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Abstract. The equation −∆u = χ{u>0}

(

− 1

uβ +λf(x, u)
)

in Ω with Dirichlet

boundary condition on ∂Ω has a maximal solution uλ ≥ 0 for every λ > 0.

For λ less than a constant λ∗ the solution vanishes inside the domain, and

for λ > λ∗ the solution is positive and stable. We obtain optimal regularity

of uλ even in the presence of the free boundary. If 0 < λ < λ∗ the solutions

of the singular parabolic equation ut − ∆u + 1

uβ = λf(u) quench in finite

time, and for λ > λ∗ the solutions are globally positively defined.
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Soluciones positivas y soluciones con frontera libre

para ecuaciones singulares

Resumen. La ecuación −∆u = χ{u>0}

(

− 1

uβ + λf(x, u)
)

en Ω con condición

de frontera de tipo Dirichlet en ∂Ω posee una solución uλ ≥ 0 para λ > 0.

Si λ es menor que una constante λ∗ la solución es nula dentro de una región

del dominio, y para λ > λ∗ la solución es positiva y estable. Obtenemos

la regularidad óptima de uλ aun con la frontera libre. Si 0 < λ < λ∗ las

soluciones de la ecuación parabólica singular ut−∆u+ 1

uβ = λf(u) son nulas

en tiempo finito, y para λ > λ∗ las soluciones son positivas y globalmente

definidas.
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86 Juan Dávila & Marcelo Montenegro

1. Introduction

We study the elliptic problem






−∆u = gλ(x, u) in Ω,
u ≥ 0 in Ω,
u = 0 on ∂Ω,

(1)

on a smooth, bounded domain Ω ⊂ R
n with a singular nonlinearity gλ given by

gλ(x, u) = χ{u>0}

(

− 1

uβ
+ λf(x, u)

)

. (2)

The constant β is positive, but we will mainly focus on the case 0 < β < 1,

λ > 0 is a parameter, χ{u>0} is the characteristic function of the set {u > 0}
and f : Ω × R → R is a function which is measurable in x, f ≥ 0, f 6≡ 0, and it

is nondecreasing, concave and sublinear in the second variable u uniformly in x,

that is,

lim
u→∞

f(x, u)

u
= 0 uniformly for x ∈ Ω.

We also assume that fu(x, ·) is continuous on (0,∞) for a.e. x ∈ Ω.

Equation (1) arises as limit of some equations modeling catalytic and enzymatic

reactions (see [1] and [10] for an account).

Definition 1.1.

(i) Throughout the paper we use the notation

δ(x) = dist(x, ∂Ω).

(ii) We say that u ∈ H1
0 (Ω), u ≥ 0 is a solution of (1) if

χ{u>0}

(

− 1

uβ
+ λf(x, u)

)

δ ∈ L1(Ω),

and
∫

Ω
∇u∇ϕ =

∫

{u>0}

(

− 1

uβ
+ λf(x, u)

)

ϕ ∀ϕ ∈ C∞0 (Ω).

By a positive classical solution we mean a function u ∈ C(Ω) ∩ C2(Ω) which is

positive in Ω and satisfies (1) in the usual sense.

This note is intended as a summary of results for the elliptic problem (1) as well

as its parabolic counterpart. Complete proofs appeared in [6] and [8]. Here we

have also included some remarks and detailed examples that are not in [6] and

[8]. Further questions are addressed in [7], [16] and [9].
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2. Existence of a maximal solution and its regularity

Theorem 2.1. Assume 0 < β < 1. Then there is a unique maximal solution uλ

to (1) for any λ > 0. Moreover, there exists λ∗ ∈ (0,∞) such that for λ > λ∗

the maximal solution uλ is positive in Ω, and belongs to C(Ω) ∩ C1,µ
loc (Ω) for all

0 < µ < 1. We also deduce that aδ ≤ uλ ≤ bδ in Ω, where a, b are positive

constants depending only on Ω, λ > 0 and f . If f ∈ C1(Ω× [0,∞)) then actually

uλ is a classical solution.

For 0 < λ ≤ λ∗ the maximal solution uλ has optimal regularity C(Ω) ∩ C1,γ
loc (Ω)

with γ = 1−β
1+β , and for 0 < λ < λ∗ the set {uλ = 0} has positive measure.

Particular cases of equation (1) were already considered in the literature. Díaz,

Morel and Oswald [11] and Choi, Lazer and McKenna [4] studied the problem

where f is bounded and depends only on x. They proved some results on existence,

uniqueness and stability of solutions. Shi and Yao [18] studied the equation with

gλ(x, u) = −K(x)/uβ+λup with 0 < p < 1, but only considered positive solutions.

The weight K could change sign, but when infΩ K > 0 they found results similar

to ours. Problems involving singular functions with different behavior from gλ

(more precisely, with the opposite sign in front of the singular term u−β) were

addressed by Crandall, Rabinowitz and Tartar [5], Mignot and Puel [15] and Gui

and Lin [13].

Phillips [17] established interior C
1, 1−β

1+β estimates for local minimiz-

ers of the energy functional
∫

1
2 |∇u|2 + (u+)1−β in the convex set

{u ∈ H1(Ω) : u = 1 on ∂Ω}. He also showed with an example that the ex-

ponent 1−β
1+β is the best possible. One of the ideas behind his proof is that

minimizers are preserved under a certain scaling. This is not exactly the case for

our problem (1), which can be viewed as a perturbation by f of the minimization

studied in [17]. Giaquinta and Giusti [12] provided a different proof for the result

of Phillips, which applies only to minimizers of more general functionals, not

necessarily scaling invariant.

We obtain the maximal solution uλ as the (decreasing) limit of the maximal

solutions uλ,ǫ to

{

−∆u +
u

(u + ǫ)1+β
= λf(x, u) in Ω,

u = 0 on ∂Ω,
(3)

as ǫ→ 0. This approach is inspired by the work of Díaz [10].
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First we show that uλ,ǫ converges pointwisely to the maximal subsolution u of the

following problem:
{

−∆u + χ{u>0}
1

uβ
= λf(x, u) in Ω,

u = 0 on ∂Ω.
(4)

Adapting the techniques of [17] we progressively regularize this maximal subso-

lution and obtain precise estimates of its derivatives. This approach allows us to

verify that the function u satisfies (1) and we deduce that uλ = u. A byproduct

of these estimates is the uniform convergence uλ,ǫ → u in Ω as ǫ → 0 (and not

only a.e.).

Some additional properties related to problem (1) are listed below.

Remark 2.2.

(A) Any solution u satisfies u−βχ{u>0} ∈ L1(Ω) (and not just u−βχ{u>0}δ ∈
L1(Ω)).

(B) Set u∗ = uλ∗ . Then u∗ is positive a.e. in Ω, although it can vanish at some

points in Ω (this makes sense because it is continuous). But u∗ > 0 in Ω,

when β satisfies an appropriate condition (see Theorem 3.2). The optimality

of this situation is discussed in Examples 4.4 and 4.5.

(C) u∗ is unique in the class of solutions which are positive a.e. in Ω. A similar

result by Martel [14] deals with convex nonlinearities.

(D) For β ≥ 1 and any λ ≥ 0 there is no solution of (1) which is positive a.e. in

Ω. This statement was already proved in less generality in [4].

(E) If f ≡ 0 there is no positive solution of (1).

3. Stability

The question of stability of the maximal solution uλ for λ ≥ λ∗ leads us to define,

for a function u ∈ L1
loc(Ω), u > 0 a.e. in Ω, the expression

Λ(u) = inf
ϕ∈C∞

0
(Ω)

∫

Ω
|∇ϕ|2 −

(

βu−β−1 + λfu(x, u)
)

ϕ2

∫

Ω
ϕ2

(5)

(for a general u > 0 a.e. Λ(u) makes sense, but can be −∞). This is the first

eigenvalue of the linearization of problem (1).
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Theorem 3.1. Assume 0 < β < 1. For λ > λ∗ the maximal solution uλ of (1) is

stable, that is, Λ(uλ) > 0.

For λ = λ∗ the solution u∗ is weakly stable, in the sense that Λ(u∗) ≥ 0. Con-

versely, if u is a solution of (1) for some λ ≥ λ∗ such that u is positive a.e. and

Λ(u) ≥ 0, then u coincides with the maximal solution (i.e., u = uλ).

The stability property allow us to obtain the positivity for u∗ under some restric-

tions on β.

Theorem 3.2. Let β ∈ (0, 1). If

3β + 1 + 2
√

β2 + β

β + 1
>

n

2
, (6)

then there exists c > 0 depending only on Ω, n and β such that u∗ ≥ cδ
2

1+β . In

particular, u∗ is positive in Ω (and not only a.e.).

4. Remarks and examples

In this section we discuss the optimality of our results, and give examples illus-

trating various situations.

We start with the following observation. The stability of the maximal solution

for λ ≥ λ∗ implies that the map λ 7→ uλ is continuous for λ ≥ λ∗, for simplicity,

considered as a map from (0,∞) ⊂ R to L1(Ω).

It is natural then to ask whether λ 7→ uλ is continuous for all λ > 0. We can easily

show that uλ is continuous from the right. This follows from the characterization

of uλ as the unique maximal subsolution to (4). On the other hand, if λk ր λ

with λk < λ, the increasing limit u = limλkրλ uλk
exists and is a subsolution of

(4). But, is it the maximal one? The answer is negative in general, and examples

can be easily constructed by applying the next proposition. For instance, take Ω

to be the interval (0, 1) and f(u) ≡ 1. From Proposition 4.1 one concludes that

uλ ≡ 0 for all 0 < λ < λ∗, but Theorem 3.2 says that u∗ > 0 in Ω. Hence the

branch λ 7→ uλ of maximal solutions has a discontinuity at λ∗. In addition, it is

easy to deduce that the branch λ 7→ uλ is nondecreasing.

Proposition 4.1. Assume Ω is an interval in R and that f depends only on u.

Then, for any λ > 0 the maximal solution is either identically zero or positive in

Ω.
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A similar statement can be found in [11], where they claim that if Ω is an interval

in R and f ≡ 1, any minimizer of the corresponding energy is either zero or

positive in Ω.

The previous proposition leads us to ask whether there are examples where the

maximal solution uλ is not identically zero for some λ < λ∗. The next construction

provides an example in one dimension.

Example 4.2. Here we consider f = χ(−A,A) for some suitable A > 0 to be chosen

later. First, fix η > 1 such that

η − η1−β

1− β
> 0,

and consider the ODE






−u′′ = −u−β + 1,
u(0) = η,
u′(0) = 0.

(7)

Standard results of ODE theory imply that u is defined on a maximal open interval,

say (−x0, x0) (at the end of this example we present a more explicit expression

of u in the case β = 1/2). The solution u is symmetric with respect to 0 and

is decreasing in the nonempty interval x ∈ (0, x0). Moreover, limxրx0
u(x) = 0.

Therefore there exists some A > 0 (unique) such that

η − η1−β

1− β
− u(A) = 0. (8)

We fix A > 0 in this fashion and let f = χ(−A,A). Note that the expression

1

2
(u′)2 − u1−β

1− β
+ u

is a constant in the interval (0, A), and therefore condition (8) is equivalent to

1

2
u′(A)2 =

u(A)1−β

1− β
.

Define

α =
2

1 + β
, c =

(

α(α − 1)
)−1/(1+β)

, B =
(1

c
u(A)

)1/α
+ A,

and extend u(x) by the formula

u(x) =















c(x + B)α, x ∈ (−B,−A),
solution of (7) , x ∈ [−A,A],
c(B − x)α, x ∈ (A,B),
0, x 6∈ (−B,B).
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If R > B, then u is a solution to

{

−u′′ = χ{u>0}(−u−β + f(x)) in (−R,R),

u(x) = 0 x = ±R.
(9)

So far, we have produced a nontrivial solution u corresponding to λ = 1.

We will see that the maximal solution ū to (9) vanishes in Ω=(−R,R) if R is large

enough. To accomplish this, let B=− inf { t ∈ (−R,−A) | ū > 0 on (t, 0) } > 0.

We are going to show that we have an a priori estimate for B independent of R,

more precisely, that

B ≤
[

1

c

(1− β

2
A2

)1/(1−β)
]1/α

+ A. (10)

Therefore, by choosing R larger than the right hand side of (10) we see that the

maximal solution has to vanish in Ω = (−R,R).

Now we derive (10). Integrate (9) over (−A, 0) to get

ū′(0) − ū′(−A) =

∫ A

0
ū′′ ≥ −A.

By symmetry, ū′(0) = 0, and therefore we get the estimate

ū′(−A) ≤ A. (11)

Observe that on (−B,−A), ū satisfies ū′′ = ū−β. Multiplying this equation by ū′

and integrating we find

1

2
(ū′)2 − ū1−β

1− β
= D on (−B,−A),

where D is a constant. Since ū(−B̄) = 0 we must have D ≥ 0, and this implies

that
ū1−β

1− β
≤ 1

2
(ū′)2 on (−B,−A). (12)

It is not difficult then to check that

ū(x) ≥ c(x + B)α, ∀x ∈ (−B,−A). (13)

In particular, combining (13) at x = −A, (12) and (11) we get

c(B −A)α ≤ ū(−A) ≤
(1− β

2
ū′(−A)2

)1/(1−β)
≤

(1− β

2
A2

)1/(1−β)
,
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92 Juan Dávila & Marcelo Montenegro

from which (10) follows.

When β = 1/2 we have a more explicit expression of the solution of problem (7).

Multiplying the equation by u′ and integrating one finds u′ = (4u1/2 − 2u + c)1/2,

where c > 0 is a constant depending only on β and η. Set h(s) = (4s1/2 − 2s +

c)−1/2 and integrate it from 0 to ξ. We obtain

H(ξ) =
√

c−
√

2 arcsin
(

√
2√

2 + c

)

−
√

c + 4
√

ξ − 2ξ −
√

2 arcsin
(

√
2(1−

√
ξ)√

2 + c

)

.

Our equation transforms into (H(u(x)))′ = −1 for x > 0. Integrating and apply-

ing the inverse function H−1 we obtain u(x) = H−1(H(η) − x), 0 < x < H(η).

We remark that when β = 1/2, it is proved in [4] that there is a unique corres-

pondence between η ≥ 4 and x0, where u(x0) = 0 and u solves (7). Thus

u(x) = H−1(H(η) − x) is the maximal solution in (−x0, x0) with f ≡ 1 and

it is stable. �XXX

It is natural to ask whether or not there is a characterization for the maximal

solution uλ in terms of stability when 0 < λ < λ∗, similarly to Theorem 3.1. The

situation in the range 0 < λ < λ∗ is more delicate, because the maximal solution

uλ vanishes in parts of the domain, and therefore a solution to (1) vanishes on a

set of positive measure. In the same spirit, whenever λ ≥ λ∗ one may ask whether

the characterization of the maximal solution given in Theorem 3.1 is valid for any

solution (not known a priori to be positive a.e.). One possible approach would be

to say that a solution u ∈ C(Ω) to (1) is weakly stable if

∫

ω

∂gλ

∂u
(x, u)ϕ2 ≤

∫

ω
|∇ϕ|2 ∀ϕ ∈ C∞0 (ω), (14)

where ω is the open set

ω = {x ∈ Ω | u(x) > 0}.

Assume now that u ∈ C(Ω) is a weakly stable solution of (1) in the sense of

relation (14). Is it true that it has to be the maximal solution? It turns out that

the answer is negative in general; the next example clarifies our ideas.

Example 4.3. Let Ω be the interval (−2, 2). We shall construct a function f =

f(x) and a continuous solution u to (1) in Ω with λ = 1, such that u > 0 in

(−2, 0)∪ (0, 2), but u(0) = 0. Moreover u satisfies the condition (14), but u is not

the maximal solution. Indeed, first note that λ∗ ≤ 1 because u > 0 a.e. If λ∗ = 1

then by Remark 2.2 (C) (uniqueness of u∗) we would infer that u∗ = u, which is
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not possible by Theorem 3.2. Hence λ∗ < 1, and then u cannot be the maximal

solution uλ, because u(0) = 0 and uλ ≥ aδ (with a > 0).

The details of the construction of f and u are as follows. Let wǫ : R → R
+ be a

family of smooth convex functions such that

wǫ(x) = |x| for |x| > ǫ,
0 < wǫ(x) ≤ ǫ for |x| ≤ ǫ,
|w′ǫ(x)| ≤ 1 for all x ∈ R.

Let

uǫ(x) = c(1 − wǫ)
α, x ∈ (−1, 1),

where (as before) α = 2
1+β and c > 0 is defined by c−β−1 = α(α − 1). A similar

computation to the one in the previous example shows that

−u′′ǫ +
1

uβ
ǫ

= fǫ in (−1, 1),

where

fǫ = c−β(1− wǫ)
−αβ

(

1− cβ+1α(α − 1)(w′ǫ)
2
)

+ cα(1 −wǫ)
α−1w′′ǫ . (15)

We claim that for ǫ > 0 sufficiently small uǫ is weakly stable in (−1, 1) in the

sense of relation (14), i.e.

β

∫ 1

−1
u−1−β

ǫ ϕ2 ≤
∫ 1

−1
ϕ′

2 ∀ϕ ∈ C∞0 (−1, 1). (16)

Indeed,

βu−1−β
ǫ = βc−β−1(1− wǫ)

−2 = βα(α − 1)(1 − wǫ)
−2 ≤ 1

4
(1− wǫ)

−2.

Therefore

β

∫ 1

−1
u−1−β

ǫ ϕ2 ≤ 1

4

∫ 1

−1

ϕ2

(1−wǫ)2

=
1

4

∫ 1

−1

ϕ2

(1− |x|)2 +
1

4

∫ ǫ

−ǫ

(

(1− wǫ)
−2 − (1− |x|)−2

)

ϕ2

=
1

4

∫ 1

−1

ϕ2

(1− |x|)2 +
1

4

∫ ǫ

−ǫ

(1− wǫ)(1− |x|)
(1−wǫ)2(1− |x|)2

(wǫ − |x|)ϕ2

≤ 1

4

∫ 1

−1

ϕ2

(1− |x|)2 + Cǫ

∫ 1

−1
ϕ2.
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We use now the following improvement of Hardy’s inequality (see Brezis and Mar-

cus [3]): let B be the unit ball in R
n, n ≥ 1 and δ(x) = dist(x, ∂B) = 1 − |x|.

Then

inf
ϕ∈C∞

0
(B)

∫

B |∇ϕ|2 − 1
4

∫

B ϕ2/δ2

∫

B ϕ2
> 0. (17)

We conclude that for ǫ small enough (16) holds. From now on we fix this ǫ > 0.

Observe that by Theorems 2.1 and 3.1, we have λ∗ = 1 and u∗ = uǫ for the problem






−u′′ǫ = χ{uǫ>0}

(

− 1

uβ
ǫ

+ λfǫ(x)
)

in (−1, 1),

uǫ = 0 at x = ±1.

Define

u(x) =

{

uǫ(x− 1) for x ∈ (0, 2),
uǫ(x + 1) for x ∈ (−2, 0),

and

f(x) =

{

fǫ(x− 1) for x ∈ (0, 2),
fǫ(x + 1) for x ∈ (−2, 0).

Then u is continuous (even C1,γ((−2, 2)), γ = 1−β
1+β ) and it is a solution of

{

−u′′ = χ{u>0}

(

− 1

uβ
+ λf(x)

)

in (−2, 2),

u = 0 at x = ±2,

and satisfies the condition (14). �XXX

Theorem 3.2 reveals to be somewhat optimal regarding the behavior of u∗ near

the boundary in view of the example that follows.

Example 4.4. There exists a function f = f(x) such that problem











−∆u +
1

uβ
= f(x) in A := {r : R < r < 1},

u = 0 on ∂B1,
u = c(1−R)α on ∂BR,

(18)

has a solution u ∼ δ
2

1+β near ∂B1.

In fact, given 0 < β < 1, let α = 2
1+β and choose c > 0 such that c−β−1 = α(α−1).

The function u = c(1− r)α, r = |x|, is a solution of equation (18) with

f(x) = f(r) = cα(1− r)α−1 > 0.
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We claim that the first eigenvalue of the linearized operator is positive, that is,

inf
ϕ∈C∞

0
(A)

∫

A |∇ϕ|2 − βu−β−1ϕ2

∫

A ϕ2
> 0. (19)

Indeed

β

∫

A
u−1−βϕ2 = β

∫

A
(c(1 − r)α)−1−βϕ2

= βc−1−β

∫

A
(1− r)−α(−1−β)ϕ2

= βα(α − 1)

∫

A
(1− r)−2ϕ2.

Observe that βα(α − 1) ≤ 1
4 (with equality only if α = 3/2 i.e. β = 1/3). By

inequality (17) we deduce that (19) holds.

It is worth to mention that the methods applied for (1) can be used for (18). This

indicates that the extremal function u∗ can not satisfy an estimate of the form

u∗ ≥ cδγ

for an exponent γ smaller than 2
1+β . In this sense, the conclusion of Theorem 3.2

is optimal. �XXX

The next example shows that in Theorem 3.2, condition (6) on β and n is almost

optimal.

Example 4.5. Let B be the unit ball of R
n. If

3β + 1 + 2
√

β2 + β

β + 1
<

n

2
, (20)

then there exists f = f(x) ∈ C∞(B) ∩ L∞(B) with f ≥ 0 such that the solution

u∗ = uλ∗ satisfies u∗ > 0 in B \{0} and u∗(x) = c|x|α for x near the origin, where

α = 2
1+β and c > 0.

In what follows we describe the explicit construction. Let v(x) = c|x|α where the

constant c > 0 is chosen so that α(α + n − 2) = c−1−β. Then it is easy to verify

that v satisfies

∆v =
1

vβ
in R

n.
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Let 0 < R < 1 to be fixed later and let h(r) be a smooth function defined for

r ∈ [0, 1] such that

h(r) = 0 ∀r ∈ [0, R],
0 ≤ h(r) ≤ c ∀r ∈ (R, 1],
h(1) = c,
h′(r) ≥ 0, h′′(r) ≥ 0 ∀r ∈ [0, 1].

Then ∆h = h′′ + n−1
r h′ ≥ 0 in R

n. Set u(x) = v(x)− h(|x|). We find

−∆u = −v−β + ∆h

= −u−β + f(x),

where

f(x) = u−β − v−β + ∆h ≥ 0.

Similarly as done before, we check now that u is weakly stable if R and h are

chosen appropriately. Let ϕ ∈ C∞0 (B) and consider

I = β

∫

B
u−1−βϕ2

= βα(α + n− 2)

∫

B
r−2ϕ2 + β

∫

B

(

(crα − h)−1−β − (crα)−1−β
)

ϕ2

= I1 + I2.

(21)

We estimate I1 first. A computation shows that condition (20) is equivalent to

βα(α + n− 2) <
(n− 2)2

4
.

Thus by Hardy’s inequality with the weight r−2,

I1 ≤ (1− ǫ)

∫

B
|∇ϕ|2

for some ǫ > 0 depending only on β and n. To estimate I2 observe that since

h ≡ 0 on [0, R] we have

I2 ≤ β

∫

B\BR

(crα − h)−1−βϕ2. (22)

We can choose h in such a way that crα−h≥ 1
C δ, where δ(x)=dist(x, ∂B)=1 − |x|,

and the constant C is independent of R. In this way (crα − h)−1−β ≤ Cδ−1−β,
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and therefore, using Hardy’s inequality with weight δ−2, we get

I2 ≤ C

∫

B\BR

δ−1−βϕ2

≤ C
(

∫

B
δ−2ϕ2

)(1+β)/2(
∫

B\BR

ϕ2
)(1−β)/2

≤ ǫ

2

∫

B
|∇ϕ|2 + C(ǫ)

∫

B\BR

ϕ2.

But
∫

B\BR

ϕ2 ≤ C(1−R)2
∫

B
|∇ϕ|2 ∀ϕ ∈ C∞0 (B),

where C is independent of ϕ. Hence, by choosing R < 1 with 1−R small enough

we obtain

I2 ≤ ǫ

∫

B
|∇ϕ|2. (23)

Combining (21), (22) and (23) we conclude that

β

∫

B
u−1−βϕ2 ≤

∫

B
|∇ϕ|2 ∀ϕ ∈ C∞0 (B).

By Theorem 3.1 u is the maximal solution on B with data f . Moreover, λ∗ = 1

in this situation. �XXX

5. The parabolic problem

We are also interested in studying the singular parabolic problem,







ut −∆u = gλ(x, u) in Ω× (0,∞),
u = 0 on ∂Ω× (0,∞),

u(0) = u0 in Ω.
(24)

The quantity λ∗ given in Theorem 2.1 is a critical parameter for the elliptic

problem (1), but we will see that it also serves as a borderline for existence

of global positive solutions of (24) with a suitable fixed initial data u0. More

precisely, global positive solutions exist for λ ≥ λ∗ (see Theorem 5.5). But for

0 < λ < λ∗ the solutions of (24) vanish in finite time (and hence, the term

u−β blows up in finite time), in a sense which we make precise later on. This

kind of interplay between stationary and evolution problem was undertaken in

Brezis et al. [2] for gλ(x, u) = λf(u) with f positive, increasing and convex. They

established the existence of globally defined solutions and solutions blowing-up
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in finite time in terms of a similar critical constant for the corresponding elliptic

problem.

For simplicity, we will consider in this section the function f depending only on

u. We are still assuming that f ≥ 0, f 6≡ 0 and f is nondecreasing, concave and

sublinear.

We begin stating the existence of a local solution in time.

Theorem 5.1. Let 0 < β < 1. Then the parabolic problem (24) has a local

solution defined in an interval (0, T ), provided that the initial data u0 is bounded

and u0 ≥ cδα for some c > 0 and 1 < α < 2
1+β . Moreover, u belongs to L∞(Ω×

(0, T )) ∩C1(Ω× (0, T )) and satisfies u ≥ c′δα in (0, T ) for some c′ > 0 (T and c′

depend on c and α).

The locally defined solution is unique in an adequate class.

Theorem 5.2. Suppose β ∈ (0, 1) and assume u0 ∈ L∞(Ω) and u0 ≥ cδα for some

c > 0 and 1 < α < 2
1+β . Then the local solution u is unique in the set

M =
{

u ∈ L∞(Ω × (0, T )) : ∀S ∈ (0, T ) there exists c > 0

such that u(t) ≥ cδα for t ∈ (0, S)
}

.

A function u ∈M is regarded as a solution to (24) if

u(t) = T (t)u0 +

∫ t

0
T (t− s)gλ(u(s)) ds, (25)

where T (t) is the heat semigroup in Ω with zero Dirichlet boundary condition. Note

that since u ≥ cδα, we obtain u−β ≤ cδ−αβ , but αβ < 2β
1+β < 1. In particular,

u−β ∈ L∞((0, T ), Lp(Ω)) for some p > 1, hence (25)) makes sense in Lp(Ω).

The above result is an immediate consequence of the following comparison prin-

ciple.

Lemma 5.3. Let β ∈ (0, 1) and let u, v ∈ L∞(Ω × (0, T )) be a subsolution

and a supersolution of (24), respectively, on (0, T ) in the sense of the semigroup

relation (25) (in particular we assume that gλ(u(t)), gλ(v(t)) ∈ L1(Ω × (0, T ))).

Furthermore, assume that there exists c > 0 and 1 < α < 2
1+β such that the

supersolution v satisfies

v(t) ≥ cδα for t ∈ (0, T ).

Then

u(t) ≤ v(t) for t ∈ (0, T ).
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The main ingredient in the proof of Lemma 5.3 is a version of the smoothing effect

for the heat semigroup T (t) with weights involving powers of δ.

Proposition 5.4. For any q > 0 there is a constant C = C(q,Ω) > 0 such that

‖T (t)
(

δ−qϕ
)

‖L2(Ω) ≤ Ct−q/2‖ϕ‖L2(Ω) ∀ϕ ∈ L2(Ω).

The local solution of Theorem 5.1 is globally defined if the initial data is greater

than a solution of (1).

Theorem 5.5. Assume that 0 < β < 1 and that the elliptic problem (1) has a

solution w which is positive a.e. Then, for any initial data u0 ∈ L∞(Ω) satisfying

u0 ≥ w, u0 ≥ cδα for some c > 0 and 1 < α < 2
1+β , the solution of the parabolic

problem (24) is global, in the sense that

sup
{

T > 0 | ∃c > 0 u(t) ≥ cδα ∀t ∈ (0, T )
}

= ∞.

We present next a converse result to the previous theorem.

Theorem 5.6. Assume that 0 < β < 1 and that the parabolic problem (24) has

a positive global classical solution. Then the elliptic problem (1) has a solution

which is positive a.e.

Theorem 5.5 is sharp with respect to β.

Corollary 5.7. If β ≥ 1 there is no positive global classical solution of (24).

Acknowledgments

The authors thank the organizers of the XX COMCA held in the Mathematics

Department of the Universidad de Tarapacá, Arica, Chile. M. Montenegro has

been supported by CNPQ and FAPESP.

References

[1] Aris R., The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts,
Clarendon Press, Oxford University press, England, 1975.

[2] Brezis H., Cazenave T., Martel Y., and Ramiandrisoa A., “Blow-up for ut − ∆u = g(u)
revisited”, Adv. Differential Equations, 1 (1996), 73–90.

[3] Brezis H. and Marcus M., “Hardy’s inequalities revisited”, Ann. Scuola Norm. Sup. Pisa

Cl. Sci., 25 (1998), 217–237.

Vol. 28, No. 2, 2010]



100 Juan Dávila & Marcelo Montenegro

[4] Choi Y.S., Lazer A.C., and McKenna P.J., “Some remarks on a singular elliptic boundary
value problem”, Nonlinear Anal., 32 (1998), 305–314.

[5] Crandall M.G., Rabinowitz P.H and Tartar L., “On a Dirichlet problem with a singular
nonlinearity”, Comm. Partial Differential Equations, 2 (1977), 193–222.

[6] Dávila J. and Montenegro M., “Radial solutions of an elliptic equation with singular non-
linearity”, J. Math. Anal. Appl., 352 (2009), 360–379.

[7] Dávila J., “Global regularity for a singular equation and local H1 minimizers of a nondif-
ferentiable functional”, Commun. Contemp. Math., 6 (2004), 165–193.

[8] Dávila J. and Montenegro M., “Existence and asymptotic behavior for a singular parabolic
equation”, Trans. Amer. Math. Soc., 357 (2005), 1801–1828.

[9] Dávila J. and Montenegro M., “Concentration for an elliptic equation with singular non-
linearity”, to appear in J. Math. Pures Appl., (2011), doi:10.1016/j.matpur.2011.02.001

[10] Díaz J.I., Nonlinear partial differential equations and free boundaries. Vol. I. Elliptic
equations. Research Notes in Mathematics, 106. Pitman (Advanced Publishing Program),
Boston, MA, 1985.

[11] Díaz J.I., Morel J.M., and Oswald L., “An elliptic equation with singular nonlinearity”,
Comm. Partial Differential Equations, 12 (1987), 1333–1344.

[12] Giaquinta M. and Giusti E., “Sharp estimates for the derivatives of local minima of varia-
tional integrals”, Boll. Un. Mat. Ital. A, 3 (1984), 239–248.

[13] Gui C. and Lin F.H., “Regularity of an elliptic problem with a singular nonlinearity”, Proc.

Roy. Soc. Edinburgh Sect. A, 123 (1993), 1021–1029.

[14] Martel Y., “Uniqueness of weak extremal solutions of nonlinear elliptic problems”, Houston

J. Math., 23 (1997), 161–168.

[15] Mignot F. and Puel J.P., “Sur une classe de problèmes non linéaires avec non linéairité
positive, croissante, convexe”, Comm. Partial Differential Equations, 5 (1980), 791–836.

[16] Montenegro M. and Queiroz O., “Existence and regularity to an elliptic equation with
logarithmic nonlinearity”, J. Differential Equations, 246 (2009), 482–511.

[17] Phillips D., “A minimization problem and the regularity of solutions in the presence of a
free boundary”, Indiana Univ. Math. J., 32 (1983), 1–17.

[18] Shi J. and Yao M., “On a singular nonlinear semilinear elliptic problem”, Proc. Roy. Soc.

Edinburgh Sect. A, 128 (1998), 1389–1401.

[Revista Integración


