
14 C. Akímushkin, J. Ramos-Caro & G. A. González

[18] Rezania V., and Sobouti Y., Liouville’s equation in post Newtonian approximation
I. Static solution, Astron. Astrophys., 354 (2000), 1110.

[19] Semerák O., and Zácek M., Gravitating discs around a Schwarzschild black hole:
I, Class. Quantum Grav., 17 (2000), 1613.

[20] Semerák O., Thin disc around a rotating black hole, but with support in-between,
Class. Quantum Grav., 19 (2002), 3829.

[21] Toomre A., On the distribution of matter within highly flattened galaxies, ApJ,
138 (1963), 385.

[22] Toomre A., On the gravitational stability of a disk of stars, ApJ, 139 (1964), 1217.

[23] Zácek M., and Semerák O., Gravitating discs around a Schwarzschild black hole:
II, Czech. J. Phys., 52 (2002), 19.

[Revista Integración

∮
Revista Integración

Escuela de Matemáticas

Universidad Industrial de Santander

Vol. 28, No. 1, 2010, pág. 15–35

A Nonlinear Cutting Stock Problem

L. L. Salles Neto a,∗, A. C. Moretti b

a Universidade Federal de São Paulo - UNIFESP, Departamento de Computação,
12231-280 - São José dos Campos, São Paulo, Brasil.
b Universidade Estadual de Campinas - UNICAMP, Instituto de Matemática, Estatís-
tica e Computação Científica, 13084-790, Campinas, Sao Paulo, Brazil.

Abstract. In this work we introduce a new method to minimize the number
of processed objects and the setup number in a unidimensional cutting stock
problem. A nonlinear integer programming problem can be used to represent
the problem studied here. The term related to the minimization of the setup
number is a nonlinear discontinuous function, we smooth it and generate the
cutting patterns using a modified Gilmore-Gomory strategy. Numerical tests
on a wide range of test problems are very encouraging and the new method
compares favorably with other methods in the literature.
Keywords: Cutting Stock Problem, nonlinear Programming, discontinuous
Cost.
MSC2000: 65K05.

Un problema no lineal de archivo de corte

Resumen. En este trabajo presentamos un nuevo método para reducir al
mínimo el número de objetos elaborados y el número de patrones de corte en
un problema de corte unidimensional. Un problema de programación entera
no lineal se puede utilizar para representar el problema estudiado. El término
relacionado con la reducción al mínimo del número de patrones de corte es
una función discontinua no lineal, la cual suavizamos y genera los patrones
de corte utilizando una estrategia de modificación Gilmore-Gomory. Pruebas
numéricas en una amplia gama de problemas fueron muy alentadores y el
nuevo método se compara favorablemente con otros métodos en la literatura.
Palabras claves: Problema de archivo de corte, programación no lineal, costo
discontinuo.

1. Introduction

In 1939 Kantorovich presented the first work in this subject and that was published in

1960 [20], with a formulation to minimize the trim loss in a unidimensional cutting stock

problem. Similar problems were studied by other researchers, such as Paull and Walter

∗Corresponding author: E-mail: luiz.leduino@unifesp.br.
Received: 21 April 2010, Accepted: 31 May 2010.

15

16 L. L. Salles Neto & A. C. Moretti

[27], Metzger [26] and Eilon [9]. However, in all of them, the authors developed strategies

to work with small problems [6]. The papers of Gilmore-Gomory [12, 13] produced a great

impact in this area because they proposed an efficient method to work with a large scale

cutting stock problems through the use of column generation procedures. Since then,

the study of cutting stock problems and their variants has played a great importance in

the production planning scenario, helping decision makers in industries like paper, glass,

chemical and textile production, among others.

The Unidimensional Cutting Stock Problem (1/V/I/R according to Dyckhoff [7]) is

characterized by cutting stocks in just one dimension. More specifically, we have m items

with different sizes, each one having its width wi and we must cut, through its length,

a minimum number of master rolls (with width W > wi for all i) to meet demand di

for each item i for i = 1, , . . . ,m. Each combination of items to be cut in a master roll

is called a cutting pattern. The problem is to determine the frequency of each cutting

pattern to meet demand and (for instance) minimize the waste. A reasonable goal to be

met in an industry is to minimize the number of master rolls (objects) used to produce

the demanded items. If we consider that there are an infinite number of objects of same

width, then the formulation below describes the mathematical model that minimizes the

total number of objects used in a cutting plan:

(P1)






Minimize c1

n∑

j=1

xj

subject to
n∑

j=1

aijxj ≥ di, i = 1, . . . ,m,

xj ∈ N, j = 1, . . . , n.

where c1 is the cost for each object; aij is the number of items i in cutting pattern j; xj

is the number of processed objects with cutting pattern j.

In some cases, minimizing the number of objects used is not the only goal for the

manager. In fact, when we have a large demand that needs to be met in a short period

of time, the number of machine setups done for cutting the items from the master rolls

takes a growing importance, since each time we process a cutting pattern there is a need

to adjust the knives in the cutting machine and this adjustment takes time. Adding this

setup cost in the previous problem P1 we obtain a new formulation which minimizes the

[Revista Integración

A Nonlinear Cutting Stock Problem 17

number of objects and the number of setups:

(P 1)






Minimize c1

n∑

j=1

xj + c2

n∑

j=1

δ(xj)

subject to
n∑

j=1

aijxj ≥ di, i = 1, . . . ,m,

xj ∈ N, j = 1, . . . , n.

where c2 is the setup cost and

δ(xj) =

{
1 if xj > 0,

0 if xj = 0.

Combinatorial problems involving setup costs are known to be very hard to solve [25].

In particular (P 1) presents two conflicting objectives: (1) To minimize the total number

of processed objects and (2) the total number of setup used. The difficulty in solving

this problem is due to the fact that the objective function, besides being nonlinear, is

discontinuous. This fact does not allow us to solve the problem by using the Gilmore-

Gomory strategy. This is the reason why several papers considering this problem involve

the use of heuristic procedures. Below, we describe four of these methods which are

compared with our approach.

Sequential Heuristic Procedure - SHP: it was proposed by Haessler [14] and

it is based on an exhaustive technique of pattern repetitions. At each iteration an

aspiration criterion is computed; then a search is done to look for cutting patterns

that satisfy the parameters until the demands are all met. The SHP gives us a

good initial solution and it is used by other methods to compare the quality of

their solutions. It generates an inexpensive good initial solution to the (P 1). In

this paper we introduced some modifications in this algorithm.

Kombi234: This method was developed by Foester and Wascher [10] and it is

based on a combination of cutting patterns in order to reduce the number of

setups of a given cutting plan. The idea of reducing the number of cutting patterns

using a post-optimization procedure was initially mentioned by Hardley [16]. Some

methods based on this idea were published by Johnston [19], Allwood-Goulimis [1]

and Diegel et al. [4]. All of them have in common the combinations of pairs

or triples of cutting patterns, but they differ in the way the combinations are

carried out. The method Kombi234 can be seen as a generalization of Diegel’s

method, in which the ideas of combining patterns are extended to a consistent

system independently from the number of patterns to be combined. It makes use

of the fact that the sum of the pattern frequencies of the resulting patterns has

Vol. 28, No. 1, 2010]

16 L. L. Salles Neto & A. C. Moretti

[27], Metzger [26] and Eilon [9]. However, in all of them, the authors developed strategies

to work with small problems [6]. The papers of Gilmore-Gomory [12, 13] produced a great

impact in this area because they proposed an efficient method to work with a large scale

cutting stock problems through the use of column generation procedures. Since then,

the study of cutting stock problems and their variants has played a great importance in

the production planning scenario, helping decision makers in industries like paper, glass,

chemical and textile production, among others.

The Unidimensional Cutting Stock Problem (1/V/I/R according to Dyckhoff [7]) is

characterized by cutting stocks in just one dimension. More specifically, we have m items

with different sizes, each one having its width wi and we must cut, through its length,

a minimum number of master rolls (with width W > wi for all i) to meet demand di

for each item i for i = 1, , . . . ,m. Each combination of items to be cut in a master roll

is called a cutting pattern. The problem is to determine the frequency of each cutting

pattern to meet demand and (for instance) minimize the waste. A reasonable goal to be

met in an industry is to minimize the number of master rolls (objects) used to produce

the demanded items. If we consider that there are an infinite number of objects of same

width, then the formulation below describes the mathematical model that minimizes the

total number of objects used in a cutting plan:

(P1)






Minimize c1

n∑

j=1

xj

subject to
n∑

j=1

aijxj ≥ di, i = 1, . . . ,m,

xj ∈ N, j = 1, . . . , n.

where c1 is the cost for each object; aij is the number of items i in cutting pattern j; xj

is the number of processed objects with cutting pattern j.

In some cases, minimizing the number of objects used is not the only goal for the

manager. In fact, when we have a large demand that needs to be met in a short period

of time, the number of machine setups done for cutting the items from the master rolls

takes a growing importance, since each time we process a cutting pattern there is a need

to adjust the knives in the cutting machine and this adjustment takes time. Adding this

setup cost in the previous problem P1 we obtain a new formulation which minimizes the

[Revista Integración

A Nonlinear Cutting Stock Problem 17

number of objects and the number of setups:

(P 1)






Minimize c1

n∑

j=1

xj + c2

n∑

j=1

δ(xj)

subject to
n∑

j=1

aijxj ≥ di, i = 1, . . . ,m,

xj ∈ N, j = 1, . . . , n.

where c2 is the setup cost and

δ(xj) =

{
1 if xj > 0,

0 if xj = 0.

Combinatorial problems involving setup costs are known to be very hard to solve [25].

In particular (P 1) presents two conflicting objectives: (1) To minimize the total number

of processed objects and (2) the total number of setup used. The difficulty in solving

this problem is due to the fact that the objective function, besides being nonlinear, is

discontinuous. This fact does not allow us to solve the problem by using the Gilmore-

Gomory strategy. This is the reason why several papers considering this problem involve

the use of heuristic procedures. Below, we describe four of these methods which are

compared with our approach.

Sequential Heuristic Procedure - SHP: it was proposed by Haessler [14] and

it is based on an exhaustive technique of pattern repetitions. At each iteration an

aspiration criterion is computed; then a search is done to look for cutting patterns

that satisfy the parameters until the demands are all met. The SHP gives us a

good initial solution and it is used by other methods to compare the quality of

their solutions. It generates an inexpensive good initial solution to the (P 1). In

this paper we introduced some modifications in this algorithm.

Kombi234: This method was developed by Foester and Wascher [10] and it is

based on a combination of cutting patterns in order to reduce the number of

setups of a given cutting plan. The idea of reducing the number of cutting patterns

using a post-optimization procedure was initially mentioned by Hardley [16]. Some

methods based on this idea were published by Johnston [19], Allwood-Goulimis [1]

and Diegel et al. [4]. All of them have in common the combinations of pairs

or triples of cutting patterns, but they differ in the way the combinations are

carried out. The method Kombi234 can be seen as a generalization of Diegel’s

method, in which the ideas of combining patterns are extended to a consistent

system independently from the number of patterns to be combined. It makes use

of the fact that the sum of the pattern frequencies of the resulting patterns has

Vol. 28, No. 1, 2010]

18 L. L. Salles Neto & A. C. Moretti

to be identical to the sum of the frequencies belonging to the original patterns in

order to keep the material input constant. The results presented by Foester and

Wascher show that the setup was reduced by up to 60% in relation to the original

cutting plan. Kombi234 was proved to be superior to SHP.

Hybrid Heuristic: This method, proposed in Yanasse and Limeira [35], is a hy-

brid procedure composed of three phases. In the first phase, patterns are generated

and the “good” ones are selected and used to reduce the problem; in the second

phase, the reduced problem is solved and, in the third phase, a pattern reduction

technique is applied. The authors argue that the computational tests performed

indicated that the proposed scheme provides alternative solutions to the pattern

reduction problem which are not dominated by other solutions obtained by using

procedures previously suggested in the literature.

ILS: Umetani et al. [31] presented a local search algorithm that uses two types of

local search: (1) the 1-add neighborhood and (2) the shift neighborhood. Linear

programming techniques were aggregated to the local search procedures to reduce

the number of solutions in each neighborhood and to improve its performance. A

sensitivity analysis technique was introduced to solve the large number of associ-

ated LP problems quickly. Umetani et al. (2006) compared ILS with KOMBI234,

SHP and with an exact branch-and-price method (BP) proposed by Belov and

Scheithauer [2], which proposed a method similar to the work of Vanderbeck [33],

but, with a small number of variables. In [33], he investigates the problem of mini-

mizing a number of different cutting patterns as a nonlinear integer programming,

where a number of objects is fixed and determined after solving the problem by

Gilmore-Gomory strategy. In this paper, Vanderbeck uses a Dantzig-Wolfe decom-

position, developed in [32], to solve the resulting integer programming problem.

Umetani et al. [31] claims that the algorithm ILS obtains better quality solutions

than those obtained by the SHP, KOMBI234, BP approaches.

In this work, we solve a nonlinear cutting stock, whose optimal solution is a compromised

solution between two conflicting objective functions: (1) minimize the number of objects

used in a cutting plan and (2) minimize the number of setup number. A nonlinear

formulation for this bi-objective problem was first proposed by Haessler [14], who did

not try to solve the resulting nonlinear problem, instead he developed a nice and efficient

sequential procedure to find good quality solutions for the problem. His formulation

includes a nonlinear term in the objective function to represent the number of setup used

in the cutting plan. This term, besides being nonlinear, is not a continuous function. We

developed a strategy to solve this nonlinear problem by smoothing this nonlinear function

[Revista Integración

A Nonlinear Cutting Stock Problem 19

using a result from [24] and making an adaptation of the method of Gilmore-Gomory

column generation to generate new profitable columns to the problem.

The paper is organized as follows. In Section 2 we show how to smooth a discontinuous

function by making use of the theory developed in [24]. The adaptation of the Gilmore-

Gomory Column Generation Method for a Nonlinear Programming Problem is presented

in Section 3. Our approach for the Nonlinear Cutting Stock Problem is discussed in

Section 4. The framework of the computational experiences and the results are found

in Sections 5 and 6, respectively. And, finally, Section 7 presents the conclusion and

perspectives of future works.

2. Smoothing a discontinuous cost function

Many practical problems require the minimization of functions that involves discon-

tinuous costs. Among them we can cite process models with discontinuous investment

costs and fixed charges [29], continuous review (S,Q) inventory systems with constant

demand and batch arrivals [17], design of flow sheets for systems that satisfy fixed de-

mand of steam [22]. Tools for solving them include Monte Carlo simulation, disjunctive

programming approaches, simulated annealing, decomposition methods among others.

Martinez [24] proposes a smoothing method for the discontinuous cost function and

establish sufficient conditions on this approximation that ensure that the smoothed prob-

lem really approximates the original one. Consider the problem

Minimize f(x) +

m∑

i=1

Hi[gi(x)] subject to x ∈ Ω, (1)

where f : Rn → R is continuous, gi : Rn → R is continuous for all i = 1, . . . ,m and

Ω ⊆ Rn. Also, Hi : R → R , i = 1, . . . ,m, are nondecreasing functions such that Hi is

continuous except at breakpoints αij , j ∈ Ii. The set Ii can be finite or infinite but the

set of breakpoints is discrete, in the sense that

inf
{
|αil − αij | such that l, j ∈ Ii, l �= j

}
> 0. (2)

The side limits lim
t→α−

ij

Hi(t), lim
t→α+

ij

Hi(t), exist for all j ∈ Ii and

lim
t→α−

ij

Hi(t) = Hi(αij) < lim
t→α+

ij

Hi(t)

for all j ∈ Ii, i = 1, . . . ,m.

The cost functions Hi will be approximated by a family of continuous nondecreasing

functions Hik : R → R. We assume that the approximating functions are such that, for

Vol. 28, No. 1, 2010]

18 L. L. Salles Neto & A. C. Moretti

to be identical to the sum of the frequencies belonging to the original patterns in

order to keep the material input constant. The results presented by Foester and

Wascher show that the setup was reduced by up to 60% in relation to the original

cutting plan. Kombi234 was proved to be superior to SHP.

Hybrid Heuristic: This method, proposed in Yanasse and Limeira [35], is a hy-

brid procedure composed of three phases. In the first phase, patterns are generated

and the “good” ones are selected and used to reduce the problem; in the second

phase, the reduced problem is solved and, in the third phase, a pattern reduction

technique is applied. The authors argue that the computational tests performed

indicated that the proposed scheme provides alternative solutions to the pattern

reduction problem which are not dominated by other solutions obtained by using

procedures previously suggested in the literature.

ILS: Umetani et al. [31] presented a local search algorithm that uses two types of

local search: (1) the 1-add neighborhood and (2) the shift neighborhood. Linear

programming techniques were aggregated to the local search procedures to reduce

the number of solutions in each neighborhood and to improve its performance. A

sensitivity analysis technique was introduced to solve the large number of associ-

ated LP problems quickly. Umetani et al. (2006) compared ILS with KOMBI234,

SHP and with an exact branch-and-price method (BP) proposed by Belov and

Scheithauer [2], which proposed a method similar to the work of Vanderbeck [33],

but, with a small number of variables. In [33], he investigates the problem of mini-

mizing a number of different cutting patterns as a nonlinear integer programming,

where a number of objects is fixed and determined after solving the problem by

Gilmore-Gomory strategy. In this paper, Vanderbeck uses a Dantzig-Wolfe decom-

position, developed in [32], to solve the resulting integer programming problem.

Umetani et al. [31] claims that the algorithm ILS obtains better quality solutions

than those obtained by the SHP, KOMBI234, BP approaches.

In this work, we solve a nonlinear cutting stock, whose optimal solution is a compromised

solution between two conflicting objective functions: (1) minimize the number of objects

used in a cutting plan and (2) minimize the number of setup number. A nonlinear

formulation for this bi-objective problem was first proposed by Haessler [14], who did

not try to solve the resulting nonlinear problem, instead he developed a nice and efficient

sequential procedure to find good quality solutions for the problem. His formulation

includes a nonlinear term in the objective function to represent the number of setup used

in the cutting plan. This term, besides being nonlinear, is not a continuous function. We

developed a strategy to solve this nonlinear problem by smoothing this nonlinear function

[Revista Integración

A Nonlinear Cutting Stock Problem 19

using a result from [24] and making an adaptation of the method of Gilmore-Gomory

column generation to generate new profitable columns to the problem.

The paper is organized as follows. In Section 2 we show how to smooth a discontinuous

function by making use of the theory developed in [24]. The adaptation of the Gilmore-

Gomory Column Generation Method for a Nonlinear Programming Problem is presented

in Section 3. Our approach for the Nonlinear Cutting Stock Problem is discussed in

Section 4. The framework of the computational experiences and the results are found

in Sections 5 and 6, respectively. And, finally, Section 7 presents the conclusion and

perspectives of future works.

2. Smoothing a discontinuous cost function

Many practical problems require the minimization of functions that involves discon-

tinuous costs. Among them we can cite process models with discontinuous investment

costs and fixed charges [29], continuous review (S,Q) inventory systems with constant

demand and batch arrivals [17], design of flow sheets for systems that satisfy fixed de-

mand of steam [22]. Tools for solving them include Monte Carlo simulation, disjunctive

programming approaches, simulated annealing, decomposition methods among others.

Martinez [24] proposes a smoothing method for the discontinuous cost function and

establish sufficient conditions on this approximation that ensure that the smoothed prob-

lem really approximates the original one. Consider the problem

Minimize f(x) +

m∑

i=1

Hi[gi(x)] subject to x ∈ Ω, (1)

where f : Rn → R is continuous, gi : Rn → R is continuous for all i = 1, . . . ,m and

Ω ⊆ Rn. Also, Hi : R → R , i = 1, . . . ,m, are nondecreasing functions such that Hi is

continuous except at breakpoints αij , j ∈ Ii. The set Ii can be finite or infinite but the

set of breakpoints is discrete, in the sense that

inf
{
|αil − αij | such that l, j ∈ Ii, l �= j

}
> 0. (2)

The side limits lim
t→α−

ij

Hi(t), lim
t→α+

ij

Hi(t), exist for all j ∈ Ii and

lim
t→α−

ij

Hi(t) = Hi(αij) < lim
t→α+

ij

Hi(t)

for all j ∈ Ii, i = 1, . . . ,m.

The cost functions Hi will be approximated by a family of continuous nondecreasing

functions Hik : R → R. We assume that the approximating functions are such that, for

Vol. 28, No. 1, 2010]

20 L. L. Salles Neto & A. C. Moretti

all µ > 0,

lim
k→∞

Hik(t) = Hi(t) uniformly in R\
⋃

j∈Ii

(αij , αij + µ). (3)

Note that (3) implies that

lim
k→∞

Hik(t) = Hi(t) ∀ t ∈ R.

For each k, we define the approximated problems as

Minimize f(x) +

m∑

i=1

Hik[gi(x)] subject to x ∈ Ω. (4)

Since (4) has a continuous objective function, we can use continuous optimization al-

gorithms to solve it. The following theorem proves that the solution of (1) can be

approximated by the solution of (4).

Theorem 2.1. Assume that for all k = 0, 1, 2, . . ., xk is a solution of (4) and that x∗ ∈ Ω

is a cluster point of {xk}. Then, x∗ is a solution of (1).

The proof of this theorem can be found in Martinez (2001).

We adapt these ideas for the (P1) and relaxing the integrality constraints we obtain

the problem (P2)

(P2)

{

Minimize f(x) +

n∑

i=1

Hi(x) subject to x ∈ Ω,

where:

Ω = {x ∈ Rn such that Ax ≥ d, x ≥ 0}, where the columns of the matrix

A ∈ Rm×n correspond to cutting patterns, d is a vector containing the demands of

the items and x is a vector where the jth-component contains the number of time

the jth-patterns in used in the cutting plan.

f(x) = c1 ·
n∑

i=1

xi;

Hi(t) = c2δ(t), i = 1, . . . , n.

Note that Ii = {0} for all i = 1, . . . , n; hence the only discontinuous point of Hi(t),

i = 1, . . . , n is t = 0. Also, we have that

lim
t→0−

Hi(t) = 0 = Hi(0) < lim
t→0+

Hi(t) = c2.

[Revista Integración

A Nonlinear Cutting Stock Problem 21

We approximate each function Hi by the following continuous functions:

Hik(t) =

{
0 if t ≤ 0,

c2kt
2/(1 + kt2) if t > 0.

It is easy to see that lim
k→∞

Hik(t) = Hi(t) for all t ∈ R and for all i = 1, . . . , n. And,

Hik(t) uniformly converges to Hi(t) if t �= 0. Therefore, the conditions of Theorem (2.1)

can be applied in this case.

Let P
(k)
2 be the approximation of problem P2 for different values of k:

(P
(k)
2)






Minimize c1 ·
n∑

j=1

xj + c2 ·
n∑

j=1

kx2
j

1 + kx2
j

subject to :
n∑

j=1

aij · xj ≥ di, i = 1, . . . ,m,

xj ≥ 0, j = 1, . . . , n.

So, Theorem 2.1 says that if for all k = 0, 1, 2, . . ., the point xk is the best solution found

for the approximate problem P
(k)
2 and x∗ is the cluster point of the sequence {xk} then

x∗ is the solution of (P2).

Therefore, for a given set of cutting pattern (i.e., columns) x∗ is the solution of (P2).

After obtaining a solution for (P2), we use Gilmore-Gomory method to verify if there

a new profitable column. If so, we append this new column to (P2) and solve P
(k)
2 for

k = 0, 1, 2, . . . again. This process keeps going until there is not a profitable columns to

append to (P2).

The Gilmore-Gomory method was developed for linear programming problems, but,

problem (P2) is nonlinear. To overcome this difficulty we create an approximate problem

which is linear. This is better explained in the next section.

3. Column generation in a nonlinear problem

The column generation procedure for linear programming problems developed by

Gilmore-Gomory [12, 13], made it possible to solve large-scale cutting stock problem.

Problems encountered in real life may involve a very large number of variables, instead

working with all of them creating a huge problem, Gilmore-Gomory method creates an

initial linear programming problem with only a few number of columns (i.e.,cutting pat-

terns) and it keeps appending new columns to the original problem only when these

columns are profitable. That is, each iteration of the Gilmore-Gomory method solves a

linear programming problem, the first iteration starts with a problem with a few num-

bers of columns. After solving this first problem, the method generates a new column

Vol. 28, No. 1, 2010]

20 L. L. Salles Neto & A. C. Moretti

all µ > 0,

lim
k→∞

Hik(t) = Hi(t) uniformly in R\
⋃

j∈Ii

(αij , αij + µ). (3)

Note that (3) implies that

lim
k→∞

Hik(t) = Hi(t) ∀ t ∈ R.

For each k, we define the approximated problems as

Minimize f(x) +

m∑

i=1

Hik[gi(x)] subject to x ∈ Ω. (4)

Since (4) has a continuous objective function, we can use continuous optimization al-

gorithms to solve it. The following theorem proves that the solution of (1) can be

approximated by the solution of (4).

Theorem 2.1. Assume that for all k = 0, 1, 2, . . ., xk is a solution of (4) and that x∗ ∈ Ω

is a cluster point of {xk}. Then, x∗ is a solution of (1).

The proof of this theorem can be found in Martinez (2001).

We adapt these ideas for the (P1) and relaxing the integrality constraints we obtain

the problem (P2)

(P2)

{

Minimize f(x) +

n∑

i=1

Hi(x) subject to x ∈ Ω,

where:

Ω = {x ∈ Rn such that Ax ≥ d, x ≥ 0}, where the columns of the matrix

A ∈ Rm×n correspond to cutting patterns, d is a vector containing the demands of

the items and x is a vector where the jth-component contains the number of time

the jth-patterns in used in the cutting plan.

f(x) = c1 ·
n∑

i=1

xi;

Hi(t) = c2δ(t), i = 1, . . . , n.

Note that Ii = {0} for all i = 1, . . . , n; hence the only discontinuous point of Hi(t),

i = 1, . . . , n is t = 0. Also, we have that

lim
t→0−

Hi(t) = 0 = Hi(0) < lim
t→0+

Hi(t) = c2.

[Revista Integración

A Nonlinear Cutting Stock Problem 21

We approximate each function Hi by the following continuous functions:

Hik(t) =

{
0 if t ≤ 0,

c2kt
2/(1 + kt2) if t > 0.

It is easy to see that lim
k→∞

Hik(t) = Hi(t) for all t ∈ R and for all i = 1, . . . , n. And,

Hik(t) uniformly converges to Hi(t) if t �= 0. Therefore, the conditions of Theorem (2.1)

can be applied in this case.

Let P
(k)
2 be the approximation of problem P2 for different values of k:

(P
(k)
2)






Minimize c1 ·
n∑

j=1

xj + c2 ·
n∑

j=1

kx2
j

1 + kx2
j

subject to :
n∑

j=1

aij · xj ≥ di, i = 1, . . . ,m,

xj ≥ 0, j = 1, . . . , n.

So, Theorem 2.1 says that if for all k = 0, 1, 2, . . ., the point xk is the best solution found

for the approximate problem P
(k)
2 and x∗ is the cluster point of the sequence {xk} then

x∗ is the solution of (P2).

Therefore, for a given set of cutting pattern (i.e., columns) x∗ is the solution of (P2).

After obtaining a solution for (P2), we use Gilmore-Gomory method to verify if there

a new profitable column. If so, we append this new column to (P2) and solve P
(k)
2 for

k = 0, 1, 2, . . . again. This process keeps going until there is not a profitable columns to

append to (P2).

The Gilmore-Gomory method was developed for linear programming problems, but,

problem (P2) is nonlinear. To overcome this difficulty we create an approximate problem

which is linear. This is better explained in the next section.

3. Column generation in a nonlinear problem

The column generation procedure for linear programming problems developed by

Gilmore-Gomory [12, 13], made it possible to solve large-scale cutting stock problem.

Problems encountered in real life may involve a very large number of variables, instead

working with all of them creating a huge problem, Gilmore-Gomory method creates an

initial linear programming problem with only a few number of columns (i.e.,cutting pat-

terns) and it keeps appending new columns to the original problem only when these

columns are profitable. That is, each iteration of the Gilmore-Gomory method solves a

linear programming problem, the first iteration starts with a problem with a few num-

bers of columns. After solving this first problem, the method generates a new column

Vol. 28, No. 1, 2010]

22 L. L. Salles Neto & A. C. Moretti

obtaining by solving a particular knapsack problem. The objective function value of the

knapsack problem is the reduced cost of the generated column. If the new column is

profitable then it is appended to the previous problem and the process continues until

no more profitable columns are generated. See Gilmore-Gomory [12, 13] for more details

of the method.

In this section we show how we applied the column generation procedure in a nonlinear

problem. This was done by creating an auxiliary linear programming problem that is

related to our nonlinear problem (P2). By related we mean that the solution of (P2) is

a solution for the linear problem.

Consider the following linear programming problem:

(P3)






Minimize
NCP∑

j=1

xj

subject to
NCP∑

j=1

aijxj ≥ di, i = 1, . . . ,m,

xj ≥ 0, j = 1, . . . , P ,

where NCP denotes the number of different cutting patterns in the solution obtained.

We use (P3) to generate a new column for the original problem (P2), this was done by

solving a particular knapsack Problem. Haessler suggests in his paper to solve a bounded

knapsack problem to generate profitable columns in the sense of reducing trim loss and

setup number. In his work, Haessler suggests to fix the upper bounds in the knapsack

problem in the following way:

bi = min

{⌊
di
10

⌋

,

⌊
W

wi

⌋}

, i = 1, . . . ,m.

We also solve a Bounded Knapsack Problem, but, we compute the upper limits in a

different way. This is explained in the next section.

4. Solving the nonlinear cutting problem

Below, we describe the main steps of the algorithm for solving the nonlinear cutting

stock problem, having in mind that our original problem is the one denoted by (P 1), but

we work with the approximated problem (P2). To solve problem (P2), for a given set of

columns, we used a sequence of problems (P k
2). After solving the problem we append

profitable columns. If there are no more profitable columns, the algorithm stops. If the

last solution obtained is integer we are done, if not we applied a heuristic to obtain an

integer solution.

Algorithm - ANLCP

[Revista Integración

A Nonlinear Cutting Stock Problem 23

Step 1: Compute an initial solution for (P 1) using SHP. Call it x∗;

Step 2: Obtain a solution for the current (P2) solving P k
2 for k = 10i, i = 1, 2, . . . 5 using

x∗ as an initial point;

Step 3: If the solution obtained in (2) is better than x∗, update it;

Step 4: Get the simplex multiplier πi, i = 1, . . . ,m by solving (P3);

Step 5: Solve a Bounded Knapsack Problem with the objective function coefficients given

by the simplex multiplier of (P3):

Maximize Z =

n∑

i=1

πiyi

subject to
n∑

i=1

wiyi ≤ W,

yi ≤ bi, i = 1, . . . , n,
yi ∈ N, i = 1, . . . , n.

Step 6: If Z ≤ 1 Solve the Knapsack Problem with no limits in the variables;

Step 7: If Z ≤ 1 = STOP. Otherwise, add the new column y into problem (P2) and go

back to Step (2).

Step 8: Use a rounding procedure to obtain an integer solution.

To obtain an initial solution, we implemented the SHP method with some modifications

Instead of fixing the parameter MAXTL, the maximum allowable trim loss, we fix

the value of MAXTL equal to MAXTL = 0.01W , in the beginning of the process

and for each generated cutting pattern we increase its value by 0.25%, that is,

MAXTL = MAXTL+ 0.0025W until it reaches its upper limit defined by 3% of

W .

We did the same for the parameter MINU, the minimum number of production

rolls to be processed according to the pattern. In this case, we start with MINU =

0.5NR and for each generated pattern we add 0.05NR to it until the maximum of

0.9NR (where NR is an estimative of the number of stock rolls used, see (Haessler

1975). The reason for that is simple, higher values of MINU generate smaller setup

and bigger trim loss. Therefore, starting with a small value for MINU increases the

search space in the first iterations allowing the method to look for cutting pattern

which will produce small trim loss. And, as we increase the parameter value in

each iteration the procedure will look for cutting patterns that will produce small

setup without spoiling the trim loss value.

Vol. 28, No. 1, 2010]

22 L. L. Salles Neto & A. C. Moretti

obtaining by solving a particular knapsack problem. The objective function value of the

knapsack problem is the reduced cost of the generated column. If the new column is

profitable then it is appended to the previous problem and the process continues until

no more profitable columns are generated. See Gilmore-Gomory [12, 13] for more details

of the method.

In this section we show how we applied the column generation procedure in a nonlinear

problem. This was done by creating an auxiliary linear programming problem that is

related to our nonlinear problem (P2). By related we mean that the solution of (P2) is

a solution for the linear problem.

Consider the following linear programming problem:

(P3)






Minimize
NCP∑

j=1

xj

subject to
NCP∑

j=1

aijxj ≥ di, i = 1, . . . ,m,

xj ≥ 0, j = 1, . . . , P ,

where NCP denotes the number of different cutting patterns in the solution obtained.

We use (P3) to generate a new column for the original problem (P2), this was done by

solving a particular knapsack Problem. Haessler suggests in his paper to solve a bounded

knapsack problem to generate profitable columns in the sense of reducing trim loss and

setup number. In his work, Haessler suggests to fix the upper bounds in the knapsack

problem in the following way:

bi = min

{⌊
di
10

⌋

,

⌊
W

wi

⌋}

, i = 1, . . . ,m.

We also solve a Bounded Knapsack Problem, but, we compute the upper limits in a

different way. This is explained in the next section.

4. Solving the nonlinear cutting problem

Below, we describe the main steps of the algorithm for solving the nonlinear cutting

stock problem, having in mind that our original problem is the one denoted by (P 1), but

we work with the approximated problem (P2). To solve problem (P2), for a given set of

columns, we used a sequence of problems (P k
2). After solving the problem we append

profitable columns. If there are no more profitable columns, the algorithm stops. If the

last solution obtained is integer we are done, if not we applied a heuristic to obtain an

integer solution.

Algorithm - ANLCP

[Revista Integración

A Nonlinear Cutting Stock Problem 23

Step 1: Compute an initial solution for (P 1) using SHP. Call it x∗;

Step 2: Obtain a solution for the current (P2) solving P k
2 for k = 10i, i = 1, 2, . . . 5 using

x∗ as an initial point;

Step 3: If the solution obtained in (2) is better than x∗, update it;

Step 4: Get the simplex multiplier πi, i = 1, . . . ,m by solving (P3);

Step 5: Solve a Bounded Knapsack Problem with the objective function coefficients given

by the simplex multiplier of (P3):

Maximize Z =

n∑

i=1

πiyi

subject to
n∑

i=1

wiyi ≤ W,

yi ≤ bi, i = 1, . . . , n,
yi ∈ N, i = 1, . . . , n.

Step 6: If Z ≤ 1 Solve the Knapsack Problem with no limits in the variables;

Step 7: If Z ≤ 1 = STOP. Otherwise, add the new column y into problem (P2) and go

back to Step (2).

Step 8: Use a rounding procedure to obtain an integer solution.

To obtain an initial solution, we implemented the SHP method with some modifications

Instead of fixing the parameter MAXTL, the maximum allowable trim loss, we fix

the value of MAXTL equal to MAXTL = 0.01W , in the beginning of the process

and for each generated cutting pattern we increase its value by 0.25%, that is,

MAXTL = MAXTL+ 0.0025W until it reaches its upper limit defined by 3% of

W .

We did the same for the parameter MINU, the minimum number of production

rolls to be processed according to the pattern. In this case, we start with MINU =

0.5NR and for each generated pattern we add 0.05NR to it until the maximum of

0.9NR (where NR is an estimative of the number of stock rolls used, see (Haessler

1975). The reason for that is simple, higher values of MINU generate smaller setup

and bigger trim loss. Therefore, starting with a small value for MINU increases the

search space in the first iterations allowing the method to look for cutting pattern

which will produce small trim loss. And, as we increase the parameter value in

each iteration the procedure will look for cutting patterns that will produce small

setup without spoiling the trim loss value.

Vol. 28, No. 1, 2010]

24 L. L. Salles Neto & A. C. Moretti

In the SHP algorithm the search is conducted by generating patterns in lexico-

graphically decreasing order that satisfies the current aspiration level. In our

implementation, we allocate, in the current pattern, the biggest possible value of

the item with the higher residual demand. We do the same with the item which

has the second biggest value and so on, without violating the length of the stock.

If the generated pattern does not satisfy the aspiration criterion, we decrease by

one unit the frequency of item with higher residual demand and we return to the

search. By doing this, the final cutting plan has a small number of different cutting

pattern (i.e., setup number).

The parameter MINR (the minimum number of rolls permitted in the pattern) is fixed

according to Haessler. The parameter MAXR, the number of knives, was not used in our

implementation. For more details about SHP see [14].

The software BOX9903 [21] was used to solve the sequence of nonlinear problems. This

routine solves the following optimization problem

Minimize f(x)
subject to Ax = d,

h(x) = 0,
l ≤ x ≤ u,

where f : Rn → R and h : Rn → Rm are differentiable functions and A is a real matrix

m× n. The format of our problem does not include the function h(x) and the limits are

defined by l = 0 and u = ∞. So, in each iteration, BOX9903 solves the problem

Minimize L(x)
subject to l ≤ x ≤ u,

where

L(x) = c1

n∑

i=1

xi + c2

n∑

i=1

hik(xi) + λt · (Ax− d) + (ρ/2) ·
∥
∥Ax− d

∥
∥2

2

is called the Augmented Lagrangian. For iteration j we define ρ = K = 10j, where

j assume the values 1, 2, 3, 4 and 5, that is, we realize 5 iterations of the method. The

Lagrange multiplier is estimated in each iteration j. Keep on mind that hik(x) = kx2
i /(1+

kx2
i).

Since this is a local method, each time a column is added to the problem we solve the

sequence of problems Pk with 20 different initial points: the current solution, the null

solution and 18 random generated points.

After solving the sequence of problems and obtaining the best solution for the new

problem, we solve a Bounded Knapsack Problem to find if there is a profitable column

[Revista Integración

A Nonlinear Cutting Stock Problem 25

(cutting pattern) to append to the problem (P2). To do so, we obtain the simplex

multiplier from problem (P3) and use them as the coefficients of the knapsack problem

objective function. Since we are working with a bounded knapsack problem we need

to define the limits of the components of the current solution. Let the setup number

be equal NCP, NCP ≤ m, that means that we have NCP different cutting patterns.

When we add a column we are interested in reducing not only the trim loss, but also the

setup number. Assuming we want to reduce the current setup number by 20%, therefore,

after adding the new generated column to (P2) we hope to obtain a new setup number

that is 20% smaller than the current setup number, i.e., NewSetup = 0.8 ∗ NCP . Let

NB be the number of production rolls processed in the current solution. Supposing that

this number remains constant, we should have, on average, (MBP = NB/NewSetup)

processed object per cutting pattern. And, assuming the new generated pattern will

belong to the solution with frequency equal to MBP and the items in this pattern will

not belong to the nonzeros patterns, then to guarantee a feasible solution, each item in

this pattern must be limited by bi = di/MBP . Since we need an integer upper bound,

we make bi = �bi�. And, if bi > W/wi then we fix bi = �W/wi� so we will obtain only

feasible patterns.

Finally, to round the solution in the end of the process we used the BRURED method

described in [34]; this method does not modify the setup number and it is efficient.

First, we round the nonzero variables up, that is, x∗
j = �xj�. Usually, this procedure

may generate an excess of production. This excess can be reduced by checking which

variables can be reduced by one unit, without making the problem infeasible. That is,

for each k ∈ {1, 2, . . . , n}, if the variable xk, after the round up, satisfies the inequality

aij(xk − 1) +
m∑

i=1

i�=k

aijxj ≥ di , i = 1, . . . ,m.

If this is the case then we fix x∗
k = xk − 1.

5. Computational experiments

In order to evaluate our approach, random instances for the one dimensional cutting

problem were generated by CUTGEN1, developed by Gau and Wascher [11]. As in

the paper [10], we generated 18 problem classes by combining different values of the

CUTGEN1’s parameters

v1 values 0.01 and 0.2;

v2 values 0.2 and 0.8;

Vol. 28, No. 1, 2010]

24 L. L. Salles Neto & A. C. Moretti

In the SHP algorithm the search is conducted by generating patterns in lexico-

graphically decreasing order that satisfies the current aspiration level. In our

implementation, we allocate, in the current pattern, the biggest possible value of

the item with the higher residual demand. We do the same with the item which

has the second biggest value and so on, without violating the length of the stock.

If the generated pattern does not satisfy the aspiration criterion, we decrease by

one unit the frequency of item with higher residual demand and we return to the

search. By doing this, the final cutting plan has a small number of different cutting

pattern (i.e., setup number).

The parameter MINR (the minimum number of rolls permitted in the pattern) is fixed

according to Haessler. The parameter MAXR, the number of knives, was not used in our

implementation. For more details about SHP see [14].

The software BOX9903 [21] was used to solve the sequence of nonlinear problems. This

routine solves the following optimization problem

Minimize f(x)
subject to Ax = d,

h(x) = 0,
l ≤ x ≤ u,

where f : Rn → R and h : Rn → Rm are differentiable functions and A is a real matrix

m× n. The format of our problem does not include the function h(x) and the limits are

defined by l = 0 and u = ∞. So, in each iteration, BOX9903 solves the problem

Minimize L(x)
subject to l ≤ x ≤ u,

where

L(x) = c1

n∑

i=1

xi + c2

n∑

i=1

hik(xi) + λt · (Ax− d) + (ρ/2) ·
∥
∥Ax− d

∥
∥2

2

is called the Augmented Lagrangian. For iteration j we define ρ = K = 10j, where

j assume the values 1, 2, 3, 4 and 5, that is, we realize 5 iterations of the method. The

Lagrange multiplier is estimated in each iteration j. Keep on mind that hik(x) = kx2
i /(1+

kx2
i).

Since this is a local method, each time a column is added to the problem we solve the

sequence of problems Pk with 20 different initial points: the current solution, the null

solution and 18 random generated points.

After solving the sequence of problems and obtaining the best solution for the new

problem, we solve a Bounded Knapsack Problem to find if there is a profitable column

[Revista Integración

A Nonlinear Cutting Stock Problem 25

(cutting pattern) to append to the problem (P2). To do so, we obtain the simplex

multiplier from problem (P3) and use them as the coefficients of the knapsack problem

objective function. Since we are working with a bounded knapsack problem we need

to define the limits of the components of the current solution. Let the setup number

be equal NCP, NCP ≤ m, that means that we have NCP different cutting patterns.

When we add a column we are interested in reducing not only the trim loss, but also the

setup number. Assuming we want to reduce the current setup number by 20%, therefore,

after adding the new generated column to (P2) we hope to obtain a new setup number

that is 20% smaller than the current setup number, i.e., NewSetup = 0.8 ∗ NCP . Let

NB be the number of production rolls processed in the current solution. Supposing that

this number remains constant, we should have, on average, (MBP = NB/NewSetup)

processed object per cutting pattern. And, assuming the new generated pattern will

belong to the solution with frequency equal to MBP and the items in this pattern will

not belong to the nonzeros patterns, then to guarantee a feasible solution, each item in

this pattern must be limited by bi = di/MBP . Since we need an integer upper bound,

we make bi = �bi�. And, if bi > W/wi then we fix bi = �W/wi� so we will obtain only

feasible patterns.

Finally, to round the solution in the end of the process we used the BRURED method

described in [34]; this method does not modify the setup number and it is efficient.

First, we round the nonzero variables up, that is, x∗
j = �xj�. Usually, this procedure

may generate an excess of production. This excess can be reduced by checking which

variables can be reduced by one unit, without making the problem infeasible. That is,

for each k ∈ {1, 2, . . . , n}, if the variable xk, after the round up, satisfies the inequality

aij(xk − 1) +
m∑

i=1

i�=k

aijxj ≥ di , i = 1, . . . ,m.

If this is the case then we fix x∗
k = xk − 1.

5. Computational experiments

In order to evaluate our approach, random instances for the one dimensional cutting

problem were generated by CUTGEN1, developed by Gau and Wascher [11]. As in

the paper [10], we generated 18 problem classes by combining different values of the

CUTGEN1’s parameters

v1 values 0.01 and 0.2;

v2 values 0.2 and 0.8;

Vol. 28, No. 1, 2010]

26 L. L. Salles Neto & A. C. Moretti

the number of patterns in the original cutting plan, denoted by m set to 10 (small

instances), 20 (mid-size instances) and 40 (large instances).

problem classes have low average demand (d̄ = 10) and high average demand (d̄=

100)

We obtained six classes with small items (v1 = 0.01 and v2 = 0.2), six classes with wide-

spread items (v1 = 0.01 and v2 = 0.8) and other six classes with large items (v1 = 0.2

and v2 = 0.8). For each class, we generated and solved 100 instances. Table 1 shows the

parameters used for each class.

Class v1 v2 m d

1 0.01 0.2 10 10
2 0.01 0.2 10 100
3 0.01 0.2 20 10
4 0.01 0.2 20 100
5 0.01 0.2 40 10
6 0.01 0.2 40 100
7 0.01 0.8 10 10
8 0.01 0.8 10 100
9 0.01 0.8 20 10
10 0.01 0.8 20 100
11 0.01 0.8 40 10
12 0.01 0.8 40 100
13 0.2 0.8 10 10
14 0.2 0.8 10 100
15 0.2 0.8 20 10
16 0.2 0.8 20 100
17 0.2 0.8 40 10
18 0.2 0.8 40 100

Table 1. Random Generated Classes and their parameters.

We compare our results with the results of SHP [14], KOMBI234 [10], Hybrid Heuristic

[35] and ILS [31]. The comparison with ILS was done with the results obtained without

an upper bound in the number of objects. KOMBI234 uses the solution obtained by the

heuristic developed by Stadler [28] as initial solution. According to Foester and Wascher,

the combination Stadler + KOMBI234 produced the best results encountered in the

literature at the time they published their work.

We run CUTGEN1 with the same seed (i.e.,1994) and parameters that were defined

in [10], [30, 31] and [35] to generate all the 1800 (i.e., 18 classes, each class with 100

instance problems) instance problems.

[Revista Integración

A Nonlinear Cutting Stock Problem 27

The method ANLCP and the heuristic SHP were implemented by the authors in For-

tran, running under g77 for Linux, with a processor Athlon XP 1800Mhz, 512MB of

RAM. The results of KOMBI234, ILS and Hybrid Heuristic were taken from [10], [31] and

Yanasse and Limeira [35], respectively. The results for KOMBI234 were obtained from an

implementation in MODULA-2 in MSDOS operating system with an IBM 486/66. ILS

was coded in C language and run on an IBM compatible personal computer (Pentium

IV 2 GHz, 1 GB memory) under Linux. Hybrid Heuristic (HH) were performed in C++

in a microcomputer Intel Celeron, 266 MHz, 128MB RAM and a workstation Sun Ultra

30, 296MHz 384MB RAM.

In our computational experiments we are looking for solutions with small setup num-

ber. This is an advantage of the ANLCP. By using as a penalization parameter instead

the real life value of the setup cost, we can control the setup number. Next section, we

presented the results obtained by ANLCP using c2 = 100, that is, c2 used as a penal-

ization parameter since real life values would lie in the interval [1,10]. However, when

we compare the solutions obtained by ANLCP with the solutions obtained by the other

methods, we use the values c2 = 1, 5, 10 in the objective function. That is, although we

obtain solutions by using c2 = 100, when we compute the objective functions values to

compare with the other solutions we use the real life values for c2.

6. Computational results

Tables 2, 3 and 4 show the average for the setup number and for the number of objects

used in the final solution for the 100 instances in all the classes: small items, widespread

items and large items.

Class
SHP Kombi HH ILS ANLCP

Setup Objects Setup Objects Setup Objects Setup Objects Setup Objects

1 3.95 14.17 3.40 11.49 3.31 11.56 1.67 15.15 3.14 18.44
2 5.94 116.47 7.81 110.25 6.95 110.4 1.67 149.78 4.66 116.66
3 5.00 25.29 5.89 22.13 4.96 22.17 2.57 28.01 4.88 25.18
4 7.31 225.33 14.26 215.93 10.32 215.98 2.57 278.57 7.16 226.72
5 6.87 46.89 10.75 42.96 7.63 42.99 4.28 55.12 7.02 45.64
6 10.81 433.59 25.44 424.71 13.31 424.89 4.28 546.64 10.96 432.68

Average of
the averages

6.65 143.62 11.26 137.91 7.75 138.00 2.84 178.88 6.30 144.22

Table 2. Averages for small items.

Table 5 presents the variation of setup and number of objects of the method ANLCP

in relation to SHP. To compute the variation for the setup number we use the formula

100×(SetupANLCP −SetupSHP)/SetupSHP . The average setup in ANLCP method was

Vol. 28, No. 1, 2010]

26 L. L. Salles Neto & A. C. Moretti

the number of patterns in the original cutting plan, denoted by m set to 10 (small

instances), 20 (mid-size instances) and 40 (large instances).

problem classes have low average demand (d̄ = 10) and high average demand (d̄=

100)

We obtained six classes with small items (v1 = 0.01 and v2 = 0.2), six classes with wide-

spread items (v1 = 0.01 and v2 = 0.8) and other six classes with large items (v1 = 0.2

and v2 = 0.8). For each class, we generated and solved 100 instances. Table 1 shows the

parameters used for each class.

Class v1 v2 m d

1 0.01 0.2 10 10
2 0.01 0.2 10 100
3 0.01 0.2 20 10
4 0.01 0.2 20 100
5 0.01 0.2 40 10
6 0.01 0.2 40 100
7 0.01 0.8 10 10
8 0.01 0.8 10 100
9 0.01 0.8 20 10
10 0.01 0.8 20 100
11 0.01 0.8 40 10
12 0.01 0.8 40 100
13 0.2 0.8 10 10
14 0.2 0.8 10 100
15 0.2 0.8 20 10
16 0.2 0.8 20 100
17 0.2 0.8 40 10
18 0.2 0.8 40 100

Table 1. Random Generated Classes and their parameters.

We compare our results with the results of SHP [14], KOMBI234 [10], Hybrid Heuristic

[35] and ILS [31]. The comparison with ILS was done with the results obtained without

an upper bound in the number of objects. KOMBI234 uses the solution obtained by the

heuristic developed by Stadler [28] as initial solution. According to Foester and Wascher,

the combination Stadler + KOMBI234 produced the best results encountered in the

literature at the time they published their work.

We run CUTGEN1 with the same seed (i.e.,1994) and parameters that were defined

in [10], [30, 31] and [35] to generate all the 1800 (i.e., 18 classes, each class with 100

instance problems) instance problems.

[Revista Integración

A Nonlinear Cutting Stock Problem 27

The method ANLCP and the heuristic SHP were implemented by the authors in For-

tran, running under g77 for Linux, with a processor Athlon XP 1800Mhz, 512MB of

RAM. The results of KOMBI234, ILS and Hybrid Heuristic were taken from [10], [31] and

Yanasse and Limeira [35], respectively. The results for KOMBI234 were obtained from an

implementation in MODULA-2 in MSDOS operating system with an IBM 486/66. ILS

was coded in C language and run on an IBM compatible personal computer (Pentium

IV 2 GHz, 1 GB memory) under Linux. Hybrid Heuristic (HH) were performed in C++

in a microcomputer Intel Celeron, 266 MHz, 128MB RAM and a workstation Sun Ultra

30, 296MHz 384MB RAM.

In our computational experiments we are looking for solutions with small setup num-

ber. This is an advantage of the ANLCP. By using as a penalization parameter instead

the real life value of the setup cost, we can control the setup number. Next section, we

presented the results obtained by ANLCP using c2 = 100, that is, c2 used as a penal-

ization parameter since real life values would lie in the interval [1,10]. However, when

we compare the solutions obtained by ANLCP with the solutions obtained by the other

methods, we use the values c2 = 1, 5, 10 in the objective function. That is, although we

obtain solutions by using c2 = 100, when we compute the objective functions values to

compare with the other solutions we use the real life values for c2.

6. Computational results

Tables 2, 3 and 4 show the average for the setup number and for the number of objects

used in the final solution for the 100 instances in all the classes: small items, widespread

items and large items.

Class
SHP Kombi HH ILS ANLCP

Setup Objects Setup Objects Setup Objects Setup Objects Setup Objects

1 3.95 14.17 3.40 11.49 3.31 11.56 1.67 15.15 3.14 18.44
2 5.94 116.47 7.81 110.25 6.95 110.4 1.67 149.78 4.66 116.66
3 5.00 25.29 5.89 22.13 4.96 22.17 2.57 28.01 4.88 25.18
4 7.31 225.33 14.26 215.93 10.32 215.98 2.57 278.57 7.16 226.72
5 6.87 46.89 10.75 42.96 7.63 42.99 4.28 55.12 7.02 45.64
6 10.81 433.59 25.44 424.71 13.31 424.89 4.28 546.64 10.96 432.68

Average of
the averages

6.65 143.62 11.26 137.91 7.75 138.00 2.84 178.88 6.30 144.22

Table 2. Averages for small items.

Table 5 presents the variation of setup and number of objects of the method ANLCP

in relation to SHP. To compute the variation for the setup number we use the formula

100×(SetupANLCP −SetupSHP)/SetupSHP . The average setup in ANLCP method was

Vol. 28, No. 1, 2010]

28 L. L. Salles Neto & A. C. Moretti

Class
SHP Kombi HH ILS ANLCP

Setup Objects Setup Objects Setup Objects Setup Objects Setup Objects

7 8.84 55.84 7.90 50.21 7.66 51.69 5.01 54.14 5.78 50.84
8 9.76 515.76 9.96 499.52 9.62 502.23 5.01 541.50 8.22 506.02
9 17.19 108.54 15.03 93.67 13.64 99.49 9.27 101.21 10.90 106.72
10 19.37 1001.59 19.28 932.32 18.21 948.41 9.27 1008.05 14.56 969.40
11 32.20 202.80 28.74 176.97 24.60 195.67 16.95 193.17 19.80 220.46
12 37.25 1873.05 37.31 1766.20 33.23 1847.42 16.95 1920.39 25.58 1813.60

Average of
the averages

20.77 626.26 19.70 586.48 17.83 607.49 10.41 636.41 14.14 611.17

Table 3. Averages for wide-spread items.

Class
SHP Kombi HH ILS ANLCP

Setup Objects Setup Objects Setup Objects Setup Objects Setup Objects

13 9.38 69.97 8.97 63.27 8.93 64.20 6.26 67.61 5.86 66.52
14 9.85 643.55 10.32 632.12 10.51 633.26 6.26 675.50 7.92 633.98
15 18.03 136.03 16.88 119.43 16.28 123.90 11.76 125.86 10.28 130.20
16 19.63 1253.55 19.91 1191.80 19.89 1197.66 11.76 1256.92 15.00 1193.54
17 34.39 256.01 31.46 224.68 29.76 244.02 21.50 239.64 23.32 283.88
18 38.23 2381.54 38.28 2342.40 37.90 2268.30 21.50 2391.53 29.80 2410.82

Average of
the averages

21.59 790.11 20.97 762.28 20.55 755.22 13.17 792.84 15.36 786.49

Table 4. Averages for large items.

better than the average setup for SHP in all the classes, except for classes 5 and 6. And,

the average number of objects in ANLCP method was better than the average obtained

by SHP in 12 classes out of 18.

Table 6 presents the variation of setup and the number of objects of our method

(ANLCP) in relation to KOMBI234. In all the classes ANLCP obtained a better average

for the setup than KOMBI. But, the average number of objects used by KOMBI was

better than ANLCP in all the 18 classes. Still, in the 7 classes the difference was smaller

than 3%.

Table 7 presents the variation of setup and the number of objects of our method

(ANLCP) in relation to HH. In all the classes ANLCP obtained a better average for the

setup than HH. In two classes ANLCP obtained better averages than HH for the number

of the number of objects used in the cutting plan.

Table 8 presents the variation of setup and the number of objects of our method

(ANLCP) in relation to ILS. ANLCP obtained better averages than ILS for the number

of setup in two classes. For the number of objects, ANLCP was better than ILS in twelve

classes.

[Revista Integración

A Nonlinear Cutting Stock Problem 29

Class Setup
Number of

objects

1 −20.51 30.13
2 −21.55 0.16
3 −2.40 −0.43
4 −2.05 0.62
5 2.18 −2.67
6 1.39 −0.21
7 −34.62 −8.95
8 −15.78 −1.89
9 −36.59 −1.68
10 −24.83 −3.21
11 −38.51 8.71
12 −31.33 −3.17
13 −37.53 −4.93
14 −19.59 −1.49
15 −42.98 −4.29
16 −23.59 −4.79
17 −32.19 10.89
18 −22.05 1.23

Table 5. Variation in % of ANLCP in relation
to SHP.

Class Setup
Number of

objects

1 −7.65 60.49
2 −40.33 5.81
3 −17.15 13.78
4 −49.79 5.00
5 −34.70 6.24
6 −56.92 1.88
7 −26.84 1.25
8 −17.47 1.30
9 −27.48 13.93
10 −24.48 3.98
11 −31.11 24.57
12 −31.44 2.68
13 −34.67 5.14
14 −23.26 0.29
15 −39.10 9.02
16 −24.66 0.15
17 −25.87 26.35
18 −22.15 2.92

Table 6. Variation in % of ANLCP in relation
to Kombi.

We observed by the computational experiences that no method dominated any other

method in all the classes. That is, no method obtained the smallest number of objects

and setup number in all the classes. More specifically, ANLCP dominated SHP in 10

out of 18 classes and it is not dominated in any class. There is not a dominance relation

between ANLCP and KOMBI234 in any one of the classes. ANLCP dominated HH in

three classes and it is not dominated in any class. Finally, ANLCP dominated ILS in

one class and it is dominated in 5 classes.

We consider an advantage of ANLCP over the other methods the fact that with ANLCP

we can work with the costs of setup in the objective function. Therefore, we can control

the value of (as a penalization parameter) such that the cutting patterns generated take

in account number of objects and setup number and not only one of them.

To compare the quality solution of each method in terms of the objective function

values, we use the values of c2 equal to 1,5 and 10. Those are real life values for c2 and

by doing so, the comparisons with the others methods are more fair. In general, ANLCP

method obtained better objective function values that SHP, KOMBI234, HH and ILS.

In the literature, Diegel et al. [5] were the only to mention about practical values for c1

and c2. According to Diegel et al.[5], an exact relation between c1 and c2 depends on

Vol. 28, No. 1, 2010]

28 L. L. Salles Neto & A. C. Moretti

Class
SHP Kombi HH ILS ANLCP

Setup Objects Setup Objects Setup Objects Setup Objects Setup Objects

7 8.84 55.84 7.90 50.21 7.66 51.69 5.01 54.14 5.78 50.84
8 9.76 515.76 9.96 499.52 9.62 502.23 5.01 541.50 8.22 506.02
9 17.19 108.54 15.03 93.67 13.64 99.49 9.27 101.21 10.90 106.72
10 19.37 1001.59 19.28 932.32 18.21 948.41 9.27 1008.05 14.56 969.40
11 32.20 202.80 28.74 176.97 24.60 195.67 16.95 193.17 19.80 220.46
12 37.25 1873.05 37.31 1766.20 33.23 1847.42 16.95 1920.39 25.58 1813.60

Average of
the averages

20.77 626.26 19.70 586.48 17.83 607.49 10.41 636.41 14.14 611.17

Table 3. Averages for wide-spread items.

Class
SHP Kombi HH ILS ANLCP

Setup Objects Setup Objects Setup Objects Setup Objects Setup Objects

13 9.38 69.97 8.97 63.27 8.93 64.20 6.26 67.61 5.86 66.52
14 9.85 643.55 10.32 632.12 10.51 633.26 6.26 675.50 7.92 633.98
15 18.03 136.03 16.88 119.43 16.28 123.90 11.76 125.86 10.28 130.20
16 19.63 1253.55 19.91 1191.80 19.89 1197.66 11.76 1256.92 15.00 1193.54
17 34.39 256.01 31.46 224.68 29.76 244.02 21.50 239.64 23.32 283.88
18 38.23 2381.54 38.28 2342.40 37.90 2268.30 21.50 2391.53 29.80 2410.82

Average of
the averages

21.59 790.11 20.97 762.28 20.55 755.22 13.17 792.84 15.36 786.49

Table 4. Averages for large items.

better than the average setup for SHP in all the classes, except for classes 5 and 6. And,

the average number of objects in ANLCP method was better than the average obtained

by SHP in 12 classes out of 18.

Table 6 presents the variation of setup and the number of objects of our method

(ANLCP) in relation to KOMBI234. In all the classes ANLCP obtained a better average

for the setup than KOMBI. But, the average number of objects used by KOMBI was

better than ANLCP in all the 18 classes. Still, in the 7 classes the difference was smaller

than 3%.

Table 7 presents the variation of setup and the number of objects of our method

(ANLCP) in relation to HH. In all the classes ANLCP obtained a better average for the

setup than HH. In two classes ANLCP obtained better averages than HH for the number

of the number of objects used in the cutting plan.

Table 8 presents the variation of setup and the number of objects of our method

(ANLCP) in relation to ILS. ANLCP obtained better averages than ILS for the number

of setup in two classes. For the number of objects, ANLCP was better than ILS in twelve

classes.

[Revista Integración

A Nonlinear Cutting Stock Problem 29

Class Setup
Number of

objects

1 −20.51 30.13
2 −21.55 0.16
3 −2.40 −0.43
4 −2.05 0.62
5 2.18 −2.67
6 1.39 −0.21
7 −34.62 −8.95
8 −15.78 −1.89
9 −36.59 −1.68
10 −24.83 −3.21
11 −38.51 8.71
12 −31.33 −3.17
13 −37.53 −4.93
14 −19.59 −1.49
15 −42.98 −4.29
16 −23.59 −4.79
17 −32.19 10.89
18 −22.05 1.23

Table 5. Variation in % of ANLCP in relation
to SHP.

Class Setup
Number of

objects

1 −7.65 60.49
2 −40.33 5.81
3 −17.15 13.78
4 −49.79 5.00
5 −34.70 6.24
6 −56.92 1.88
7 −26.84 1.25
8 −17.47 1.30
9 −27.48 13.93
10 −24.48 3.98
11 −31.11 24.57
12 −31.44 2.68
13 −34.67 5.14
14 −23.26 0.29
15 −39.10 9.02
16 −24.66 0.15
17 −25.87 26.35
18 −22.15 2.92

Table 6. Variation in % of ANLCP in relation
to Kombi.

We observed by the computational experiences that no method dominated any other

method in all the classes. That is, no method obtained the smallest number of objects

and setup number in all the classes. More specifically, ANLCP dominated SHP in 10

out of 18 classes and it is not dominated in any class. There is not a dominance relation

between ANLCP and KOMBI234 in any one of the classes. ANLCP dominated HH in

three classes and it is not dominated in any class. Finally, ANLCP dominated ILS in

one class and it is dominated in 5 classes.

We consider an advantage of ANLCP over the other methods the fact that with ANLCP

we can work with the costs of setup in the objective function. Therefore, we can control

the value of (as a penalization parameter) such that the cutting patterns generated take

in account number of objects and setup number and not only one of them.

To compare the quality solution of each method in terms of the objective function

values, we use the values of c2 equal to 1,5 and 10. Those are real life values for c2 and

by doing so, the comparisons with the others methods are more fair. In general, ANLCP

method obtained better objective function values that SHP, KOMBI234, HH and ILS.

In the literature, Diegel et al. [5] were the only to mention about practical values for c1

and c2. According to Diegel et al.[5], an exact relation between c1 and c2 depends on

Vol. 28, No. 1, 2010]

30 L. L. Salles Neto & A. C. Moretti

Class Setup
Number of

objects

1 −5.14 59.52
2 −32.95 5.67
3 −1.61 13.58
4 −30.62 4.97
5 −7.99 6.16
6 −17.66 1.83
7 −24.54 −1.64
8 −14.55 0.75
9 −20.09 7.27
10 −20.04 2.21
11 −19.51 12.67
12 −23.02 −1.83
13 −34.38 3.61
14 −24.64 0.11
15 −36.86 5.08
16 −24.59 −0.34
17 −21.64 16.33
18 −21.37 6.28

Table 7. Variation in % of ANLCP in relation
to HH.

Class Setup
Number of

objects

1 88.02 21.72
2 179.04 −22.11
3 89.88 −10.10
4 178.60 −18.61
5 64.02 −17.20
6 156.07 −20.85
7 15.37 −6.10
8 64.07 −6.55
9 17.58 5.44
10 57.07 −3.83
11 16.81 14.13
12 50.91 −5.56
13 −6.39 −1.61
14 26.52 −6.15
15 −12.59 3.45
16 27.55 −5.04
17 8.47 18.46
18 38.60 0.81

Table 8. Variation in % of ANLCP in relation
to ILS.

the data we have on hands. But they say that c2 is never much bigger than c1. Also,

they say that c1 = c2 = 1 are appropriate for large problems. However, if the main goal

is to minimize the setup number then c2 must be bigger than c1. Therefore, the relation

between those two costs depends on several factors as: demand, deadlines, labor costs,

etc.

For a better understanding of the behavior of each method, Table 9 shows the differ-

ence in percentage of the average costs obtained by ANLCP when compared with SHP,

KOMBI234, HH and ILS for c1 = c2 = 1.

Observe that ANLCP obtained the best averages in 14 classes when compared with

SHP, in 6 classes when compared with Kombi234, in 5 classes when compared with HH

and in 12 classes when compared with ILS, even when c1 = c2 = 1.

The results obtained by ANLCP when c1 = 1 and c2 = 5 are presented in Table 10. The

averages for the objective function values for ANLCP were better than those obtained by

SHP in all 18 classes, better than KOMBI234 in 12 classes, better than HH in 12 classes

and better than ILS in 10 classes.

The computational results confirm the good performance of ANLCP method. The

[Revista Integración

A Nonlinear Cutting Stock Problem 31

ANLCP, as shown is Table 11, obtained average costs better than SHP in 16 classes,

better than KOMBI234 in 17 classes, better than HH in 15 classes and better than ILS

in 9 classes when c1 = 1 and c2 = 10.

7. Conclusions and future work

Based on the computational results presented, we may say that the ANLCP method

is, in fact, competitive in relation to SHP, KOMBI234, HH and ILS approaches. When

the total cost (c1× (number of objects) + c2× (setup)) is used as a basis of comparison,

ANLCP obtain averages 3% better than the ones obtained by SHP, KOMBI234, HH and

ILS in several classes and usually in all of them when c1 = 1 and c2 = 5 or 10. The

ANLCP method is competitive even when c1 = c2 = 1.

Considering only the setup number, ANLCP has a better performance than SHP,

KOMBI234 and HH in almost all the classes.

It is important to say that another advantage of ANLCP method is the possibility of

working with explicitly values of c1 and c2 in the objective function. In fact, in real life

problems those costs depend on many factors as demand, deadline, labor costs, etc.

We do not know any other method that treats the problem of minimizing the setup

and the number of processed object in the same way ANLCP method does.

However, ANLCP method has a disadvantage in relation to SHP, KOMBI234, HH and

ILS : the computational time. Although we cannot compare the computational time with

KOMBI234, ILS and HH, since they were not implemented by the authors, but it is easy

to see that the ANLCP method has a higher elapsed time when compared with the other

methods. This happens because once a new column is added to the problem, we need to

solve (P k
2) with 20 initial points. For classes with a large number of items, as the Classes

(11,12,17,18), the computational time for ANLCP was high.

Testing better strategies for solving nonlinear problems to obtain global solutions can

make ANLCP better. Also, a better strategy to round the fractional solutions is welcome

since the BRURED method used for rounding the solution is very simple; however it is

quick and it keeps the setup number found by ANLCP.

Acknowledgments

The authors have been partially supported by M.E.C. (Spain), Project MTM2007-

063432. The second author is also supported by CNPq (Brazil), Project 307907/2007-4.

Vol. 28, No. 1, 2010]

30 L. L. Salles Neto & A. C. Moretti

Class Setup
Number of

objects

1 −5.14 59.52
2 −32.95 5.67
3 −1.61 13.58
4 −30.62 4.97
5 −7.99 6.16
6 −17.66 1.83
7 −24.54 −1.64
8 −14.55 0.75
9 −20.09 7.27
10 −20.04 2.21
11 −19.51 12.67
12 −23.02 −1.83
13 −34.38 3.61
14 −24.64 0.11
15 −36.86 5.08
16 −24.59 −0.34
17 −21.64 16.33
18 −21.37 6.28

Table 7. Variation in % of ANLCP in relation
to HH.

Class Setup
Number of

objects

1 88.02 21.72
2 179.04 −22.11
3 89.88 −10.10
4 178.60 −18.61
5 64.02 −17.20
6 156.07 −20.85
7 15.37 −6.10
8 64.07 −6.55
9 17.58 5.44
10 57.07 −3.83
11 16.81 14.13
12 50.91 −5.56
13 −6.39 −1.61
14 26.52 −6.15
15 −12.59 3.45
16 27.55 −5.04
17 8.47 18.46
18 38.60 0.81

Table 8. Variation in % of ANLCP in relation
to ILS.

the data we have on hands. But they say that c2 is never much bigger than c1. Also,

they say that c1 = c2 = 1 are appropriate for large problems. However, if the main goal

is to minimize the setup number then c2 must be bigger than c1. Therefore, the relation

between those two costs depends on several factors as: demand, deadlines, labor costs,

etc.

For a better understanding of the behavior of each method, Table 9 shows the differ-

ence in percentage of the average costs obtained by ANLCP when compared with SHP,

KOMBI234, HH and ILS for c1 = c2 = 1.

Observe that ANLCP obtained the best averages in 14 classes when compared with

SHP, in 6 classes when compared with Kombi234, in 5 classes when compared with HH

and in 12 classes when compared with ILS, even when c1 = c2 = 1.

The results obtained by ANLCP when c1 = 1 and c2 = 5 are presented in Table 10. The

averages for the objective function values for ANLCP were better than those obtained by

SHP in all 18 classes, better than KOMBI234 in 12 classes, better than HH in 12 classes

and better than ILS in 10 classes.

The computational results confirm the good performance of ANLCP method. The

[Revista Integración

A Nonlinear Cutting Stock Problem 31

ANLCP, as shown is Table 11, obtained average costs better than SHP in 16 classes,

better than KOMBI234 in 17 classes, better than HH in 15 classes and better than ILS

in 9 classes when c1 = 1 and c2 = 10.

7. Conclusions and future work

Based on the computational results presented, we may say that the ANLCP method

is, in fact, competitive in relation to SHP, KOMBI234, HH and ILS approaches. When

the total cost (c1× (number of objects) + c2× (setup)) is used as a basis of comparison,

ANLCP obtain averages 3% better than the ones obtained by SHP, KOMBI234, HH and

ILS in several classes and usually in all of them when c1 = 1 and c2 = 5 or 10. The

ANLCP method is competitive even when c1 = c2 = 1.

Considering only the setup number, ANLCP has a better performance than SHP,

KOMBI234 and HH in almost all the classes.

It is important to say that another advantage of ANLCP method is the possibility of

working with explicitly values of c1 and c2 in the objective function. In fact, in real life

problems those costs depend on many factors as demand, deadline, labor costs, etc.

We do not know any other method that treats the problem of minimizing the setup

and the number of processed object in the same way ANLCP method does.

However, ANLCP method has a disadvantage in relation to SHP, KOMBI234, HH and

ILS : the computational time. Although we cannot compare the computational time with

KOMBI234, ILS and HH, since they were not implemented by the authors, but it is easy

to see that the ANLCP method has a higher elapsed time when compared with the other

methods. This happens because once a new column is added to the problem, we need to

solve (P k
2) with 20 initial points. For classes with a large number of items, as the Classes

(11,12,17,18), the computational time for ANLCP was high.

Testing better strategies for solving nonlinear problems to obtain global solutions can

make ANLCP better. Also, a better strategy to round the fractional solutions is welcome

since the BRURED method used for rounding the solution is very simple; however it is

quick and it keeps the setup number found by ANLCP.

Acknowledgments

The authors have been partially supported by M.E.C. (Spain), Project MTM2007-

063432. The second author is also supported by CNPq (Brazil), Project 307907/2007-4.

Vol. 28, No. 1, 2010]

32 L. L. Salles Neto & A. C. Moretti

Class SHP Kombi HH ILS

1 19.09 44.93 45.12 28.30
2 −0.89 2.76 3.38 −19.89
3 −0.76 7.28 10.80 −1.70
4 0.53 1.60 3.35 −16.81
5 −2.05 −1.95 4.03 −11.35
6 −0.17 −1.45 1.24 −19.47
7 −12.46 −2.56 −4.60 −4.28
8 −2.15 0.93 0.47 −5.90
9 −6.45 8.21 3.97 6.46
10 −3.62 3.40 1.79 −3.28
11 2.24 16.80 9.08 14.34
12 −3.72 1.98 −2.21 −5.07
13 −8.78 0.19 −1.03 −2.02
14 −1.76 −0.08 −0.29 −5.85
15 −8.81 3.06 0.21 2.08
16 −5.08 −0.26 −0.74 −4.74
17 5.79 19.93 12.21 17.64
18 0.86 2.52 5.83 1.14

Table 9. Variation in % of the total cost, with
c1 = c2 = 1, of ANLCP in relation to the SHP,
Kombi, HH and ILS.

Class SHP Kombi HH ILS

1 0.65 19.83 21.45 45.28
2 −4.25 −6.26 −3.58 −11.49
3 −1.41 −3.88 5.56 21.34
4 0.24 −8.60 −1.89 −9.92
5 −0.62 −16.51 −0.49 5.51
6 −0.03 −11.67 −0.81 −14.18
7 −20.29 −11.11 −11.39 0.69
8 −3.09 −0.40 −0.58 −3.43
9 −17.11 −4.50 −3.86 9.26
10 −5.12 1.31 0.26 −1.16
11 −12.19 −0.38 0.25 14.95
12 −5.72 −0.58 −3.58 −3.17
13 −18.01 −11.38 −11.97 −3.12
14 −2.77 −1.48 −1.78 −4.70
15 −19.71 −10.91 −11.54 −1.66
16 −6.15 −1.77 −2.20 −3.59
17 −6.42 4.84 1.95 15.37
18 −0.50 1.03 4.15 2.43

Table 10. Variation in % of the total cost,
with c1 = 1 and c2 = 5, of ANLCP in relation
to the SHP, Kombi, HH and ILS.

Class SHP Kombi HH ILS

1 −7.14 9.56 11.60 56.48
2 −7.17 −13.32 −9.25 −1.93
3 −1.74 −8.70 3.08 37.74
4 −0.04 −16.79 −6.54 −1.96
5 0.22 −23.01 −2.89 18.30
6 0.11 −20.15 −2.82 −8.00
7 −24.68 −15.92 −15.32 4.22
8 −4.10 −1.82 −1.71 −0.57
9 −23.08 −11.58 −8.55 11.25
10 −6.72 −0.90 −1.37 1.29
11 −20.26 −9.89 −5.26 15.38
12 −7.84 −3.27 −5.06 −0.98
13 −23.60 −18.21 −18.49 −3.91
14 −3.89 −3.01 −3.41 −3.38
15 −26.34 −19.16 −18.73 −4.30
16 −7.33 −3.40 −3.80 −2.25
17 −13.81 −4.12 −4.53 13.73
18 −1.99 −0.60 2.32 3.92

Table 11. Variation in % of the total cost,
with c1 = 1 and c2 = 10, of ANLCP in relation
to the SHP, Kombi, HH and ILS.

[Revista Integración

A Nonlinear Cutting Stock Problem 33

Class
SHP Kombi* HH* ILS* ANLCP
T(s) T(s) T(s) T(s) T(s)

1 0.01 0.14 0.23 0.10 0.80
2 0.08 1.14 0.48 0. 22 1.17
3 0.17 1.74 0.12 0.72 0.47
4 0.21 16.00 2.75 2.69 0.94
5 0.27 38.03 3.43 7.55 0.58
6 0.31 379.17 7.81 23.18 0.93
7 0.01 0.07 0.11 0.21 16.49
8 0.02 0.2 0.60 0.27 8.96
9 0.04 3.37 0.49 1.96 69.11
10 0.06 3.25 3.36 2.19 77.21
11 0.22 36.26 7.17 19.16 185.53
12 0.32 76.31 44.62 23.87 318.54
13 0.01 0.08 0.13 0.26 4.44
14 0.02 0.13 0.25 0.31 1.95
15 0.03 1.81 0.97 2.01 29.36
16 0.04 2.6 2.46 2.21 26.30
17 0.16 50.93 15.46 22.01 248.62
18 0.24 70.94 50.61 26.84 443.66

Table 12. Average time (in seconds) of each method (* KOMBI, HH and ILS
were not implemented and tested in the same computational environment).

References

[1] Allowod J.M., and Goulimins C.N., “Reducing the number of patterns
in one-dimensional cutting stock problems,” Control Section Report No
EE/CON/IC/88/10, Industrial Systems Group, Department of Electical Engineer-
ing, Imperial College, London, 1988.

[2] Belov G., Scheithauer G., “The Number of Setups (Different Patterns) in One-
Dimensional Stock Cutting,” Technical Report MATH-NM -15-2003, Dresden Uni-
versity, 2003.

[3] Chvatal V., “Linear Programming,” Freeman, San Francisco, 1983.

[4] Diegel A., Chetty M., Van Schalkwyk S., and Naidoo S., “Setup combining in the
trim loss problem -3-to-2 & 2-to-1,” Working paper, Business Administration, Uni-
versity of Natal, Durban, First Draft, 1993.

[5] Diegel A., Montocchio E., Walters E., Schalkwyk S. van, and Naidoo S., Setup
minimising conditions in the trim loss problem, European J. Oper. Res., 95 (1996),
631-640.

[6] Dowsland K. and Dowsland W., Packing Problems, European J. Oper. Res., 56
(1992), 2-14.

Vol. 28, No. 1, 2010]

32 L. L. Salles Neto & A. C. Moretti

Class SHP Kombi HH ILS

1 19.09 44.93 45.12 28.30
2 −0.89 2.76 3.38 −19.89
3 −0.76 7.28 10.80 −1.70
4 0.53 1.60 3.35 −16.81
5 −2.05 −1.95 4.03 −11.35
6 −0.17 −1.45 1.24 −19.47
7 −12.46 −2.56 −4.60 −4.28
8 −2.15 0.93 0.47 −5.90
9 −6.45 8.21 3.97 6.46
10 −3.62 3.40 1.79 −3.28
11 2.24 16.80 9.08 14.34
12 −3.72 1.98 −2.21 −5.07
13 −8.78 0.19 −1.03 −2.02
14 −1.76 −0.08 −0.29 −5.85
15 −8.81 3.06 0.21 2.08
16 −5.08 −0.26 −0.74 −4.74
17 5.79 19.93 12.21 17.64
18 0.86 2.52 5.83 1.14

Table 9. Variation in % of the total cost, with
c1 = c2 = 1, of ANLCP in relation to the SHP,
Kombi, HH and ILS.

Class SHP Kombi HH ILS

1 0.65 19.83 21.45 45.28
2 −4.25 −6.26 −3.58 −11.49
3 −1.41 −3.88 5.56 21.34
4 0.24 −8.60 −1.89 −9.92
5 −0.62 −16.51 −0.49 5.51
6 −0.03 −11.67 −0.81 −14.18
7 −20.29 −11.11 −11.39 0.69
8 −3.09 −0.40 −0.58 −3.43
9 −17.11 −4.50 −3.86 9.26
10 −5.12 1.31 0.26 −1.16
11 −12.19 −0.38 0.25 14.95
12 −5.72 −0.58 −3.58 −3.17
13 −18.01 −11.38 −11.97 −3.12
14 −2.77 −1.48 −1.78 −4.70
15 −19.71 −10.91 −11.54 −1.66
16 −6.15 −1.77 −2.20 −3.59
17 −6.42 4.84 1.95 15.37
18 −0.50 1.03 4.15 2.43

Table 10. Variation in % of the total cost,
with c1 = 1 and c2 = 5, of ANLCP in relation
to the SHP, Kombi, HH and ILS.

Class SHP Kombi HH ILS

1 −7.14 9.56 11.60 56.48
2 −7.17 −13.32 −9.25 −1.93
3 −1.74 −8.70 3.08 37.74
4 −0.04 −16.79 −6.54 −1.96
5 0.22 −23.01 −2.89 18.30
6 0.11 −20.15 −2.82 −8.00
7 −24.68 −15.92 −15.32 4.22
8 −4.10 −1.82 −1.71 −0.57
9 −23.08 −11.58 −8.55 11.25
10 −6.72 −0.90 −1.37 1.29
11 −20.26 −9.89 −5.26 15.38
12 −7.84 −3.27 −5.06 −0.98
13 −23.60 −18.21 −18.49 −3.91
14 −3.89 −3.01 −3.41 −3.38
15 −26.34 −19.16 −18.73 −4.30
16 −7.33 −3.40 −3.80 −2.25
17 −13.81 −4.12 −4.53 13.73
18 −1.99 −0.60 2.32 3.92

Table 11. Variation in % of the total cost,
with c1 = 1 and c2 = 10, of ANLCP in relation
to the SHP, Kombi, HH and ILS.

[Revista Integración

A Nonlinear Cutting Stock Problem 33

Class
SHP Kombi* HH* ILS* ANLCP
T(s) T(s) T(s) T(s) T(s)

1 0.01 0.14 0.23 0.10 0.80
2 0.08 1.14 0.48 0. 22 1.17
3 0.17 1.74 0.12 0.72 0.47
4 0.21 16.00 2.75 2.69 0.94
5 0.27 38.03 3.43 7.55 0.58
6 0.31 379.17 7.81 23.18 0.93
7 0.01 0.07 0.11 0.21 16.49
8 0.02 0.2 0.60 0.27 8.96
9 0.04 3.37 0.49 1.96 69.11
10 0.06 3.25 3.36 2.19 77.21
11 0.22 36.26 7.17 19.16 185.53
12 0.32 76.31 44.62 23.87 318.54
13 0.01 0.08 0.13 0.26 4.44
14 0.02 0.13 0.25 0.31 1.95
15 0.03 1.81 0.97 2.01 29.36
16 0.04 2.6 2.46 2.21 26.30
17 0.16 50.93 15.46 22.01 248.62
18 0.24 70.94 50.61 26.84 443.66

Table 12. Average time (in seconds) of each method (* KOMBI, HH and ILS
were not implemented and tested in the same computational environment).

References

[1] Allowod J.M., and Goulimins C.N., “Reducing the number of patterns
in one-dimensional cutting stock problems,” Control Section Report No
EE/CON/IC/88/10, Industrial Systems Group, Department of Electical Engineer-
ing, Imperial College, London, 1988.

[2] Belov G., Scheithauer G., “The Number of Setups (Different Patterns) in One-
Dimensional Stock Cutting,” Technical Report MATH-NM -15-2003, Dresden Uni-
versity, 2003.

[3] Chvatal V., “Linear Programming,” Freeman, San Francisco, 1983.

[4] Diegel A., Chetty M., Van Schalkwyk S., and Naidoo S., “Setup combining in the
trim loss problem -3-to-2 & 2-to-1,” Working paper, Business Administration, Uni-
versity of Natal, Durban, First Draft, 1993.

[5] Diegel A., Montocchio E., Walters E., Schalkwyk S. van, and Naidoo S., Setup
minimising conditions in the trim loss problem, European J. Oper. Res., 95 (1996),
631-640.

[6] Dowsland K. and Dowsland W., Packing Problems, European J. Oper. Res., 56
(1992), 2-14.

Vol. 28, No. 1, 2010]

34 L. L. Salles Neto & A. C. Moretti

[7] Dyckhoff H., A typology of cutting and packing problems, European J. Oper. Res.,
44 (1990), 145-159.

[8] Dyckhoff H., and Finke U., “Cutting and Packing in Production and Distribution:
A Typology and Bibliography,” Springer-Verlag Co, Heidelberg, 1992.

[9] Eilon S., Optimizing the shearing of steel bars, J. Mech. Eng. Sci. 2 (1960), 129-142.

[10] Foester H., and Wascher G., Pattern Reduction in One-dimensional Cutting-Stock
Problems, Internat. J. Prod. Res., 38 (2000), 1657-1676.

[11] Gau T., and Wascher G., CUTGEN1: A Problem Generator for the Standard One-
dimensional Cutting Stock Problem, European J. Oper. Res., 84 (1995), 572-579.

[12] Gilmore P.C., and Gomory R.E., A Linear Programming Approach to the Cutting
Stock Problem, Oper. Res., 9 (1961), 849-859.

[13] Gilmore P.C., and Gomory R.E., A Linear Programming Approach to the Cutting
Stock Problem, Oper. Res., 11 (1963), 863-888.

[14] Haessler R., Controlling Cutting Pattern Changes in One-Dimensional Trim Prob-
lems, Oper. Res., 23 (1975), 483-493.

[15] Haessler R., A Note on Computational Modifications to the Gilmore-Gomory Cut-
ting Stock Algorithm, Oper. Res., 28 (1980), 1001-1005.

[16] Hardley C.J., Optimal cutting of zinc-coated steel strip, Oper. Res., 4 (1976), 92-100.

[17] Heuts R., and Deklein J., An (S-Q) inventory model with stochastic and interrelated
lead times, Naval Res. Logist., 42 (1995), 839-859.

[18] Hinxman A., The trim loss and assortment problems: a survey, European J. Oper.
Res., 5 (1980), 8-18.

[19] Johnston R.E., Rounding algorithms for cutting stock problems, Asia-Pac. J. Oper.
Res., 3 (1986), 166-171.

[20] Kantorovich L.V., Mathematical Methods of Organizing and Planning Production,
Management Sci., 6 (1960), 366-422.

[21] Krejic M., Martinez J.M. et al., Validation of an Augmented Lagrangian algorithm
with a Gauss-Newton Hessian approximation using a set of hard-spheres problems,
Comput. Optim. Appl., 16 (2000), 247-263.

[22] Maia L., Valério de Carvalho L.A., Quassim R., Synthesis of utility systems by
simulated annealing, Comp. Chemical Eng., 19 (1995), 481-488.

[23] Martello S., Toth P., Knapsack Problems: Algotithms and Computer Implementa-
tions, John Wiley & Sons, New York, 1990.

[24] Martinez J.M., Minimization of discontinuous cost functions by smoothing, Acta
Applicandae Mathematical, 71 (2001), 245-260.

[Revista Integración

A Nonlinear Cutting Stock Problem 35

[25] McDiamird C., Pattern minimisation in cutting stock problems, Discrete Appl.
Math., 98 (1999), 121-130.

[26] Metzger R.W., Stock Slitting. Elementary Mathematical Programming, Wiley, 1958.

[27] Paull A.E., and Walter J.R., “The trim problem: an application of linear pro-
gramming to the manufacture of news-print paper, Presented at Annual Meeting
of Econometric Society, Montreal, 10-13, 1954.

[28] Stadler H., A one-dimensional cutting stock problem in the aluminium industry and
its solution, European J. Oper. Res., 44 (1990), 209-223.

[29] Turkay M., and Grossmann I.E., Disjunctive Programming Techniques for the Op-
timization of Process Systems with Discontinuous Investment Costs-Multiple Size
Regions, Ind. Eng. Chem. Res., 35 (1996), 2611-2623.

[30] Umetani S., Yagiura M., and Ibaraki T., One Dimensional Cutting Stock Problem
to Minimize the Number of Different Patterns. European J. Oper. Res., 146 (2003),
388-402.

[31] Umetani S., and Yagiura M., One Dimensional Cutting Stock Problem with a Given
Number of Setups: A Hybrid Approach of Metaheuristics and Linear Programming,
Journal of Mathematical Modelling and Algorithms, 5 (2006), 43-64.

[32] Vanderbeck F., Computational study of a column generation algorithm for bin pack-
ing and cutting stock problems, Math. Program., 86 (1999), 565-594.

[33] Vanderbeck F., Exact Algorithm for Minimising the Number of Setups in the One-
Dimensional Cutting Stock Problem, Oper. Res., 48 (2000), 915-926.

[34] Wascher G., and Gau T., Heuristics for the Integer One-dimensional Cutting Stock
Problem: a computational study, OR Spek., 18 (1996), 131-144.

[35] Yanasse H.I., and Limeira M., A hybrid heuristic to reduce the number of different
patterns in cutting stock problems, Comput. Oper. Res., 33 (2006), 2744-2756

Vol. 28, No. 1, 2010]

34 L. L. Salles Neto & A. C. Moretti

[7] Dyckhoff H., A typology of cutting and packing problems, European J. Oper. Res.,
44 (1990), 145-159.

[8] Dyckhoff H., and Finke U., “Cutting and Packing in Production and Distribution:
A Typology and Bibliography,” Springer-Verlag Co, Heidelberg, 1992.

[9] Eilon S., Optimizing the shearing of steel bars, J. Mech. Eng. Sci. 2 (1960), 129-142.

[10] Foester H., and Wascher G., Pattern Reduction in One-dimensional Cutting-Stock
Problems, Internat. J. Prod. Res., 38 (2000), 1657-1676.

[11] Gau T., and Wascher G., CUTGEN1: A Problem Generator for the Standard One-
dimensional Cutting Stock Problem, European J. Oper. Res., 84 (1995), 572-579.

[12] Gilmore P.C., and Gomory R.E., A Linear Programming Approach to the Cutting
Stock Problem, Oper. Res., 9 (1961), 849-859.

[13] Gilmore P.C., and Gomory R.E., A Linear Programming Approach to the Cutting
Stock Problem, Oper. Res., 11 (1963), 863-888.

[14] Haessler R., Controlling Cutting Pattern Changes in One-Dimensional Trim Prob-
lems, Oper. Res., 23 (1975), 483-493.

[15] Haessler R., A Note on Computational Modifications to the Gilmore-Gomory Cut-
ting Stock Algorithm, Oper. Res., 28 (1980), 1001-1005.

[16] Hardley C.J., Optimal cutting of zinc-coated steel strip, Oper. Res., 4 (1976), 92-100.

[17] Heuts R., and Deklein J., An (S-Q) inventory model with stochastic and interrelated
lead times, Naval Res. Logist., 42 (1995), 839-859.

[18] Hinxman A., The trim loss and assortment problems: a survey, European J. Oper.
Res., 5 (1980), 8-18.

[19] Johnston R.E., Rounding algorithms for cutting stock problems, Asia-Pac. J. Oper.
Res., 3 (1986), 166-171.

[20] Kantorovich L.V., Mathematical Methods of Organizing and Planning Production,
Management Sci., 6 (1960), 366-422.

[21] Krejic M., Martinez J.M. et al., Validation of an Augmented Lagrangian algorithm
with a Gauss-Newton Hessian approximation using a set of hard-spheres problems,
Comput. Optim. Appl., 16 (2000), 247-263.

[22] Maia L., Valério de Carvalho L.A., Quassim R., Synthesis of utility systems by
simulated annealing, Comp. Chemical Eng., 19 (1995), 481-488.

[23] Martello S., Toth P., Knapsack Problems: Algotithms and Computer Implementa-
tions, John Wiley & Sons, New York, 1990.

[24] Martinez J.M., Minimization of discontinuous cost functions by smoothing, Acta
Applicandae Mathematical, 71 (2001), 245-260.

[Revista Integración

A Nonlinear Cutting Stock Problem 35

[25] McDiamird C., Pattern minimisation in cutting stock problems, Discrete Appl.
Math., 98 (1999), 121-130.

[26] Metzger R.W., Stock Slitting. Elementary Mathematical Programming, Wiley, 1958.

[27] Paull A.E., and Walter J.R., “The trim problem: an application of linear pro-
gramming to the manufacture of news-print paper, Presented at Annual Meeting
of Econometric Society, Montreal, 10-13, 1954.

[28] Stadler H., A one-dimensional cutting stock problem in the aluminium industry and
its solution, European J. Oper. Res., 44 (1990), 209-223.

[29] Turkay M., and Grossmann I.E., Disjunctive Programming Techniques for the Op-
timization of Process Systems with Discontinuous Investment Costs-Multiple Size
Regions, Ind. Eng. Chem. Res., 35 (1996), 2611-2623.

[30] Umetani S., Yagiura M., and Ibaraki T., One Dimensional Cutting Stock Problem
to Minimize the Number of Different Patterns. European J. Oper. Res., 146 (2003),
388-402.

[31] Umetani S., and Yagiura M., One Dimensional Cutting Stock Problem with a Given
Number of Setups: A Hybrid Approach of Metaheuristics and Linear Programming,
Journal of Mathematical Modelling and Algorithms, 5 (2006), 43-64.

[32] Vanderbeck F., Computational study of a column generation algorithm for bin pack-
ing and cutting stock problems, Math. Program., 86 (1999), 565-594.

[33] Vanderbeck F., Exact Algorithm for Minimising the Number of Setups in the One-
Dimensional Cutting Stock Problem, Oper. Res., 48 (2000), 915-926.

[34] Wascher G., and Gau T., Heuristics for the Integer One-dimensional Cutting Stock
Problem: a computational study, OR Spek., 18 (1996), 131-144.

[35] Yanasse H.I., and Limeira M., A hybrid heuristic to reduce the number of different
patterns in cutting stock problems, Comput. Oper. Res., 33 (2006), 2744-2756

Vol. 28, No. 1, 2010]

