Generación de curvas fractales a partir de
homomorfismos entre lenguajes
[con Mathematicar®]

JOSÉ L. RAMÍREZa *, GUSTAVO N. RUBIANOb

a Universidad Sergio Arboleda, Escuela de Matemáticas, Bogotá, Colombia.

b Universidad Nacional de Colombia, Depto. de Matemáticas, Bogotá, Colombia.


Resumen. En este artículo se hace una implementación con el software Mathematica 8.0 de algunas propiedades combinatorias de la cadena o palabra de Fibonacci, la cual se puede generar a partir de la iteración de un homomorfismo entre lenguajes. Asimismo se recopilan algunas propiedades gráficas de la curva fractal asociada a esta cadena de símbolos, la cual se puede generar a partir de unas reglas de dibujo análogas a las utilizadas en los L-Sistemas. Todos los códigos utilizados en el artículo se presentan en detalle y luego se aplican para generar nuevas curvas fractales. Finalizamos con una forma alternativa de generar la curva de Fibonacci y otras curvas a partir de cadenas características.
Palabras Claves: Combinatoria sobre cadenas, cadena infinita de Fibonacci, homomorfismos entre lenguajes, curvas fractales, L-sistemas, Mathematicar®.
MSC2010: 11B39, 28A80, 68R15, 97N80.

Generating fractals curves from homomorphisms
between languages
[with Mathematicar®]

Abstract. In this paper we implement with the software Mathematica 8.0 some combinatorial properties of Fibonacci Word, which can be generated from the iteration of a homomorphism between languages.We collect also some graphic properties of the fractal curve associated to this word, which can be generated from drawing rules similar to those used in the L-Systems. All codes used in this paper are presented in detail and then they are applied to generate new fractal curves. We conclude with an alternative way to generate the Fibonacci curve and other curves from characteristics words.

Keywords: Combinatorics on words, infinite Fibonacci word, homomorphism between languages, fractal curves, L-systems, Mathematicar®.


Texto Completo disponible en PDF


Referencias

[1] Abelson H., diSessa A.A., Turtle geometry, MIT Press Series in Artificial Intelligence, MIT Press, Massachusetts, 1981.

[2] Allouche J.-P., Shallit J.,"The ubiquitous Prouchet-Thue-Morse sequence", En Ding C., Helleseth T., Niederreiter H., editors, Sequences and their Applicactions, Proceedings of SETA’98, Springer Verlag (1999), 1–16.

[3] Allouche J.-P. Shallit J., Automatic Sequences, Cambridge University Press, Cambridge, 2003.

[4] Allouche J.-P. Skordev G., "Von Koch and Thue-Morse revisited", Fractals 15 (2007), no. 4, 405–409.

[5] Dekking F.M. "Recurrent sets", Adv. in Math. 44, (1982), no. 1, 78–104.

[6] Dekking F.M., "Replicating superfigures and endomorphisms of free groups", J. Combin. Theory Ser. A 32 (1982), 315–320.

[7] Dekking F.M., Mendès M., "Uniform distribution modulo one: a geometrical viewpoint", J. Reine Angew. Math. 329 (1981), 143–153.

[8] Deshouillers J.-M., "Geometric aspects of Weyl sums", Elementary and analytic theory of numbers (Warsaw, 1982), Banach Center Publ. 17 (1985), 75–82.

[9] Griswold R.E., "The Morse-Thue Sequence", Dep. of Computer Science, The University of Arizona. http://www.cs.arizona.edu/patterns/weaving/

[10] Von Koch H., "Une méthode géométrique élémentaire pour l’étude de certaines questions de la théorie des courbes planes", Acta Math. 30 (1906), no. 1, 145–174.

[11] Lothaire M., Combinatorics on Words, Cambridge University Press, Cambridge, 1983.

[12] Lothaire M., "Algebraic Combinatorics on Words", Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2002.

[13] Lothaire M., "Applied Combinatorics on Words", Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2005.

[14] Ma J., Holdener J. "When thue Morse meets Koch", Fractals 13 (2005), no. 3, 191–206.

[15] Monnerot A., "The Fibonacci Word Fractal", preprint (2009). http://hal.archives-ouvertes.fr/hal-00367972/fr/

[16] Morse M., "Recurrent geodesics on a surface of negative curvature", Transactions Amer. Math. Soc. 22 (1921), no. 1, 84–100.

[17] Morse M., Hedlund G., "Symbolic Dynamics II: Sturmian Sequences", Amer. J. Math. 62 (1940), 1–42.

[18] Prusinkiewicz P., Lindenmayer A., The algorithmic beauty of plants, Springer-Verlag. New York, 2004. http://algorithmicbotany.org/papers/abop/abop.pdf./

[19] Prusinkiewicz P., "Graphical applications of L-systems", Proceedings of Graphics Interface (ed. Wein M. and Kidd E.M.), Canadian Information Processing Society (1986), 247–253.

[20] Schützenberger M-P., "Une théorie algébrique du codage," In Séminaire Dubreil-Pisot 1955–56, Exposé No. 15, (1955).

[21] Siromoney R., Subramanian K., "Space-filling curves and infinite graphs", Graph grammars and their application to computer science (ed. Ehrig H., Nagl M. and Rozenberg G.), Second International Workshop, Lecture Notes in Computer Science 153, Springer-Verlag, Berlin (1983), 380–391.


*Autor para correspondencia: E-mail: hml@ciencias.unam.mx
Recibido: 01 de agosto de 2012, Aceptado: 14 de septiembre de 2012.