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Counterrotating Dust Disk Around a

Schwarzschild Black Hole: New Fully

Integrated Explicit Exact Solution
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Antonio C. Gutiérrez-Piñeres∗,∗∗‡

Resumen. The first fully integrated explicit exact solution of Einstein’s field
equations corresponding to the superposition of a counterrotating dust disk
with a central black hole is presented. The obtained solution represents an
infinite annular thin disk (a disk with an inner edge) around the Schwarsz-
child black hole, and the corresponding to energy-momentum tensor agrees
with all the energy conditions. The solution can also be interpreted as des-
cribing a thin disk made of two counterrotating dust fluids that are also in
agreement with all the energy conditions.

1. Introduction

The observational data supporting the existence of black holes at the nucleus of some

galaxies, including the Milky Way, is today so abundant that there is no doubt about the

relevance of the study of binary systems composed by a thin disk surrounding a central

black hole. Accordingly, a lot of work has been developed in the last years in order to

obtain a better understanding of the different aspects involved in the dynamics of these

systems (see [1] for a recent review of the main works). Now, due to the presence of

a black hole, the gravitational fields involved are so strong that the proper theoretical
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framework to analytically study this configurations is provided by the General Theory

of Relativity. Therefore, a strong effort has been dedicated to obtain the exact solutions

of Einstein’s equations corresponding to thin disklike sources with a central black hole.

However, until now, any explicit exact solution corresponding to such kind of systems

has been obtained.

Stationary and axially symmetric solutions of the Einstein equations are the best choice

to attempt to describe the gravitational fields of disks around black holes in an exact

analytical manner. At the same time, such spacetimes have obvious astrophysical impor-

tance, as they describe the exterior of equilibrium configurations of bodies in rotation. So,

through the years, several examples of solutions corresponding to black holes or to thin

disklike sources have been obtained by many different techniques. However, due to the

nonlinear character of Einstein’s equations, solutions corresponding to the superposition

of black holes and thin disks are not so easy to obtain and so, until now, exact stationary

solutions have not been obtained.

On the other hand, if we only consider static configurations, the line element is cha-

racterized only by two metric functions. Furthermore, in the vacuum case, the Einstein

equations system implies that one of the metric functions satisfies the Laplace equation

whereas that the other one can be obtained by quadratures. Therefore, as a consequence

of the linearity of the Laplace equation, solutions corresponding to the superposition

of thin disks and black holes can be, in principle, easily obtained. However, only very

few solutions has been obtained and neither of them has been fully explicitly integrated

[2, 3, 4, 5, 6, 7, 8, 9].

In this paper, we present what seems to be the first fully integrated explicit exact solution

for the superposition of a thin disk and a black hole. The paper is organized as follows.

First, in Section 2, we present a solution of the Einstein equations that corresponds to the

superposition of the Schwarzschild solution with a solution describing an infinite annular

thin disk. Then, in Section 3, we present the corresponding expressions for the surface

energy-momentum tensor, both of the disk alone as well as of the superposition of the

disk with the black hole. Finally, in Section 4, we conclude by summarizing our main

results.
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2. The solution of the Einstein equations

We begin by considering the Weyl metric for a static axially symmetric spacetime, written

as [10]

ds2 = −e2Φdt2 + e−2Φ[r2dϕ2 + e2Λ(dr2 + dz2)], (1)

with Φ and Λ only depending on r and z. The vacuum in Einstein’s equations imply that

Φ is a solution of the Laplace equation,

Φ,rr +
1

r
Φ,r + Φ,zz = 0, (2)

whereas that, given Φ, Λ is obtained by solving the quadrature

Λ[Φ] =

∫
r[(Φ2

,r − Φ2
,z)dr + 2Φ,zΦ,zdz], (3)

whose integrability is granted by equation (2).

We consider a solution of (2) of the form

Φ = ψ + φ, (4)

where ψ corresponds to a black hole solution whereas that φ corresponds to a thin disk

solution. Now, by using (4) in (3), we obtain

Λ[Φ] = Λ[ψ] + Λ[φ] + 2Λ[ψ, φ], (5)

with

Λ[ψ, φ] =

∫
r[(ψ,rφ,r − ψ,zφ,z)dr + (ψ,rφ,z + ψ,zφ,z)dz], (6)

a term due to the nonlinear character of (3). For the black hole we take ψ and Λ[ψ] as

given by the Schwarszchild solution written as

ψ =
1

2
ln

[
ζ − 1

ζ + 1

]
, (7)

Λ[ψ] =
1

2
ln

[
ζ2 − 1

ζ2 − η2

]
, (8)

where the prolate spheroidal coordinates are defined by means of

r2 = m2(ζ2 − 1)(1 − η2), z = mζη (9)

and 1 ≤ ζ < ∞, −1 ≤ η ≤ 1.

Vol. 26, No. 2, 2008]



124 Guillermo A. González & Antonio C. Gutiérrez-Piñeres

framework to analytically study this configurations is provided by the General Theory

of Relativity. Therefore, a strong effort has been dedicated to obtain the exact solutions

of Einstein’s equations corresponding to thin disklike sources with a central black hole.

However, until now, any explicit exact solution corresponding to such kind of systems

has been obtained.

Stationary and axially symmetric solutions of the Einstein equations are the best choice

to attempt to describe the gravitational fields of disks around black holes in an exact

analytical manner. At the same time, such spacetimes have obvious astrophysical impor-

tance, as they describe the exterior of equilibrium configurations of bodies in rotation. So,

through the years, several examples of solutions corresponding to black holes or to thin

disklike sources have been obtained by many different techniques. However, due to the

nonlinear character of Einstein’s equations, solutions corresponding to the superposition

of black holes and thin disks are not so easy to obtain and so, until now, exact stationary

solutions have not been obtained.

On the other hand, if we only consider static configurations, the line element is cha-

racterized only by two metric functions. Furthermore, in the vacuum case, the Einstein

equations system implies that one of the metric functions satisfies the Laplace equation

whereas that the other one can be obtained by quadratures. Therefore, as a consequence

of the linearity of the Laplace equation, solutions corresponding to the superposition

of thin disks and black holes can be, in principle, easily obtained. However, only very

few solutions has been obtained and neither of them has been fully explicitly integrated

[2, 3, 4, 5, 6, 7, 8, 9].

In this paper, we present what seems to be the first fully integrated explicit exact solution

for the superposition of a thin disk and a black hole. The paper is organized as follows.

First, in Section 2, we present a solution of the Einstein equations that corresponds to the

superposition of the Schwarzschild solution with a solution describing an infinite annular

thin disk. Then, in Section 3, we present the corresponding expressions for the surface

energy-momentum tensor, both of the disk alone as well as of the superposition of the

disk with the black hole. Finally, in Section 4, we conclude by summarizing our main

results.

[Revista Integración

Counterrotating Dust Disk Around a Schwarzschild Black Hole 125

2. The solution of the Einstein equations

We begin by considering the Weyl metric for a static axially symmetric spacetime, written

as [10]

ds2 = −e2Φdt2 + e−2Φ[r2dϕ2 + e2Λ(dr2 + dz2)], (1)

with Φ and Λ only depending on r and z. The vacuum in Einstein’s equations imply that

Φ is a solution of the Laplace equation,

Φ,rr +
1

r
Φ,r + Φ,zz = 0, (2)

whereas that, given Φ, Λ is obtained by solving the quadrature

Λ[Φ] =

∫
r[(Φ2

,r − Φ2
,z)dr + 2Φ,zΦ,zdz], (3)

whose integrability is granted by equation (2).

We consider a solution of (2) of the form

Φ = ψ + φ, (4)

where ψ corresponds to a black hole solution whereas that φ corresponds to a thin disk

solution. Now, by using (4) in (3), we obtain

Λ[Φ] = Λ[ψ] + Λ[φ] + 2Λ[ψ, φ], (5)

with

Λ[ψ, φ] =

∫
r[(ψ,rφ,r − ψ,zφ,z)dr + (ψ,rφ,z + ψ,zφ,z)dz], (6)

a term due to the nonlinear character of (3). For the black hole we take ψ and Λ[ψ] as

given by the Schwarszchild solution written as

ψ =
1

2
ln

[
ζ − 1

ζ + 1

]
, (7)

Λ[ψ] =
1

2
ln

[
ζ2 − 1

ζ2 − η2

]
, (8)

where the prolate spheroidal coordinates are defined by means of

r2 = m2(ζ2 − 1)(1 − η2), z = mζη (9)

and 1 ≤ ζ < ∞, −1 ≤ η ≤ 1.

Vol. 26, No. 2, 2008]



126 Guillermo A. González & Antonio C. Gutiérrez-Piñeres

Now, in order to obtain the thin disk solution, we introduce the oblate spheroidal coor-

dinates by means of

r2 = a2(x2 + 1)(1 − y2), z = axy, (10)

with the ranges taken as −∞ < x < ∞, 0 ≤ y ≤ 1. The disk is obtained by taking y = 0

and so is located at z = 0, r ≥ a. On crossing the disk, x changes sign but does not change

in absolute value, so that an even function of x is a continuous function everywhere but

has a discontinuous x derivative at the disk. By solving the Laplace equation (2), with the

proper boundary conditions corresponding to a thin disk with an inner edge, we obtain

for φ the simple expression

φ =
αy

a(x2 + y2)
. (11)

Then, after a simple integration of (3), we obtain for Λ[φ] the expression

Λ[φ] = − α2

4a2

[
1 − y2

(x2 + y2)4

]
A(x, y), (12)

where

A(x, y) = x4(9y2 − 1) + 2x2y2(y2 + 3) + y4(y2 − 1), (13)

with α an arbitrary constant and a the inner radius of the disk.

For the combined black hole and disk system, the integration of the mixed term Λ[φ, ψ]

in (5) can be done with aid of some very useful computational techniques introduced in

[11]. So, we obtain

Λ[φ, ψ] =
α

2

[
1 − y

x2 + y2

]
(Λ1 − Λ2) , (14)

where

Λ1 =
ay(1 − y)(1 + x2) − mx(1 + y)(ζ − 1)(1 − η)

[ax + m(1 − ζ − η)]2 + a2(1 − y)2
, (15)

Λ2 =
ay(1 − y)(1 + x2) − mx(1 + y)(ζ + 1)(1 − η)

[ax − m(1 + ζ − η)]2 + a2(1 − y)2
, (16)

that vanishes at the axis, when y = 1, and at the disk, when y = η = 0. More details

about the obtention of the solution will be presented in a subsequent paper.

3. The surface energy-momentum tensor

As was pointed out in the previous section, the thin disk solution φ is a continuous

function everywhere but with a discontinuous derivative at the disk. Therefore, the co-

rresponding surface energy-momentum tensor can be obtained by using the distributional

[Revista Integración

Counterrotating Dust Disk Around a Schwarzschild Black Hole 127

approach [12, 13, 14] or the junction conditions on the extrinsic curvature of thin shells

[15, 16, 17]. Accordingly, the surface energy-momentum tensor of the disk can be written

as [18]

Sab = ǫVaVb, (17)

where V a = e−Φδa
0
. The surface energy density is given by

ǫ =
4α

a2x3
exp

{
− α2

4a2x4

}
, (18)

for x ≥ 0, and will be always positive if we take α > 0. We then have a dust disk in

agreement with all the energy conditions. In Fig. 1 we plot the energy density for some

values of α.
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Figura 1. Energy density ǫ̃ = aǫ as a function of r̃ = r/a for α̃ = α/a = 1, ..., 9. The first curve
on left corresponds to α̃ = 1, whereas that the last curve on right corresponds to α̃ = 9.

The presence of the black hole modifies the energy-momentum tensor of the disk, in such

a way that arises a nonzero pressure at the azimuthal direction. Accordingly, the modified

energy-momentum tensor of the disk can be written as [18]

Sab = εVaVb + pXaXb, (19)
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The presence of the black hole modifies the energy-momentum tensor of the disk, in such

a way that arises a nonzero pressure at the azimuthal direction. Accordingly, the modified

energy-momentum tensor of the disk can be written as [18]

Sab = εVaVb + pXaXb, (19)
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where Xa = eΦδa
1
. The energy density, the azimuthal pressure and the mass density, are

given, respectively, by

ε =

[
ζ − 1

ζ + 1

]
ǫ, (20)

p =

[
1

ζ + 1

]
ǫ, (21)

σ =

[
ζ

ζ + 1

]
ǫ. (22)

where σ = ε + p. Now, as ǫ ≥ 0 and ζ ≥ 1, ε and σ will be positives everywhere.

Accordingly, the energy-momentum tensor will be in fully agreement with the weak and

strong energy conditions. On the other hand, in order to fulfill the dominant energy

condition, we require that p ≤ ε, which implies that ζ ≥ 2 and a ≥
√

3m. Furthermore,

we have that σ < ǫ, and thus the mass density of the disk when the black hole is present

is less than the mass density of the disk alone.

The energy-momentum tensor can also be interpreted as the superposition of two coun-

terrotating fluids. In order to do this, we cast Sab as [18]

Sab = ε+Ua
+U b

+ + ε−Ua
−U b

−, (23)

where

ε+ = ε− =

[
ζ − 2

ζ + 1

]
ǫ

2
, (24)

are the energy densities of the two counterrotating fluids. The counterrotating velocity

vectors are given by [18]

Ua
± =

V a ± UXa

√
1 − U2

, (25)

where

U2 =
p

ε
=

1

ζ − 1
≤ 1, (26)

is the counterrotating tangential velocity. So, we have two counterrotating dust fluids

with equal energy densities. Now, as ε± ≥ 0, the two counterrotating dust disks are in

fully agreement with all the energy conditions.

4. Concluding remarks

As we can see, the above solution presents some very interesting properties. First, the

associated material source presents a very reasonable behavior and its energy momentum
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tensor is in agreement with all the energy conditions. Furthermore, its relative simplicity

when expressed in terms of the spheroidal coordinates, prolates and oblates, making it

very easy to study different dynamical aspects, like the motion of particles inside and

outside the disk, the stability of the orbits and the possible existence of singularities.

Additionally, as we will show shortly in a subsequent paper, the above solution is the

first one of an infinite family of solutions, all of them having many remarkable properties

in common with the solution here presented.
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