Modelo semidiscreto para una ecuación de
difusión no local con fuente
MAURICIO BOGOYA*, ALBERTO FORERO
Universidad Nacional de Colombia, Departamento de Matemáticas, Bogotá, Colombia.
Resumen. Estudiamos el modelo semidiscreto para un problema de difusión no local con fuente
con dato inicial Probamos la existencia y unicidad de
las soluciones. Además, se demuestra que las soluciones del problema discreto
convergen a las del continuo cuando el parámetro de la malla va a cero. Analizamos
el fenómeno de explosión de las soluciones. Para algunas fuentes ƒ se
obtiene la razón de explosión. Finalmente se presentan algunos experimentos
numéricos.
Palabras Claves: difusión no local, condiciones de Neumann, semidiscretización,
explosión.
MSC2010: 35K57, 35B40
A semidiscrete model for a non-local diffusion
equation with a source
Abstract. We study a discrete model for a non-local diffusion problem with a source, namely
with initial datum We prove the existence and uniqueness
of the solution. Moreover, we show that solutions of discrete problem
converge to the continuous ones when the mesh parameter goes to zero. We
also study the blow-up phenomena of solutions. For some sources ƒ, we obtain
the blow-up rate. Finally, we perform some numerical experiments.
Keywords: nonlocal diffusion, Neumann boundary conditions, semidiscretization, blow-up.
Texto Completo disponible en PDF
Referencias
[1] Aronson D.G., "The porous medium equation", Nonlinear Diffusion Problems, Lecture Notes in Math. 1224 (1986), 1–46.
[2] Bates P.W., Fife P.C., Ren X. and Wang X., "Travelling waves in a convolution model for phase transitions", Arch. Ration. Mech. Anal. 138 (1997), no. 2, 105–136.
[3] Bogoya M., "Blow up for a nonlocal nonlinear diffusion equation with source", Rev. Colombiana Mat. 46 (2012), no. 1, 1–13.
[4] Bogoya M., Ferreira R. and Rossi J.D., "Neumann boundary conditions for a nonlocal nonlinear diffusion operator. Continuous and discrete models", Proc. Amer. Math. Soc. 135 (2007), no. 12, 3837–3846.
[5] Chen X., "Existence, uniqueness and asymptotic stability of travelling waves in nonlocal evolution equations". Adv. Differential Equations 2 (1997), no. 1, 125–160.
[6] Cortázar C., Elgueta M. and Rossi J.D., "A non-local diffusion equation whose solutions develop a free boundary", Ann. Henri Poincaré 6 (2005), no. 2, 269–281.
[7] Fife P., "Some nonclassical trends in parabolic and parabolic-like evolutions", Trends in nonlinear analysis. 153–191, Springer, Berlin, 2003.
[8] Groisman P. and Rossi J.D., "Asymptotic behaviour for a numerical approximation of a parabolic problem with blowing up solutions", J. Comput. Appl. Math. 135 (2001), no. 1, 135-155.
[9] Galaktionov V.A. and Vázquez J.L., "The problem of blow-up in nonlinear parabolic equations", Discrete Contin. Dyn. Syst. 8 (2002), no. 2, 399–433.
[10] Samarskii A.A., Galaktionov V.A., Kurdyumov S.P. and Mikhailov A.P., Blow-up in quasilinear parabolic equations, Nauka, Moscow, 1987 (in Russian). English transl.: Walter de Gruyter and Co., Berlin, 1995.
[11] Vázquez J.L., "An introduction to the mathematical theory of the porous medium equation", Shape optimization and free boundaries(Montreal, PQ, 1990), 347–389, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 380, Kluwer Acad. Publ., Dordrecht, 1992.
[12] Wang X., "Metastability and stability of patterns in a convolution model for phase transitions", J. Differential Equations 183 (2002), 434–461.
*Autor para correspondencia: E-mail: mbogoyal@unal.edu.co
Recibido: 17 de mayo de 2012, Aceptado: 20 de agosto de 2012.