Una relación entre la distribución de
Hofmann y distribución de Panjer
JOSÉ ALFREDO JIMÉNEZ MOSCOSO*
Universidad Nacional de Colombia, Departamento de Matemáticas, Bogotá, Colombia
Resumen. Uno de los objetivos principales de la teoría del riesgo actuarial
es modelar el número de reclamaciones por una distribución de probabilidad
clásica; pero debido al mal ajuste estadístico obtenido a veces, en la literatura
actuarial se propone utilizar la familia de distribuciones de Panjer, ya que para
valores específicos de sus parámetros se pueden generar algunas distribuciones
discretas. Este artículo muestra que la distribución de Panjer es un caso
particular de la distribución de Hofmann.
Palabras Claves: Distribución de Panjer, distribución de Hofmann, distribución
Poisson-Pascal, símbolo de Pochhammer.
MSC2010: 62P05, 62E17, 62E15
A relation between the Hofmann's distribution and
Panjer's distribution
Abstract. One of the main objectives of actuarial risk theory is to model the number of claims by a classical probability distribution, but due to poor statistical fit obtained sometimes, in actuarial literature it is proposed to use the Panjer's family of distributions, since for specific values of its parameters can generate some discrete distributions. This paper shows that the Panjer's distribution is a particular case of the Hofmann's distribution.
Keywords: Panjer's distribution, Hofmann's distribution, Poisson-Pascal distribution, Pochhammer's symbol.
Texto Completo disponible en PDF
Referencias
[1] Abramowitz M. and Stegun I., Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables, Dover Publications, Inc., New York, 1965.
[2] Evans D.A., "Experimental evidence concerning contagious distributions in ecology", Biometrika 40 (1953), 186-211.
[3] Fisher R.A., "The negative binomial distribution", Ann. Eugenics 11 (1941), 182-187.
[4] Grandell J., Mixed Poisson Processes, CRC Monographs on Statistics & Applied Probability, Chapman and Hall, 1997..
[5] Hofmann M., "Über zusammengesetzte Poisson-Prozesse und ihre Anwendungen in der Unfallversicherung", Mitt. Verein. Schweiz. Versich.-Math. 55 (1955), 499-575.
[6] Katti S.K. and Gurland J., "The poisson pascal distribution", Biometrics 17 (1961), no. 4, 527-538.
[7] Katz L., "Unified treatment of a broad class of discrete probability distributions", in Classical and Contagious Discrete Distributions Vol. I, (ed. Patil, G.) Stat. Publishing Soc., (1965) 175-182.
[8] Panjer H.H., "Recursive evaluation of a family of compound distributions", Astin Bull. 12 (1981), no. 1, 22-26.
[9] Panjer H.H., "Models of claim frequency", Actuar. Sci. 39 (1986), 115-125.
[10] Schmidt K.D. and Zocher M., "Loss reserving and Hofmann distributions", Schweiz. Aktuarver. Mitt. 2 (2005), no. 2, 127-162.
[11] Sundt B., "On some extensions of Panjer's class of counting distributions', Astin Bull. 22 (1992), 61-80.
[12] Sundt B., "On multivariate Panjer's recursions", Astin Bull. 29 (1999), 29-46.
[13] Sundt B. and Jewell W.S., "Further results on recursive evaluation of compound distributions", Astin Bull. 12 (1981), no. 1, 27-39.
[14] Walhin J.F., "Recursions for actuaries and applications in the field of reinsurance and bonus-malus systems", Thesis (Ph.D.), Universitè catholique de Louvain, Institut de statistique, Louvain-la-Neuve, 2000.
[15] Walhin J.F. and Paris J., "Processus de Poisson melange et formules unifiees pour systemes bonus-malus", Bull. français d'actuariat 3 (1999), no. 6, 35-43.
*Autor para correspondencia: E-mail: josajimenezm@unal.edu.co.
Recibido: 14 de septiembre de 2012, Aceptado: 25 de octubre de 2012.