note that in the limit c → ∞, the previous expression reduces to that of Newtonian

theory vϕ =
√

R∂φN/∂R.

3. Application to the Generalized Kalnajs Disks

We will now apply the previous formalism to the family of Generalized Kalnajs Disks

(GKD) introduced by González and Reina in [2]. This family is characterized by mass

densities of the form

Σ
(m)
N =

3M

2πa2
η2m−1, (41)

where the index m of the model is any positive integer. The potential φ(m)
N is given by

(23) by taking the Newtonian limit in (25) and using

C
(m)
2n =

MGπ1/2(4n+ 1)(2m+ 1)!

a22m+1(2n+ 1)(m− n)!Γ(m+ n+ 3
2 )q2n+1(0)

(42)

for n ≤ m, and C
(m)
2n = 0 for n > m.
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(9) for circular orbits. In that case, the circular speed is equal to vφ and perpendicular

to the gradient of the field φ. Therefore, the 1PN equation of motion (9) reduces to

v2ϕ
R

[

1 +
R

c2
∂φ

∂R

]

z=0

=
∂

∂R

[

φ+
2φ2 + ψ

c2

]

z=0

. (39)

Then, in accordance with the 1PN order of approximation, the expression for the circular

speed is

vϕ =

√

R
∂φ

∂R

(

1 +
4φ

c2
− R

c2
∂φ

∂R

)

+
R

c2
∂ψ

∂R

⌋

z=0

. (40)

Note that in the limit c → ∞, the previous expression reduces to that of Newtonian

theory vϕ =
√
R∂φN/∂R.

3. Application to the Generalized Kalnajs Disks

We will now apply the previous formalism to the family of Generalized Kalnajs Disks

(GKD) introduced by González and Reina in [2]. This family is characterized by mass

densities of the form

Σ
(m)
N =

3M

2πa2
η2m−1, (41)

where the index m of the model is any positive integer. The potential φ(m)
N is given by

(23) by taking the Newtonian limit in (25) and using

C
(m)
2n =

MGπ1/2(4n+ 1)(2m+ 1)!

a22m+1(2n+ 1)(m− n)!Γ(m+ n+ 3
2 )q2n+1(0)

(42)

for n ≤ m, and C
(m)
2n = 0 for n > m.
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3.1. The 1PN model for the m = 1 GKD

The first disk of the family, the disk with m = 1, is the well known Kalnajs disk [10],

with the mass distribution

Σ
(1)
N =

3Mη

2πa2
. (43)

Then, as was shown by Kalnajs [11], the DF depends on the Jacobi’s integral as

f(J) =
3M

4π2a3
[
2(Ω2

0 − Ω2)J
]−1/2

, (44)

where Ω2
0 = 3πGM/4a3. Now, for the Kalnajs disk it holds that 〈vϕ〉 = ΩR, so that the

disk spins like a rigid body.

Inserting expressions (43) and (44) into the second fundamental equation (38), and

integrating the DF, one easily obtains the following system of equations:

B0 −B2 +B4 = 0, (45)

3B2 − 10B4 = 6MGaΩ2 − 27πG2M2

4a2
, (46)

B4 =
9πG2M2

140a2
− 30GMΩ2a. (47)

Likewise, for the first fundamental equation we have

D0 −D2 +D4 =
9πG2M2Ω2

8a2(Ω2
o − Ω2)

, (48)

γD2 + ϑD4 = B2 −
15

8
B4, (49)

χD4 =
35

16
B4 −

3πG2M2

4a2
−GMΩ2a, (50)

where

γ =
24a3(Ω2

o − Ω2)− 9πMG

9πMG
, (51)

ϑ =
135πMG/8− 80a3(Ω2

o − Ω2)

9πMG
, (52)

χ =
70[128a3(Ω2

o − Ω2)− 27πMG]

864πMG
. (53)

Therefore, we have a system of linear equations with an upper triangular matrix for the

constants of each potential, ψ and φPN .
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Solving for the constants explicitly, we obtain

B0 = 2aGM(π − 1)Ω2 − 3G2M2π(15π − 1)

20a2
, (54)

B2 = 2
7aGM(7π − 10)Ω2 − 3G2M2π(21π − 2)

28a2
, (55)

B4 =
18GM

35a

(
GMπ

8a
− 5a2Ω2

3

)

, (56)

D0 = − 27G3π2M3

8a2 (a3Ω2 − 3GMπ)
− 47709G3π2M3

448a2 (128a3Ω2 − 357GMπ)

− 3G2π(1 + 80π)M2

320a2
− 9

(
28G3M3π3 − 95G3M3π2

)

28a2 (8a3Ω2 − 21GMπ)
, (57)

D2 = −3G2π(7π − 13)M2

28a2
− 9

(
28G3M3π3 − 95G3M3π2

)

28a2 (8a3Ω2 − 21GMπ)
, (58)

D4 =
27G2M2π

(
184Ω2a3 + 39GMπ

)

140a2 (128a3Ω2 − 357GMπ)
, (59)

which defines the potential ψ, and the correction φPN , respectively. Hence we can get

all the parameters of interest, in particular, we observed that the mass correction, ΣPN ,

is negligible compared with the classical mass ΣN . In contrast, the 1PN rotation curve

obtained with (40), is visibly separated from the Newtonian one from a certain radius,

the difference being maximum at the edge of the disk (see Fig. 1), where the difference

between both reaches 10.3% approximately. Those have been obtained with the typical

values of a galaxy such as the Milky Way.

3.2. The 1PN model for the m = 2 GKD

The procedure for the second disk is pretty much the same that for the first one. Again,

the DF has a simple form when written as a function of Jacobi’s integral,

f(J) =
2M√
3a2

(
10a3

G3M3π11J

)1/4

, (60)

for a mean circular speed 〈vϕ〉 = ΩR =
√

15πGM/32a3R. This DF could be easily

integrated to self-consistently obtain the mass density of the model, which also can be

obtained from (41) with m = 2,

Σ
(2)
N =

5M

2πa2

(

1− R2

a2

)3/2

=
5Mη3

2πa2
. (61)

the associated gravitational potential is given by the Newtonian limit φN of (23) with

(42) and m = 2.
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which defines the potential ψ, and the correction φPN , respectively. Hence we can get

all the parameters of interest, in particular, we observed that the mass correction, ΣPN ,

is negligible compared with the classical mass ΣN . In contrast, the 1PN rotation curve

obtained with (40), is visibly separated from the Newtonian one from a certain radius,

the difference being maximum at the edge of the disk (see Fig. 1), where the difference

between both reaches 10.3% approximately. Those have been obtained with the typical

values of a galaxy such as the Milky Way.
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The procedure for the second disk is pretty much the same that for the first one. Again,

the DF has a simple form when written as a function of Jacobi’s integral,

f(J) =
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(
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for a mean circular speed 〈vϕ〉 = ΩR =
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Figure 1. First we plot the Newtonian and 1PN mass density for the m = 1
GKD. The two curves seem to be superposed meaning that the mass correc-
tion is negligible. Then we plot the Newtonian (dashed line) and 1PN (full
line) rotation curves for the same disk. The 1PN corrections are clearly no-
torious reaching a maximum at the border of the disc. Parameter values are:
M = 4× 1040kg, a = 3× 1020m, Ω = 2× 10−13Hz.

Again, we replace the Newtonian terms into the second fundamental equation (38) to

obtain

4∑

n=0

B2n(2n+ 1)q2n+1(0)P2n(η) =

4∑

n=0

C̃2iη
2i, (62)
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where C̃0 = C̃2 = 0 and

C̃4 =
25π210!G2M2

160a2
, (63)

C̃6 = −75π210!G2M2

160a2
(64)

C̃8 =
75π210!G2M2

2240a2
. (65)

Multiplying (62) with a Legendre polynomial, integrating with respect to η, and using

the orthogonality properties of the Legendre polynomials, we get

B2n =

4∑

i=0

√
πC̃2i2

−2i−1(4n+ 1)Γ(2n+ 1)

q2n+1(0)(2n+ 1)Γ(i− n+ 1)Γ(i+ n+ 3/2)
. (66)

We also could have used the expression (32).

After rearranging the terms, the first fundamental equation can be written as

4∑

n=0

{D2n[ϑ2nP2n(η) + q2n(0)P2n(0)]−B2nq2n(0)P2n(η)− Ĉ2nη
2n} = 0, (67)

where,

ϑ2n =
π(2j + 1)

32a2q2n+1(0)− q2n(0)
, (68)

Ĉ0 =
675π2G2M2

4096a2
+ ψ(0, 0), (69)

Ĉ2 = −1575π2G2M2

4096a2
, (70)

Ĉ4 = −1125π2G2M2

2048a2
, (71)

Ĉ6 = −2025π2G2M2

4096a2
, (72)

Ĉ8 =
2025π2G2M2

8192a2
. (73)

Integrating and using orthogonality relations, the constants D2n are given by

D2n =

4∑

i=0

√
πĈ2i2

−2i−1(4n+ 1)Γ(2j + 1)

ϑ2n(2n+ 1)Γ(i− n+ 1)Γ(i+ n+ 3/2)
+

B2nq2n(0)

ϑ2n
, (74)

for n > 0, and

D0 =
1

ϑ0 + π/2

[
4∑

i=0

√
πĈ2i2

−2i−1Γ(2j + 1)

Γ(i+ 1)Γ(i+ 3/2)
−

4∑

i=1

D2iq2i(0)P2i(0)

]

, (75)
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GKD. The two curves seem to be superposed meaning that the mass correc-
tion is negligible. Then we plot the Newtonian (dashed line) and 1PN (full
line) rotation curves for the same disk. The 1PN corrections are clearly no-
torious reaching a maximum at the border of the disc. Parameter values are:
M = 4× 1040kg, a = 3× 1020m, Ω = 2× 10−13Hz.
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which defines the correction φPN to the Newtonian potential. The mass densities and

rotation curves are plotted at Figure 2, note that the rotation curve is not only quantita-

tive, but qualitatively different, presenting its maximum value more closely to the center

of the disk and going upwards at the border. This is due to the fact that the 1PN curve

includes more terms than the Newtonian one.

Figure 2. We plot the Newtonian and 1PN mass density, as well as the
Newtonian (dashed line) and 1PN (full line) rotation curves for the m = 2
GKD, with parameter values: M = 4 × 1040kg, a = 3 × 1020m, Ω = 2 ×
10−13Hz. As we can see, the two graphics of mass density appear to be
superposed, while that the 1PN rotation curve behaves completely different
to the Newtonian one.
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Abstract. In this work we introduce a new method to minimize the number
of processed objects and the setup number in a unidimensional cutting stock
problem. A nonlinear integer programming problem can be used to represent
the problem studied here. The term related to the minimization of the setup
number is a nonlinear discontinuous function, we smooth it and generate the
cutting patterns using a modified Gilmore-Gomory strategy. Numerical tests
on a wide range of test problems are very encouraging and the new method
compares favorably with other methods in the literature.
Keywords: Cutting Stock Problem, nonlinear Programming, discontinuous
Cost.
MSC2000: 65K05.

Un problema no lineal de archivo de corte

Resumen. En este trabajo presentamos un nuevo método para reducir al
mínimo el número de objetos elaborados y el número de patrones de corte en
un problema de corte unidimensional. Un problema de programación entera
no lineal se puede utilizar para representar el problema estudiado. El término
relacionado con la reducción al mínimo del número de patrones de corte es
una función discontinua no lineal, la cual suavizamos y genera los patrones
de corte utilizando una estrategia de modificación Gilmore-Gomory. Pruebas
numéricas en una amplia gama de problemas fueron muy alentadores y el
nuevo método se compara favorablemente con otros métodos en la literatura.
Palabras claves: Problema de archivo de corte, programación no lineal, costo
discontinuo.

1. Introduction

In 1939 Kantorovich presented the first work in this subject and that was published in

1960 [20], with a formulation to minimize the trim loss in a unidimensional cutting stock

problem. Similar problems were studied by other researchers, such as Paull and Walter
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