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Abstract. In this paper we use a generalized vector product to construct

an exterior form ∧ : (Rn)
k → R(

n

k
), where

(
n
k

)
= n!

(n−k)!k! , k ≤ n. Finally,
for n = k − 1 we introduce the reversing operation to study this generalized
vector product over palindromic and antipalindromic vectors.
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Algunas observaciones sobre un producto vectorial

generalizado

Resumen. En este artículo usamos un producto vectorial generalizado para

construir una forma exterior ∧ : (Rn)
k → R(

n

k
), en donde como es natural,(

n
k

)
= n!

(n−k)!k! , k ≤ n. Finalmente, para n = k − 1 introducimos la operación
reversar para estudiar este producto vectorial generalizado sobre vectores
palindrómicos y antipalindrómicos.
Palabras claves: función multilineal alternante, producto exterior, producto
vectorial, reversar, vector palindrómico, vector antipalindrómico.

Introduction

It is well known that the vector product over R3 is an alternating 2-linear function from
R3 × R3 onto R3. Although this vector product is a natural topic to be studied in any
course of basic linear algebra, there is a plenty of textbooks on this subject in where it is
not considered over Rn. The following definition, with interesting remarks, can be found
also in [3, 7, 8]. Let

A1 = (a11, a12, . . . , a1n) , . . . , An−1 =
(
a(n−1)1, a(n−1)2, . . . , a(n−1)n

)
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be n−1 vectors in Rn. The vector product over Rn is a function × : (Rn)
n−1 → Rn such

that

× (A1, A2, . . . , An−1) = A1 ×A2 × · · · ×An−1 =
n∑

k=1

(−1)1+k det (Xk) ek, (1)

where ek is the k−th unity vector of the standard basis of Rn and Xk is the square matrix
obtained through the deleting of the k−th column of the (aij)(n−1)×n. Notice that in
this case the function is not binary and sends a matrix M of size (n− 1)× n to a vector
of its

(
n

n−1

)
maximal minors.

One aim of this paper is to give an algorithm to construct, using elementary techniques,

a function with domain in (Rn)
k and codomain R(

n

k
) which will be an alternating k-linear

function that obviously generalizes the previous vector product defined over Rn.

Using techniques and methods of algebraic geometry we can see that the vector product
obtained here, without signs, corresponds to the Plücker coordinates of the matrix M
(see [4, 5]). Although this vector product is known and useful to define the concept of
Grassmanian variety (see [4]), we present an alternative construction, avoiding algebraic
geometry, which lead us to known results that can be found as for example in [6].

Another aim of this work, following [1, 2], is the presentation of some original results
concerning the vector product for n = k − 1 in palindromic and antipalindromic vectors
by means of reversing operation.

The way this paper is presented can allow students and teachers of basic linear algebra
the implementation of these results on their courses. This is our final aim.

1. A generalized vector product

In this section we set some preliminaries, properties and the Cramer’s rule as application
of the generalized vector product.

1.1. Preliminaries

Following [3, 7] we define the generalized vector product over Rn as the function

× : (Rn)
n−1 → Rn

such that for A1 = (a11, a12, . . . , a1n) , . . . , An−1 =
(
a(n−1)1, a(n−1)2, . . . , a(n−1)n

)
, n − 1

vectors of Rn, their vector product is given by

× (A1, A2, . . . , An−1) = A1 ×A2 × · · · ×An−1 =

n∑

k=1

(−1)
1+k

det (Xk) ek, (2)

where ek is the k−th element of the canonical basis for Rn and Xk is the square matrix
obtained after the elimination of the k−th column of the matrix (aij)(n−1)×n. The
definition presented in expression (2) corresponds to a natural generalization of the vector
product of two vectors belonging to R3.
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1.2. Some properties

Let A1, A2, . . . , An be vectors of Rn. The following statements hold.

1) × (A1, A2, . . . , An−1) is an orthogonal vector for the given vectors.

2) Assume α, β ∈ R, Bi ∈ Rn; then

A1 ×A2 × · · · × (αAi + βBi)× · · · ×An−1 =

A1 ×A2 × · · · × αAi × · · · ×An−1 +A1 ×A2 × · · · × βBi × · · · ×An−1.

3) Let A be the matrix given by A = (A1, A2, . . . , An). Then

detA = A1 · (A2 × · · · ×An) = (−1)
1+j

Aj · (A1 × · · · ×Aj−1 ×Aj+1 ×An) .

4) The vectors A1, A2, . . . , An−1 are n − 1 linearly dependent vectors for Rn if and
only if A1 ×A2 × · · · ×An−1 = 0.

It is well known that these properties can be proven using the properties of the determi-
nant (see, for example, [3, 7]).

1.3. Cramer’s rule

Consider the following system of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

an1x1 + an2x2 + · · ·+ annxn = bn

that can be expressed in vectorial way as

x1A1 + x2A2 + · · ·+ xnAn = B, (3)

being Ai = (a1i, a2i, . . . , ani) with i = 1, 2, . . . , n and B = (b1, b2, . . . , bn). Suppose
that det (A1, A2, . . . , An) �= 0. Therefore the system has a unique solution that can be
obtained applying the scalar product between the equation (3) and A2 ×A3 × · · · ×An;
so we obtain

(x1A1 + x2A2 + · · ·+ xnAn) · A2 ×A3 × · · · ×An = B ·A2 ×A3 × · · · ×An,

x1A1 · A2 ×A3 × · · · ×An = B ·A2 ×A3 × · · · ×An,

since Aj · A2 ×A3 × · · · ×An = 0 for j = 2, 3, . . . , n. Therefore,

x1 =
B ·A2 ×A3 × · · · ×An

A1 ·A2 ×A3 × · · · ×An
=

det (B,A2, A3, · · · , An)

det(A1, A2, A3, · · · , An)
. (4)
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In a general way, we can obtain

xi =
B · A1 ×A2 × · · · ×Ai−1 ×Ai+1 × · · · ×An

Ai · A1 ×A2 × · · ·Ai−1 ×Ai+1 × · · · ×An

=
(−1)

i+1
det (A1, A2, . . . , Ai−1, B,Ai+1, · · · , An)

(−1)
i+1

det(A1, A2, A3, · · · , An)

=
det (A1, A2, . . . , Ai−1, B,Ai+1, · · · , An)

det(A1, A2, A3, · · · , An)
,

that is, the well-known Cramer’s rule.

2. Didactic way to define ∧: algorithm and properties

In this section we propose a didactic way to define the exterior product ∧. To do this, we
set an algorithm to the construction of ∧ and as consequence of this construction arise
some properties.

2.4. Algorithm to the construction of ∧

Here we present an algorithm and some simple examples to illustrate it.

Step 1

Consider n ∈ N and 1 ≤ k ≤ n, being k an integer. We define

I = {i1i2 · · · ik : 1 ≤ i1 < i2 < · · · < ik ≤ n} ;

this means that the elements belonging to I are chains of numbers conformed in agreement
with the lexicographic order.

Example 2.1. For n = 5 and k = 3 we have

I = {123, 124, 125, 134, 135, 145, 234, 235, 245, 345} .

As we can see, #I =
(
n
k

)
=

(
5
3

)
= 10.

Example 2.2. For n = 5 and k = 2, we obtain
(
5
2

)
= 10. For instance, I is given by

I = {12, 13, 14, 15, 23, 24, 25, 34, 35, 45} .

Step 2

We set that I should be ordered lexicographically:

I(1) < I(2) < · · · < I((n
k
)).

In this way, if Is ∈ I, then there exists p (only one) such that Is = I(p). Thus, we can
define p as the rank of Is and will be denoted by r (Is) = p. That is, p is the place of Is
in I as set of ordered elements lexicographically.

In Example 2.1 we can see that r (234) = 7, r (345) = 10. In Example 2.2 we have
r (25) = 7, r (35) = 9.
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Step 3

Let u1 = (u11, u12, . . . , u1n) , . . . , uk = (uk1, uk2, . . . , ukn), be k vectors of Rn, with k ≤ n.
Consider the matrix U = (uij) of order k × n conformed by these vectors. Assume
i1i2 · · · ik ∈ I and let Ui1i2···ik be the matrix of order k, conformed by the k columns
i1, i2, · · · , ik of U . From now on, U always will be a matrix of this kind.

Example 2.3. Consider

U =




a1 a2 a3 a4 a5
b1 b2 b3 b4 b5
c1 c2 c3 c4 c5



 ;

in this case, U123 =




a1 a2 a3
b1 b2 b3
c1 c2 c3



 and U245 =




a2 a4 a5
b2 b4 b5
c2 c4 c5



.

Notice that when we choose a particular number of columns of such matrix U , which
exactly corresponds to delete in U the non-selected columns.

Step 4

Consider
(Rn)

k
:= Rn × Rn × · · · × Rn

� �� �
k−times

.

Now we define the function exterior product ∧ : (Rn)k → R(
n

k
) as follows:

∧ (U) =
�

i∈I

(−1)(
n

k
)−r(i)

det (Ui) e(n
k
)−r(i)+1,

where e(n
k
)−r(i)+1 corresponds to the

��
n
k

�
− r(i) + 1

�
−th unity vector of the standard

basis of R(
n

k
).

For convenience, we can write

∧ (U) = ∧ (u1, u2, . . . , uk) = u1 ∧ u2 ∧ . . . ∧ uk.

Example 2.4. Consider the vectors (2, 3,−1, 5) , (4, 7, 2, 0) ∈ R4. The vector (2, 3,−1, 5)∧

(4, 7, 2, 0) belongs to R(
4
2) = R6. In this case

I = {12, 13, 14, 23, 24, 34},

U =

�
2 3 −1 5
4 7 2 0

�

,

so that

∧ (U) = −

�
�
�
�
2 3
4 7

�
�
�
� e6 +

�
�
�
�
2 −1
4 2

�
�
�
� e5 −

�
�
�
�
2 5
4 0

�
�
�
� e4 +

�
�
�
�
3 −1
7 2

�
�
�
� e3 −

�
�
�
�
3 5
7 0

�
�
�
� e2

+

�
�
�
�
−1 5
2 0

�
�
�
� e1

= −2e6 + 8e5 + 20e4 + 13e3 + 35e2 − 10e1

= (−10, 35, 13, 20, 8,−2) .
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Example 2.5. Consider the canonical basis for R4, that is, e1 = (1, 0, 0, 0), e2 =
(0, 1, 0, 0), e3 = (0, 0, 1, 0) and e1 = (0, 0, 0, 1). Thus, the exterior product ei ∧ ej for
i < j is given by

e1 ∧ e2 = − (0, 0, 0, 0, 0, 1) = −e6 ∈ R6,

e1 ∧ e3 = (0, 0, 0, 0, 1, 0) = e5 ∈ R6,

e1 ∧ e4 = − (0, 0, 0, 1, 0, 0) = −e4 ∈ R6,

e2 ∧ e3 = (0, 0, 1, 0, 0, 0) = e3 ∈ R6,

e2 ∧ e4 = − (0, 1, 0, 0, 0, 0) = −e2 ∈ R6,

e3 ∧ e4 = (1, 0, 0, 0, 0, 0) = e1 ∈ R6.

As we can see, the set B = {e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4} ⊂ R6 is a
basis for R6.

Notice that in a given basis B for Rn, the exterior product of them taken in sets of

k-elements without repetition constitutes a basis B′ for R(
n

k
).

2.5. Some properties of ∧

The following properties are satisfied by ∧:

1) If k = n, then ∧ (U) = det (U).

2) If k = n− 1, then ∧ is the generalized vector product.

3) If n is even and k = 1, then U is orthogonal to ∧ (U).

4) ∧ is k−linear:

∧ (u1, . . . , ui + b, . . . , uk) = ∧ (u1, . . . , ui, . . . , uk) + ∧ (u1, . . . , b, . . . , uk) .

5) If Mp is a permutation of two rows (being fixed the other ones) of M , then ∧ (Mp) =
− ∧ (M).

6) If u1, . . . , uk are k (≤ n) linear dependent vectors of Rn, then ∧ (u1, . . . , uk) = 0 ∈

R(
n

k
).

Proof. We proceed according to each item.

1) Assuming k = n we have

(
n

k

)

=

(
n

n

)

= 1 and r(i) = 1 (due to I has only one

element). So,

∧ (U) =
∑

i∈I

(−1)(
n

k
)−r(i)

det (Ui) e(n
k
)−r(i)+1

= det(Ui).

Trivially we can see that for R, e1 = 1.
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2) Assuming k = n− 1, we have

(
n

k

)

=

(
n

n− 1

)

= n; in this way, I has n elements.

Owing to the symmetry of

(
n

k

)

, the election of n − 1 columns of the matrix U

corresponds to the elimination of one column of U (precisely the avoided column
in the election). In other words, we can see that

Ui = Xn−r(i)+1,

where Xn−r(i)+1 corresponds to the matrix that has been obtained throughout U
deleting the (n− r(i) + 1)-th column, so that

∧ (U) =
∑

i∈I

(−1)n−r(i) det (Ui) en−r(i)+1

=
∑

i∈I

(−1)
(n−r(i)+1)+1

det (Ui) en−r(i)+1

=

n∑

j=1

(−1)
j+1

det (Xj) ej

= u1 × . . .× uk.

3) For n = 2p and k = 1, we have

(
2p

1

)

= 2p; thus, the cardinality of I is even and

I = {1, 2, . . . , p, p+ 1, . . . , 2p} .

Furthermore, r (i) = 1. In this way, ∧ (U) ∈ R2p. On the other hand, considering
U = (u1, u2, . . . , u2p) and ∧ (U) = (v1, v2, . . . , v2p), we obtain

∧ (U) =
∑

i∈I

(−1)
2p−i

det (Ui) e2p−i+1

=

2p∑

i=1

(−1)
i
uie2p−i+1

= (u2p,−u2p−1, . . . , u2,−u1) ,

where it follows that vj = (−1)
j+1

u2p−j+1 for j = 1, 2, . . . , 2p. Therefore,

U · ∧ (U) = (u1, u2, . . . , u2p−1, u2p) · (u2p,−u2p−1, . . . , u2,−u1)

= u1u2p − u2u2p−1 + . . .+ u2p−1u2 − u2pu1

= (u1u2p − u2pu1) + . . .+ (−1)p+1 (upup+1 − up+1up)

= 0.

Items 4), 5) and 6) can be proven using the properties of the determinant in similar way
as the previous ones. ����
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3. Reversing operation over ∧

The reversing operation has been applied successfully over rings and vector spaces (see
[1, 2]). In this section we apply the reversing operation to obtain some results that
involve the exterior product with the palindromic and antipalindromic vectors. The
following results correspond to a generalization of some results presented in [2]. Consider

the matrix M = (mi,j) of size m × n. The reversing of M , denoted by
←−
M , is given by

←−
M = (←−mi,j), where ←−mi,j = mi,n−j+1. We can see that the size of

←−
M is m × n too. We

denote by Jn =
←−

In the reversing of the identity matrix In of size n. Thus, the following
properties can be proven (see [2]).

1. The double reversing:

←−←−
M = (

←−←−mi,j) = (←−mi,n−j+1) =
(
mi,n−(n−j+1)+1

)
= (mi,j) = M,

2.
←−
M = MJn,

3. JnJn = In.

The following definitions were introduced in [2]. A matrix M is called palindromic

whether it satisfies
←−
M = M . In the same way, a matrix M is called antipalindromic

whether it satisfies
←−
M = −M . In particular, for m = 1 we get palindromic and antipalin-

dromic vectors, respectively.

As we can see, the palindromic matrix M satisfies mi,j = mi,n−j+1, and therefore M has

at least
n

2
pair of equal columns if n is even (as well

n

2
− 1 when n is odd). This fact

lead us to the following result.

Proposition 3.1. det(Jn) =

{
(−1)n/2, n = 2k, k ∈ Z+

(−1)
n+3
2 , n = 2k − 1, k ∈ Z+.

Proof. We proceed by induction over n. Assuming n = 1, we have that In = 1 and

Jn = 1, thus det (Jn) = 1 = (−1)
1+3
2 . Let the proposition be true for n; thus we will

prove that it is also true for n+ 1. We start considering that n is even, so we get

det (Jn+1) = 1 (−1)
1+(n+1)

det (Jn)

= (−1)n+2 (−1)
n

2

= (−1)
n

2 = (−1)
(n+1)+3

2 .

Now, considering n as an positive odd integer, we have

det (Jn+1) = 1 (−1)
1+(n+1)

det (Jn)

= (−1)
n+2

(−1)
n+3
2

= (−1) (−1)
n+3
2

= (−1)
n+5
2 = (−1)

n+1
2 . ����
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Now, we study the relationship between the exterior product ∧ and the reversing opera-
tion. We start considering k = n−1, that is, the generalized vector product over Rn. Con-
sider M1 = (m11,m12, . . . ,m1n) , . . . ,Mn−1 =

(
m(n−1),1, a(n−1),2, . . . ,m(n−1),n

)
, n − 1

vectors in Rn. The generalized vector product is given by the equation (1), therefore we
obtain

× (M1, M2, . . . , Mn−1) =

n∑

k=1

(−1)
1+k

det
(
M (k)

)
ek; (5)

here ek is the k-th element of the canonical basis for Rn and M (k) is the square matrix
obtained after the deleting of the k-th column of the matrix M = (mij)(n−1)×n. The

matrix M (k) is a square matrix of size (n− 1)× (n− 1) and is given by

M (k) =
(
m

(k)
i,j

)
=

{
mi,j , if j < k
mi,j+1, if j ≥ k.

(6)

Proposition 3.2. If we consider M = (mij)(n−1)×n, then
←−
M (k) = M (n−k+1)Jn−1, for

1 ≤ k ≤ n.

Proof. We know that
←−
M = MJn, that is, (←−mi,j) = (mi,n−j+1), 1 ≤ j ≤ n. Therefore

←−
M (k) =

(
←−m

(k)
i,j

)
=

{ ←−mi,j , if j < k
←−mi,j+1, if j ≥ k

=

{
mi,n−j+1, if j < k
mi,n−(j+1)+1, if j ≥ k.

On the other hand,

M (n−k+1) =
(
m

(n−k+1)
i,j

)
=

{
mi,j , if j < n− k + 1
mi,j+1, if j ≥ n− k + 1.

(7)

Now, we obtain

M (n−k+1)Jn−1 =
(
m

(n−k+1)
i,(n−1)−j+1

)
=

(
m

(n−k+1)
i,n−j

)

=

{
mi,(n−j), if n− j < n− k + 1
mi,(n−j)+1, if n− j ≥ n− k + 1

=

{
mi,(n−j), if j > k − 1
mi,(n−j)+1, if j ≤ k − 1

=

{
mi,n−j , if j ≥ k
mi,n−j+1, if j < k

=
←−
M (k). ����

The following proposition is a generalization of a result presented in [2], where it was
analyzed the reversing of the vector product in R3.

From now on, for suitability we denote M = (M1,M2, . . . ,Mn−1), i.e., M is the matrix
that has as rows the vectors M1, M2, . . . , Mn−1; thus, we obtain

←−
M =

(←−
M1,

←−
M2, . . . ,

←−
Mn−1

)
.
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In the same way, for suitability we write

M = ×
�←−
M1,

←−
M2, . . . ,

←−
Mn−1

�
.

Proposition 3.3. The generalized vector product of
←−
M i, 1 ≤ i ≤ n− 1, satisfies

M =






(−1)
3n
2

�←−−−−−−−−−−−−−−−−−−−
× (M1, M2, . . . , Mn−1)

�
, n = 2k,

(−1)
3n+1

2

�←−−−−−−−−−−−−−−−−−−−
× (M1, M2, . . . , Mn−1)

�
, n = 2k − 1,

where k ∈ Z+.

Proof. For suitability we denote M = (M1,M2, . . . ,Mn−1), i.e., M is the matrix that
has as rows the vectors M1, M2, . . . , Mn−1; thus, we obtain

←−
M =

�←−
M1,

←−
M2, . . . ,

←−
Mn−1

�
.

In the same way, for suitability we write

M = ×
�←−
M1,

←−
M2, . . . ,

←−
Mn−1

�
.

Now, applying the generalized vector product we obtain

M =

n�

k=1

(−1)
k+1

det
�←−
M (k)

�
ek

=

n�

k=1

(−1)
k+1

det
�
M (n−k+1)Jn−1

�
ek

=

n�

k=1

(−1)
k+1

det
�
M (n−k+1)Jn−1

�
ek

=

n�

k=1

(−1)
k+1

det
�
M (n−k+1)

�
det (Jn−1) ek

= det (Jn−1)

n�

k=1

(−1)
n−k

det
�
M (k)

�
en−k+1

= (−1)
n+1

det (Jn−1)

n�

k=1

(−1)
k+1

det
�
M (k)

�
en−k+1

= (−1)n+1 det (Jn−1)

�
n�

k=1

(−1)k+1 det
�
M (k)

�
ek

�

Jn

= (−1)
n+1

det (Jn−1)
�←−−−−−−−−−−−−−−−−−−
× (M1, M2, . . . , Mn−1)

�
,
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and therefore

M =






(−1)
n+1

(−1)
(n−1)+3

2

�←−−−−−−−−−−−−−−−−−−
× (M1, M2, . . . , Mn−1)

�
, n = 2k

(−1)
n+1

(−1)
n−1
2

�←−−−−−−−−−−−−−−−−−−
× (M1, M2, . . . , Mn−1)

�
, n = 2k − 1

=






(−1)
3n
2

�←−−−−−−−−−−−−−−−−−−
× (M1, M2, . . . , Mn−1)

�
, n = 2k

(−1)
3n+1

2

�←−−−−−−−−−−−−−−−−−−
× (M1, M2, . . . , Mn−1)

�
, n = 2k − 1. ����

If M is a palindromic matrix, then the minors M (k) have at least
n

2
− 1 pair of equal

columns when n is even, and respectively
n− 1

2
− 1 when n is odd. This implies that for

n ≥ 4, the minors have at least one pair of equal columns and therefore det
�
M (k)

�
= 0

for all 1 ≤ k ≤ n, so that

× (M1, M2, . . . , Mn−1) = 0 ∈ Rn. (8)

This means that the generalized vector product of (n − 1) palindromic vectors in Rn is
interesting when 1 ≤ n ≤ 3. The same result is obtained when we assume M as an
antipalindromic matrix.

Final Remarks

When we consider the exterior product for k �= n − 1, the previous results cannot be
applied due to the fact that, in general, they are not true. To illustrate it, we present
the following example.

Example 3.4. Consider the vectors (2, 3,−1, 5) and (4, 7, 2, 0) in R4. In this case,

M =

�
2 3 −1 5
4 7 2 0

�

and
←−
M =

�
5 −1 3 2
0 2 7 4

�

As we have seen before,

(2, 3,−1, 5)∧ (4, 7, 2, 0) = (−10, 35, 13, 20, 8,−2) .

Therefore,

(5,−1, 3, 2)∧ (0, 2, 7, 4) =

−

�
�
�
�
5 −1
0 2

�
�
�
� e6 +

�
�
�
�
5 3
0 7

�
�
�
� e5 −

�
�
�
�
5 2
0 4

�
�
�
� e4 +

+

�
�
�
�
−1 3
2 7

�
�
�
� e3 −

�
�
�
�
−1 2
2 4

�
�
�
� e2 +

�
�
�
�
3 2
7 4

�
�
�
� e1

= −(10)e6 + (35)e5 − (20)e4 + (−7− 6)e3 −

(−4− 4)e2 + (12− 14)e1

= (−2, 8,−13,−20, 35,−10).
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Thus, in general, the exterior product does not satisfies

←−−∧
U = (−1)p

∧←−
U , for some p ∈ Z.

Finally, although this paper is presented in a didactic way, there are original results
corresponding to the relations between the reversing operation and the generalized vector
product.
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