Algunas propiedades de la independencia
condicionada
MIGUEL A. MARMOLEJO L.*, ANDRÉS F. MUÑOZ-TELLO*
Universidad del Valle, Departamento de Matemáticas, Cali, Colombia.
Resumen. El objetivo de este artículo es el de establecer algunas propiedades
nuevas de la independencia condicionada de una familia de clases de eventos.
De una parte, se generalizan algunos de los resultados de Van Putten y Van
Schuppen [15], que consideran el caso de una familia con dos elementos, y,
de otra parte, se generalizan resultados conocidos sobre familias de clases de
eventos independientes. Como aplicación, se dan algunas propiedades de la
independencia condicionada de una familia de variables aleatorias.
Palabras Claves: Esperanza condicionada, independencia condicionada.
MSC2010: 60A05, 97K50, 60G99.
Some properties of conditional independence
Abstract. The aim of this paper is to establish some new properties of the
conditional independence of a family of classes of events. On the one hand,
we generalize some of the results by Van Putten and Van Schuppen [15], who
considered the case of families with two elements, and, on the other hand,
we generalize known results on independents families of classes of events. As
an application, we give some properties of the conditional independence in a
family of random variables.
Keywords: Conditional expectation, conditional independence.
Texto Completo disponible en PDF
Referencias
[1] Ash R.B. and Dolèans-Dade C.A., Probability and Measure Theory , Second Edition, Academic Press, San Diego, 2000.
[2] Bauer H., Probability Theory, Walter de Guyter, New York, 1972.
[3] Basu D. and Pereira C.A.B., "Conditional independence in statistics", Sankhyā Ser. A 45 (1983), no. 3, 324-337.
[4] Billingsley P., Probability and Measure, Jhon Wiley and Sons. Inc., New York, 1979.
[5] Grzenda W. and Zieba W., "Conditional Central Limit Theorems", Int. Math. Forum 3 (2008), no. 31, 1521-1528.
[6] Jamison B., "Reciprocal processes: the stationary Gaussian case", Ann. Math. Statist. 41 (1970), no. 5, 1624-1630.
[7] Loève M., Probability Theory II, Four Edition, Springer-Verlag, New York, 1978.
[8] Majerek D., Nowak W. and Zieba W., "Conditional Strong Law of Large Number", Int. J. Pure and Appl. Math. 20 (2005), no. 2, 143-156.
[9] Majerek D. and Zieba W., "Conditional Martingales", Acta Math. Vietnam. 32 (2007), no. 1, 41-50.
[10] Majerek D. and Zieba W., "Conditional Version of Marcinkiewicz-Zygmunt's Theorem", Int. Math. Forum 3 (2008), no. 25, 1233-1240.
[11] Nogales A.G. and Oyola J.A., "Some remarks on sufficiency, invariance and conditional independence", Ann. Statist. 24 (1996), no. 2, 906-909.
[12] Nogales A.G., Oyola J.A. and Pérez P., "On conditional independence and the relationship between sufficience and invariance under the Bayesian point of view", Statist. Probab. Lett. 46 (2000), no. 1, 75-84.
[13] Nualart D., The Malliavin Calculus and Related Topics, Springer-Verlag, New York, 1995.
[14] Prakasa Rao B.L.S., "Conditional independence, conditional mixing and conditional association", Ann. Inst. Statist. Math. 61 (2009), no. 2, 441-460.
[15] Van Putten C. and Van Schuppen J.H., "Invariance properties of the conditional independence relation", Ann. Probab. 13 (1985), no. 3, 934-945.
[16] Roussas G., "On conditional independence, mixing, and association", Stoch. Anal. Appl. 26 (2008), no. 6, 1274-1309.
[17] Shiryaev A.N., Probability, Second Edition, Springer, New York, 1996.
[18] Williams D., Probability with Martingales, Cambridge University Press, Cambridge, 1997.
*Autor para correspondencia: E-mail: mimarmol@univalle.edu.co.
Recibido: 9 de marzo de 2013, Aceptado: 25 de julio de 2013.