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Abstract

In this paper a new algorithm to compute the euclidean distance from
a point to a conic is presented. This algorithm provides good approxi-
mations for the euclidean distance, even when the point is not very close
to the given conic. Furthermore, the approximations may be improved
iteratively to attain a prescribed accuracy. Unlike the most commonly
known methods to approximate the euclidean distance, in the proposed
method the coordinates of the footpoint for the orthogonal projection of
the point on the conic are computed. This particular feature permits to
obtain a noteworthy accuracy without increasing too much the compu-
tational cost.

A procedure to fit a conic section to a scattered set of points inside a
triangle is discussed. The procedure is based on minimizing the sum of
squared orthogonal distance of data points from the conic. The approx-
imate orthogonal distances are computed using the previous algorithm.

Keywords. Conics, approximate distance, implicit conic section fitting,
least squares. MSC: 65Y25, 51N35.

1. Introduction

At a first glance, it seems very unlikely to be able to say something new
concerning such an extensively treated subject
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as the computation of the euclidean distance from a point to a conic (see
[Book], [Pav], [Samp] and [Tau2]). Most of the existing methods to deal with
this problem avoid the computation of the coordinates of the footpoint of the
orthogonal projection of the point on the conic, therefore there is no control
on the accuracy of the obtained approximate distance. Moreover, instead of
the exact euclidean distance a “suitable” approximation is computed, which
usually happens to be a good approximation to the euclidean distance only if
the point is very close to the conic.

In this paper a new algorithm to compute the euclidean distance from a point
to a conic is presented. This algorithm provides good "approximations for
the euclidean distance, even when the point is not very close to the given
conic. Furthermore, the approximations may be improved iteratively to attain
a prescribed accuracy without increasing too much the computational cost. A
procedure to fit a conic section to a scattered set of points inside a triangle is
discussed, minimizing the sum of squared orthogonal distance of data points
from the conic. The approximate orthogonal distances are computed using
the previous algorithm.

Let’s first study the problem of computing the euclidean distance from a point
q = (x9,y0) on the plane to an arbitrary conic C with implicit equation

f(z,y) = a20? + a117y + agey® + a10x + agy + ago = 0. (1)

By definition, the euclidean distance from ¢ to C, d(q,C), is given by

d(q,C) = min{|lq — p| : f(p) = 0}. (2)

Thus, to compute the euclidean distance we have to solve a constrained non-
linear minimization problem. More geometrically, the euclidean distance from
q to C is attained at a point p on C such that the normal of C at p passes
through ¢q. Hence the coordinates (z,y) of p and the euclidean distance d, may
be computed as the solution of the following nonlinear polynomial system of
equations,

fi(z,y,d) = (z —20)? + (y —y0)? —d? =0,
f2($1yrd’) AT f(.r,y) =0 88 (3)
flewd) = L )(e = an) ~ SLE - w) =0.

The efficient numerical solution of nonlinear system (3) requires a good initial
approximation of the roots, i.e. of the coordinates of footpoint p and of the
euclidean distance d. Up to the moment, general methods for estimating initial
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approximations for z,y and d are not reported in the literature. Therefore,
some other approaches have been studied.

Using elimination theory Kriegman and Ponce [Krie] and Ponce et al [Pon]
eliminate the variables z and y (whose initial approximations are more dif-
ficult to estimate) and obtain a single polynomial equation on d, ®(d) = 0,
whose minimum positive root d*, is the euclidean distance from g to C. Un-
fortunately, the coefficients of ® (d) are complicated polynomial expressions
in the coefficients of f and in the coordinates of the external point q. Hence,
its computation may be expensive and the problem of finding the roots of @,
using floating point arithmetic, may be numerically unstable.

To overcome these difficulties, other approximations of the euclidean distance
have been considered. The simplest is the algebraic distance, d, (¢, C) given
by

da (q,C) = | f(z0,70)|. (4)
To compute the algebraic distance is very cheap , but it is a poor approxima-
tion of the euclidean distance. In [Pav] Pavlidis proposes other approximations
to the euclidean distance from a point to a conic, but they depend on the type

of the conic and only when the points are located in some regions the approx-
imations are good.

Taubin presents in [Tau2] several approximations of the euclidean distance
from a point to an implicit curve f(z,y) = 0, if the function f(z,y) has
continuous partial derivatives up to order k+1 in a neighborhood of ¢. Taubin’s
approximate distance of order k, i, is a lower bound for the euclidean distance
from g, to the set of zeros of its Taylor polynomial of order k& around ¢

k
T*fo(x,y) = > fis(z —z0)'(y — wo)?,
h=01i+j=h
where s
1 oI
fij = zfjl OriOy saas f(zow0):

More precisely, 0y, is the unique positive root of the univariate polynomial

k
Fy (8) = |Fol = Y IFull 6",
h=1

where F}, is the vector of the normalized coefficients

{%/Ga:i+j=h}.
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In particular, Taubin’s approximate distance of first order, 61, is the root of
the linear polynomial

= |Fo| + |1 Al - 6,
where
Fy = foo = f(z0,0), (5)
Fi = (fo1, fio) = (%fﬂ?e,yo)a %(%:yo)) A (6)
Thus,
| Fo| | f(z0,y0)|

b= (7

1Bl ™ Vo, w0l

Analogously, Taubin’s approximate distance of second order, 42, is the unique
positive root of the quadratic polynomial

F} (8) = |Fol ~ |F1l| 6 = || Fal| 62,
where Fy and F) are given by (5 ) and ( 6) and

1 8%

0% f
Fy = (fo2, f11/2, foo) = 5;5(18013}0) 5 520y

= (%0, yo) 3y2 (ﬂ?oa Jo)) (8)

Hence,

—IE + I FP + 4| Fol | Bl

= 20F] ' ©

Since T2 f,(z,y) = f(x,y) when f is a polynomial of degree 2, 8, is a lower
bound for the euclidean distance from ¢ to the conic. Moreover in this case
b = 6o for k > 2.

In the next section we introduce a new algorithm for computing the euclidean
distance from a point g to a conic: the normal distance. While the previous
algorithms only compute an approximation of the euclidean distance d , the
normal distance provides us with the coordinates of the footpoint p on the
conic. On the other hand, since the normal distance is obtained by means
of an iterative convergent process from a good initial guess, we may compute
the euclidean distance with a previously fixed precision. A direct application
of the normal distance is presented in section 3: given a set of points inside
a triangle, we fit it by means of a conic section, minimizing the mean square
normal distance.
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2. Normal distance from a point to a conic

2.1. Computing the normal distance

Let C = {(z,y) : f(x,y) =0} where f is given by (1) an arbitrary conic and
g = (z0,%0) a point not on C. Then Cy = {(z,y) : f(z,y) = f(zo,y0)} is also
a conic and it is the level curve of the surface z = f(z,y) which passes through
the point ¢q. Let us consider a parametric equation n*= (x1(t),y1(t)) of the
normal line to C, at g,

2 — 2 @0:30) ,

#1(0) oz
yi(t) = yo________af(g;,yo) t .

From (1) we compute the derivatives and substituing in the above equations
we obtain

(10)
(11)

x1(t) = xo — t(2a20%0 + an1yo + aio),
Yy1(t) = yo — t(an1zo + 2a02y0 + ao1) .

If ¢ is close to the conic, the "shape” of C and C, are very similar (see Fig.
2.1.). Thus, if n intersects the conic C at a point p, the distance between g
and p is a good approximation of the euclidean distance from q to C.

10 -
n f'/
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Figure 2.1: Conic C, external point ¢ and level curve Cj,.
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To compute the intersection between n and C, we substitute z = z1(¢) and
y =91(f) in (1) . Hence, the intersection is attained at the minimum positive
root t* of the equation

fl@1(t),31(2)) = 0.

After some simplifications using MAPLEV, we obtain a quadratic equation
in t whose coefficients depend on the coefficients of f , the coordinates of the
external point ¢ and on s, i.e., 5

f(z1(t),m(t) =at* + bt +c, (12)

where the expressions for a,b and c¢ are given in the appendix A. If the dis-
criminant D = b? — 4ac of the quadratic equation is non negative then

= —2c
b+ sign(b)v/D

Hence, _
p= (z1(t"),n(t")),

and the normal distance from ¢ to C is given by

dn(g,C) = /(0 — 21(t9)2 + (o — 11 (%)) (13)

Depending on the position of ¢ it is possible that D < 0. (see Fig. 2.1.). Then
the normal line to the level curve C, doesn’t intersect the conic C. In this
case, we look for a new point ¢; close to ¢ and in the positive region of D. To
obtain q; we compute an extremum of the function f along the normal line to
Cy at g, i.e. we seek a minimum of the function (12). Since f(z1(t),y1(t)) is
a quadratic polynomial, it has an unique extremum t,,, which is the solution
of the linear equation
df@(tn®) _,
dt

From (12) we get immediately t,, = —b/a., thus g1 = (21(top), ¥1(tep))-

This procedure lead us to a point on the conic (i.e. to a point p such that
f(p) = 0). Then, after a finite number of steps (usually 1 or 2 steps) q; is
in the region where D is positive. Hence, using the previous method we may

compute the intersection p between the normal line to the level curve Cq at

g1 and the conic C. In the next sections we call p the normal projection of g
on C.
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Figure 2.2: Computation of normal distance from ¢ to C.

2.2. Correcting the normal distance

Since the previous algorithm give us not only an approximate value of the
euclidean distance, but also the coordinates of the normal projection, we can
correct the value of the distance until a previously fixed precision is attained.
In fact, using dn and p = (z,,yp) as (good) initial guests we may solve the
nonlinear system (3) by Newton’s method, to correct the value of the eu-
clidean distance and the position of the footpoint . More precisely, the new

approximation v/ = (mf,,yg,, dg‘;)t after the jth-step is given by
o =1 A,
where Av? is the solution of the linear system
JW) AW = —F(v%),
F = (f1, fa, f3) according with (3) and J is the Jacobian matrix of F.

2.3. Normal distance versus other approximations of the eu-
clidean distance

Now we show some numerical experiments to compare the accuracy of some
distances as approximations of the euclidean distance from a point to a conic.
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In table 1 we display the conics

parabola: 22 — 2z —y+1=0;

ellipse: 22 + zy + 3 — 4z = 0;

hyperbola:—z2 — zy + y2 — 4z = 0,

and the points whose euclidean distance from the conics were computed. Be-
sides, we show the exact euclidean distance and the relative errors associated
to the approximations obtained using the algebraic distance (4), Taubin’s

distances(7), (9) and the normal distance (13). The normal distance was
computed without any Newton correction.

Conics Points Euc. | ealg ed; eds en
parabola (—0.41524, 8.65543) 1.5 3.4350 | 0.4774 | 0.2136 | 0.0175
ellipse (4.556152, —1.61575) | 0.5 3.4340 0.1858 | 0.0872 | 0.0058
hyperbola (—7.73701,0.95531) 1.5 12.7396 | 0.0374 | 0.2136 | 0.0274

In the next experiment we consider a set of points inside the "canonical”
triangle T whose vertexes are bp = (0,0),b; = (0,1) and b3 = (1,0). A conic
section C passing through by and by and tangent to the sides of T has the
following implicit equation

f.y) = ¥ —dwlz(l-z—-y)=0, (14)

where wy > 01is a free parameter. It can be also written in the Bernstein-Bezier
parametric representation as ¢(t) ,0 <t <1,

() = boB3(t) + wib1 B (t) + ba B3 (%)
= TR + wiBX®) + BRY)

(15)

where B2(t) = (2)t{(1 — )%~ i = 0,1,2 are the Bernstein’s polynomials of
degree 2. In this representation the point S = ¢(1/2) is called the shoulder
point of the conic section and holds [Far]

w; = lm =51
15 =5]

with by, the middle point of the segment bybs. Hence, when C is a parabola
(wy = 1) the shoulder point is the middle point of b,b;. An ellipse corresponds
tow; in (0,1) and a hyperbola to w; in (1, 00). Given w; we generate 50 points
pi = (4,¥;) on the corresponding conic and compute the unit normal n; at p;
and the points
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g =piten,
g =pi—€en,

for given €.

We choose then those g;i = 1,...,m (m < 100) which are inside of the triangle
T and compute

dfz = da(@'iac)a
dry = dmi(g,C),
dra(g:, C),
d:l = da(g:;,C),

E%,
I

where d,,dr1,dry and d,, represent the algebraic, Taubin’s and normal dis-
tances given by (4),(7), (9) and (13) respectively.

If & is small then the euclidean distance from all the points g; to the conic
section is €. Thus we may compute the relative error associated with each
approximation to the euclidean distance and finally a global measure of the
relative error given respectively by
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Table 2 shows the results of the experiments for e = 0.01,0.05, and 0.1 and
different values of w; that correspond to ellipses, and hyperbolas. The last
column is the number of points at which Newton corrections were made in the
computation of the normal distance. The best performance is indicated by (*)
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£ w1 ealg ed; eds e, m Nec
0.2 0.7472 0.0246 0.0321 +(0.0004 72 0

0.0 0.6 0.6237 0.0095 0.0070 +0.00003 57 0
sl 5 107.35 0.0095 0.0083 #0.0001 51 0

10 431.59 0.0107 0.0114 x0.00005 51 0

0.2 0.7534 0.1999 0.1272 *(.0080 46 0

0.0 0.6 0.4683 0.0503 0.0330 %0.0011 41 0
hR 5 94.78 0.0529 0.0376 %0.0017 39 .|
10 381.08 0.0640 0.0431 *0.0015 39 1

0.2 0.6822 0.3445 0.1636 x0.0182 17 3

01 0.6 0.3042 0.1063 0.0695 +(.0060 33 0
' 5 82.71 0.1222 0.0753 x0.0107 32 2

10 342.98 0.1246 0.0622 x0.0085 31 1

From Tables 1 and 2 we conclude that the normal distance is the best approx-
imation to the euclidean distance from a point to a conic. Nevertheless, its
computation is more expensive than the remaining approximations.

3. Least squares fitting with conics sections

3.1. The problem and previous works

As geometric models or shape descriptors, conics are used in interactive graph-
ics systems for the automated construction of object models and for building
intermediate representations from data during recognition process [Taul]. The
fitting of conic sections have been also used in the approximation of digitized
drawing for data compaction and pattern recognition, and in other applica-
tions that involve alphanumeric characters [Pav].

Several methods are available for fitting data by arcs of conics [Pav], [Alb],
[Book], [Samp], [Gan]. Given a finite set of data points ¢; = (z;,%:) i =1,..,n
the classical fitting approach consists on determining a conic C that minimizes
the mean square distance

13 @0, (16)
i=1

where d(g;, C) from p; to C. Since it is not possible to give a closed expression
for the euclidean distance from a point to a conic, there are three classes of
solutions for problem (16) . The first one uses the parametric representations
for conics, consequently one parameter is introduced for each point. Thus, the
dimension of the nonlinear least squares problem grows with the number of
data points. Some previous works using this approach are [Spal, [Gan]. The
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second type of solutions to problem (16) is based on minimizing the mean
square error

Ly P (an
=1

with different constraints. To obtain a nontrivial solution of (17) a constraint
on the coefficients of conics has to be imposed, since the implicit equation
of a conic is homogeneous Some authors have considered linear constraints
turning, the minimization of (17) into a linear regression problem, whereas
others have proposed quadratic restrictions converting (17) into an eigenvalue
problem. Moreover, depending on the constraints, the fitting methods may
possess special properties , for instance Taubin’s generalized eigenvector fit
[Tau3] and the Bookstein algorithm [Book|are invariant under affine transfor-
mations, while some other methods include straight lines as possible solutions
(Gna),[Pra], [Pat].

The third type of fitting technique consists on approximating the euclidean
distance from a point to a conic through a closed formula [Tau2] or an iterative
method [Pon]. In the next section we present an algorithm of this type to fit
a conic section to a set of points inside a triangle.

3.2. Normal distance fitting

Given a set of points ¢; = (xi,%;) ¢ = 1,..,n inside a triangle 7" whose vertexes
are the points b,,b1,by we want to fit it by means of a conic section C. This
is a very important stage when we are fitting data with conic splines. Some
previous related works on conic splines are [Baj],[Book], [Pra], [Pav], [Samp].

To construct a C! conic spline, each conic section must satisfy the following
conditions: C' must pass through the vertexes by and by of T and its tangents
in these points must be the lines defined by bgb; and b1by respectively. When

data points are in a triangle these assumptions are natural conditions of the
problem (see Fig. 3.2.).

Under these conditions there is only one free parameter in the conic [Hoff]
which is called w;. For instance if C is defined in the canonical triangle then
its implicit equation is given by (14).

On the other hand, for an arbitrary triangle T, the conic section C satisfies
the equation (14) in baricentric coordinates , i.e. if (u,v,1 —u — v) are the
baricentric coordinates with respect to b, by, by of a point (z,y) on the conic
then,

C:f(xvy)=’U2—4w%u(l—u—v)=0,

55




56

VICTORIA HERNANDEZ MADEROS
: +
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Figure 3.3: Points inside a triangle and fitting conic.
where
r bix boy bog = bz
Y bly b?y bOy Yy bEy
1. a3 1 1 1 1
U =- d ,‘U — d »

and by = (bog, boy), b1 = (bie, b1y), b2 = (bor, boy) and d is the determinant of
the matrix

bCl.'c bl:i: b?w

G W IR
associated with the triangle T

The least squares problem in the normal distance is given by
1S
ain -3 d(6.0), (18

where dj,(g;, C) is the normal distance from ¢; to C.
Since the normal distance from a point to a conic is a nonlinear function of the
parameter wy, the least squares fitting problem (18) is a constrained (w; > 0)
nonlinear minimization problem. To compute the solution of this problem
it is important to scale the parameter w;. In fact, observe that w; in (0,1]
corresponds to a conic section whose shoulder point

bg + 2w1by + ba
2(1 +w1)

G
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is located in-the line through (b1 +by,)/2 and by,,while wy in [1, 00) represents a
conic section whose shoulder point is in the line that passes through (b1 +by,)/2
and b;. Thus, to reduce the parameter interval to (0,1] we compute the
maximum value w; max Of the parameters w? of conic sections passing through
gisp=21, n

Wmax = mlaxnw1 ’

where ;
1

Vg

w] = —= e
24/uh(1 — ul — )

and u}, v} are the baricentric coordinates of the point ¢

To solve the least squares problem (18) in the new parameter wi = ;21— we
use the MATLAB function f min . Additionally, we made up a MATLAB pro-
gram to compute fitting conics using different approximations of the euclidean
distance.

3.3. Numerical examples

In this section we show some examples to compare the quality of the fitting
curves obtained minimizing different approximations of the mean square dis-
tance. In each experiment, data points were generated by a procedure similar
to the described in section 2.3. Given a curve C fitting in some distance the
data points g; © = 1,..,n, we compute the residual

L Zdz(qi&c) ?
i=1

where d(g;, C) is the euclidean distance from ¢; to C. To compute the euclidean
distance from a point ¢ = (zg,yo) to C we may use the Bezier’s representation
of a conic section (15) and the coordinates of ¢. In fact, if z = z(t), y = y(t) is
the parametric Bezier representation of C, we have to compute the values of
the parameter ¢, such that the normal line to C at the point (z(t),y(t)) passes
through the external point g,i.e. £, is a solution of

z' (8)(@(t) = @o) + (1) (y(t) —y0) = 0 -
This equation may be rewritten as a polynomial of degree 4:
I(t) = a(g)t* + b(g)t* + c(@)t* + d(q)t +e(q),

whose coefficients depend on the coordinates of q.
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f ¢* is a real root of T'(t) in [0, 1] then p = ¢(¢*) is a point on the conic section
C such that the normal to C at p passes through g. Hence,

d(g,C) = min {llg — c(t")||,¢* € (0, 1) ,T'(¢") = 0}

The results corresponding to some data points are shown in table 3. For each
data file, the residual r and the optimum value of w; associated with different
approximations to the euclidean distance are displayed. The first column
corresponds to the algebraic distance, while columns 2 and 3 to Taubin’s first
and second order approximations. The last column represents the normal

distance. In Appendix B we include the data points of the examples.

File Algebraic Taubinl Taubin2 Normal
atidat| TF 0.3188 r = 0.3943 r=0.3734 r=0.3179
' wy = 0.1091 wy = 0.1530 wy = 0.0674 wy = 0.1044
OB 0.3069 r = 0.2352 r = (.2329 r = (1.2326
: w; = 0.4311 wy = 0.6076 wy = 0.6379 wy = 0.6552
LA r = 0.4205 r = 0.2690 r = 0.2634 r = (0.2629
’ wy = 0.6631 wy = 0.7893 wy, = 0.8616 wy = 0.8908
w3.dat r = 0.6854 r = (.3046 r = 0.1683 r =0.1683
’ wy = 0.6631 wy = 1.4769 uy = 2.8294 wy = 2.8774
oD dit r = 0.7024 r = (.3367 r =0.1953 7 = (.1953
' wy = 0.2990 wy = 1.3560 wy = 5.0355 wy = 5.0391

From table 3 we observe that the residuals corresponding to normal fitting
conics are the smallest, whereas the computation of the normal distance and
in consequence the least squares fit in the normal distance, is more expensive

than the in others approximations.

Appendix A

The coefficients of the quadratic polynomial (12) are

5. 2 p)
a = 20Ty + 211T0Y0 + Zo2¥g + Z11ZoYo + 2100 + 201¥0 + 200,

where
z0 = 4ad;+ agea?; + 2@290,%1 i
z1n = aii1{4agam + 4@%0 -+ a%l + 4ad,) ,
Zop = 4&82 + agga%l + 2&02&?1 5
Zio = 4a§0a,10 + 2a31a20a01 + 2602011001 + Gma%l 5
z00 = 2aai1a10+ 2a11a10802 + 4adya10 + afyan ’
Zoo = Gzna%o + a11apao01 + ﬂ020%1;
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b= Szowg + s11ZToYo + styS + $11%0Yo + S$10%0 + S01%0 + Soo,

where
2 2
S0 = -—ay; —4ay ,
s11 = —4ai(az + ap),
2 2
s = —ai; —4ag
810 = —2aiia01 —4axnap,
so1 = —2ay1a10 — 4ag2a0 ,
9 9
800 = —Qjp—0ap}
and
c= f(‘rO:yU) .
Appendix B

Here we include the data points considered in the examples of section 3.3

File w01l.dat File w06.dat File wl.dat File w3.dat File w9.dat
.1553 .0618 7421 2011 .8387 .0624 .0140 .2589 .0858 .8368
1597 1383 .0662 .2087  .0704 .0537 .0095 .0644 .0088 .0591
.1683 .1445 .0398 .0741 6732 .2009 .9014 .0290 .0643 .1078
1961 .0184 9096 .0210  .1738 .4455 .9268 .0194 .0429 .0513
2053 .0212 .0088 .2701 .0048 .0563 .0809 .2541 9188 .0405
.2191 .0825 3598 .3804  .0620 .1313 .8602 .0943 .8373 .1467
.2351 .0436 9387 .0316  .0269 .0904 .8874 .0389 .0444 .0892
.2537 .1103 0639 .3515  .0871 .1606 .8287 .1579 .0225 .1881
.2651 .1386 6798 .2011 0137 .0963 .0403 .4380 .0119 .0981
.3011 .0508 0638 .0671 .0013 .0524 .9326 .0540 .9391 .0349
3278 .1278 8861 .0554  .8371.1036 .0233 .1386 .8958 .0387
3645 .0594  .0724 .0858 5562 .3113  .9089 .0613 .0035 .1485
3832 .0107  .0241 .0749 9183 .0136 .2556 .6288 .8188 .1795
4164 .1136 .0684 .1120 7896 .1377 .9275 .0721 .8954 .0296
.4355 .0319 9245 .0224  .0048 .1290 .1497 .7611 .0184 .0731
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.5455 .0896 .3353 4169 .7292 .2523 .7834 .1619 .0347 .1074
.5611 .0404 .8065 .1101 .9261 .0687 .0666 .7137 .9123 .0278
.6019 .1654 .0830 .0817 .8281 .0574 .0441 .6865 .6961 .2226
6099 .0246 .8629 .1258 .6996 .2544 .8906 .1067 .0285 .3923
6279 .0593 .6611 .2801 .1342 .3785 .0114 .1828 .8129 .1325
.6616 .1031 .0012 .1699 .3828 .5247 .8942 .0656

6774 1189 .0607 .2111 .8780 .0157

6953 .0274 .0154 .0721 .8488 .0949

7202 1432 9015 .0383 .8566 .0881

7208 .0412 2916 .3667 .0552 .0513

7352 .0673 .0574 .0530 .0523 .1603

7480 .0054 .0767 .0571 .0881 .1905

7690 .0872 .8728 .0957 .8679 .0590

J770 0776 7264 .1990  .1500 .4826

7939 .1299 .0168 .0985

7958 .0857

8113 .1306

8136 .0547
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