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An Exact Homogeneous Stiff Cosmology that
Reduces to the Kasner Solution

FABIO D. LORA* & GUILLERMO A. GONZALEZ*

Abstract. A family of exact simple solutions of Einstein field equations
for homogeneous stiff cosmologies is presented. The method to obtain the
solution is based on the introduction of auxiliary functions in order to cast
the Einstein equations in such a way that can be explicitly integrated.
The obtained solution is expressed in terms of simple functions of the used
coordinates. The geometrical and kinematical properties of the solution are
analyzed and the parameters are restricted in order to have a physically
acceptable behavior. The solution is of the Petrov type I and presents a
big-bang singularity. Now, for a particular value of one of the parameters,
the solution is a vacuum solution of the Bianchi I type that reduces to the
Kasner solution.

Resumen. Se presenta una familia de soluciones exactas sencillas de las ecua-
ciones de Einstein homogéneas sobre el plano para las cosmologias rigidas.
El método para obtener la solucién se basa en la introduccién de funciones
auxiliares, a fin de emitir las ecuaciones de Einstein de tal manera que
puedan ser integradas explicitamente. La solucién obtenida se expresa en
términos de funciones simples de las coordenadas utilizadas. Se analizan las
propiedades geométricas y cinematicas de la solucién; los pardmetros estan
restringidas a fin de tener un comportamiento aceptable fisicamente. Las
soluciones son del tipo Petrov I, y presentan una singularidad de big-bang.
Ahora bien, para un cierto valor de uno de los parametros la soluciéon es una
soluciéon de vacio de tipo Bianchi I, que se reduce a la solucion de Kasner.
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1. The Einstein And Matter Evolution Equations

In order to study inhomogeneous or homogeneous stiff cosmologies, we take as the starting

point the metric tensor as given by the line element|1]
ds® = e 2V [e® (—dt® + dr?) + W2da?] + e2Ydy?, (1)

where U, v and W are functions of r and ¢ only. We also consider as the matter contents
a perfect fluid with the stiff equation of state p = p, whose energy-momentum tensor can
be written as

Top = p(2uatip + gap)- (2)

With the above choices, the Einsten equations can be cast as
Rap = 2puqug, (3)
whereas the matter evolution equations can be obatined, from the conservation law
T =0, (4)

by projecting it along the temporal and spatial directions. In order to obtain the above
projections, we contract the equation (4) with the velocity vector u® and the “spatial

projection tensor” hog = uqug + gas, respectively. So we obtain
p.pu’ +2pu” 5 =0, 20uPu® ght + p sg"“ht =0 (5)

where we use the condition u,h*? = 0.

We now impose the irrotationality condition [2]

P
" e )

so that the equation (5) can be cast as

PP by (7)
(@, om) Pt

which can be identically satisfied if we choose (3]
F
p=—3 0% (5)

where F' is an arbitrary function of the scalar potential ®. Now, by using (8), the

energy-momentum tensor can be cast as

1
Taﬁ = F @,(X@,ﬁ — 59&[3@,#@’“ 5 (9)

[Revista Integracion



An Exact Homogeneous Stiff Cosmology that Reduces to the Kasner Solution 147

in such a way that the Einstein and evolution equations can be written as
F/
Rog=FO g, Fo*,, = —74)7“‘1)’“, (10)
where F/ = g—g. Now, it is easy to see that, for any arbitrary function F(®), the evolution

and Einstein system of equations can be cast as

Wor =Wy =0, (11)
W) = (Wipe) p =0, (12)
WU,) = (WUs) e =0, (13)
YW+ oWy = 2WU U + E*Wah 2h 1 + W 4, (14)
VWi + 7 W =W(UZ +U2) + % [B2W W5 +¢%) + W + Wop)],  (15)

where k is an arbitrary positive constant and 1 is a new scalar potencial, which is given
by the functional dependece ® = ®(¢)). As we can see, equation (11) is the classical one-
dimensional wave equation. On the other hand, equations (12) and (13) are equivalents,
so that solutions from (13) are also solutions from (12). According with this, we can
suppose that U(t,r) = 1(t,r). Finally, the integrability conditions of the overdetermined
system (14)—(15) are equivalent to the equations (11)—(13), guaranting so the existence
of solutions. On the other hand, we can see that by taking the stiff equation of state
p = p, the stiff fluids equations are easy to integrate because the metric functions U, W

decouple from the pressure [4].

2. Homogeneous Stiff Solution

In order to solve the system (11) — (15), we consider solutions of the equation (11) of the

general form

W(r,t) =Y(r+1t)+Q(r—1), (16)
. . . r+t t—r
where ¥ and () are arbitrary functions. Now, by taking ¥ = 5 and Q = 5 We
obtain for the metric functions the expresions
W(r,t) = t (17)
12
y(rt) = ¢ (a%rQ + a2 + 2ayazr + araz) )
2
a
+q1—ét4 + qa2Int + qajagr? + 2qasasr, (18)
ar (2 2
U(r,t) = I(t +2r%) + azInt + asr, (19)
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in such a way that the fluid density is given by

_ K [ait® | a3 2 2| 2—y) 20
P= T+t—2+a1a2—a1(a1r+ asr) —aj| e ) (20)
whereas the velocity components are given by
k k alt ag
, = : = (2422, 21
u % (@17 + a3) Uy o ( 5 T ) (21)

Now, we require that p > 0 for any value of r and ¢ in order to obtain a physically
acceptable distribution of matter. From expression (20) it is easy to see that p will be no
negative everywhere only if we take a; = ag = 0, so that the expression for the density
reduces to

k2a3

2
Now, as (a2 — 1)/(a3) < 1 < ¢, we have an initial singularity and then the density

¢~ 2a0s—azt D), (22)

decreases to zero as t — co. On the other hand, the velocity vector is given by
u® = 2(179%2)(1,0,0,0), (23)

where, in order to have a future oriented timelike vector, we have taken as < 0. Also,
we can see that the spatial velocity is zero and thus we again have a comoving reference

frame.

The line element can be written as
ds® = 729212493 (—dt® + dr?) + 2da?] + 272 dy?, (24)

so that, when ¢ = 1 (or k = 0) we have a vacuum solution of the Bianchi I type that

reduces to the Kasner solution [5, 6], which can be written as |7, 1]
ds? = t@=D/2(_qe? 4 @r?) 4 a2 4 10y, (25)

with the Kasner parameter given by d = 1 — 2a,. Now, it is worth to mention that
another kind o inhomogeneous stiff cosmologies were obtained by Patel and Dadich [§],
which also reduce to the Kasner solution. However, in contrast with the solution here
presented, the solutions of Patel and Dadich are singularity free.

Now, in order to see if the solution has a real initial singularity, we computed the Weyl

tensor in the natural null tetrad of the metric[9, 10] and obtain

1
o (t,7) = Faz(2az — 1)(azg — )t 20032022, (26)
1
s(t,r) = — 5 (ay — Dagt 2103420272, (27)
1
Wi (t,7) = Gaz(2ay — 1)(azq - 1)t 2405 +2a2-2, (28)
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The scalars constructed from the Ricci and Weyl tensors diverge as ¢ — 0, which
corresponds to a big-bang singularity. Also, it is easy to see that in the algebraic classi-
fication of the Reimann tensor, the metric is of Petrov type 1.

On the other hand, the kinematical quantities for this model can also be easily computed

and so, by taking as < 0, we obtain for the acceleration the expression
a, = (0,0,0,0), (29)

where all the components have been computed in the natural orthonormal tetrad of the
metric. It is interesting to see that, as the pressure gradient is zero, the acceleration is

equal to zero and thus the fluid is geodesic.

3. Discussion

We present a simple family of exact homogeneous stiff cosmologies. The solution was
obtained by introducing an auxiliary function that permit to cast the Einstein and matter
evolution equations as a complete integrable system. The general solution is expressed in
terms of simple functions of the used coordinates. The simple family presented reduces
to the Kasner solution, with Kasner parameter d = 1 — 2a2, when ¢ = 1. This solution
is a vacuum solution of Bianchi I type. The Weyl’s scalars diverge as ¢ — 0, which can
be interpreted as a big-bang singularity. In the algebraic classification of the Riemann
tensor, the metric is of Petrov type I. On the other hand is interesting to see that the

acceleration is equal to zero, so that the fluid is geodesic.
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