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Continuous dependence of very weak solutions

for the stationary Navier-Stokes equations

Villamizar-Roa, E.J.∗

Abstract. In this work we show the continuous dependence of the very weak

solutions for the stationary Navier-Stokes system with respect to boundary data

belonging to space L
2(Γ).

1. Introduction

Let Ω ⊆ R
3, be a bounded domain with boundary Γ of class C1,1. Let g = (g1, g2, g3)

and f = (f1, f2, f3) two given fields defined on the boundary Γ and Ω, respectively. The
stationary Navier-Stokes system can be written as follows:







−ν∆u + (u · ∇)u + ∇p = f , in Ω,

div u = 0, in Ω,

u = g, on Γ,

(1)

where u denotes the velocity field, p the pressure, f the density of he body force, g the
prescribed velocity on the boundary of Ω and ν the viscosity of fluid. Without loss of
generality we consider the density equals one.

As usual (Lp(Ω), | · |p), with 1 ≤ p ≤ +∞ and (W k,p, ‖ · ‖k,p) are the usual Sobolev
spaces. In particular Hk(Ω) = W k,2(Ω) with the norm ‖ · ‖k = ‖ · ‖k,2. By (·, ·), we
represent the inner product in L2(Ω). We denote

H1
Γ(Ω) := {u ∈ H1(Ω) : u ≡ 0 on Γ}

and V the closure of {u ∈ C∞

0 : ∇ · u = 0 in Ω} in the norm of H1(Ω), being ((·, ·))
and ‖ · ‖ the corresponding inner product and norm.

If the boundary data g is regular enough we can extend the boundary condition
on the whole domain in order to obtain a new system with homogeneous boundary
conditions, which can be solved in a standard way obtaining the existence of a weak
solution for (1) (see for instance [5]). However, if a boundary condition g ∈ L2(Γ)3,
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which is not the trace of a function in the Sobolev space W 1,2(Ω), a new notion of
solution for (1) is necessary. In fact, Marusic-Paloka in [4] introduced the following
definition of solution for the stationary Navier-Stokes system (1) when g ∈ L2(Γ)3.

Definition 1.1. [4] Let g ∈ L2(Γ)3 and f ∈ W−1,3(Ω)3. A function u ∈ L3(Ω)3 is called
a very weak solution of Problem (1) if, for any

w ∈ V =
{

φ ∈ W 2,3/2(Ω)3 ∩ W 1,3/2(Ω)3 : div φ = 0
}

and any π ∈ W =
{

ϕ ∈ W 1,3/2(Ω) :
∫

Γ
ϕ = 0

}

, the following equalities hold:

−

∫

Ω

νu∆w −

∫

Ω

(u · ∇)wu +

∫

Γ

g ·
∂w

∂n
= 〈f,w〉W−1,3,W 1,3/2 , (2)

∫

Ω

∇π −

∫

Γ

π(g · n) = 0. (3)

The notion of very weak solution for the Navier-Stokes system is a natural extension
of the definition of weak solution. In [1], Conca introduced the notion of very weak
solution for the case of Stokes equations, that is, for the problem







−ν∆u + ∇p = f, in Ω,

div u = 0, in Ω,

u = g, on Γ,

(4)

where g ∈ L2(Γ)3. This problem arise in homogenization problems, and the solvabi-
lity was showed using the transposition method which was introduced by Lions and
Magenes [3].

Later, Marusič-Paloka [4] extended the Conca’s results for the case of Navier-Stokes
equations. He proved the existence of very weak solution of the System (1), in the
sense of Definition 1.1, with L2 boundary data. Under the small data assumption he
also proved the uniqueness. The proof was obtained using the penalization method to
study the linearized problem and then, applying Banach’s fixed point theorem for the
nonlinear problem with small data. In the case with no small data assumption the
proof is obtained by splitting the data on a large regular and small irregular ones.

In this paper we use the method used by Mausic-Paloka in [4] in order to show the
continuous dependence of the very weak solutions with respect to the density of the
body force f and the prescribed velocity g on the boundary Γ.

2. Continuous dependence

Let vǫ
1,v

ǫ
2 be two very weak solutions of (1) with data f1, g1, and f2, g2, respectively.

We will study the problem which is satisfied by the difference w = vǫ
1 − vǫ

2, that is:

(P )







−ν∆w + (vǫ
1 · ∇)w + (w · ∇)vǫ

2 + ∇(pǫ
1 − pǫ

2) = f1 − f2, in Ω,

div w = 0, in Ω,

w = g1 − g2, on Γ.
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Firstly, we consider the Problem (P ) with f1 − f2 ≡ 0, and for this case we consider
the sequence of penalized problems:

(Pp)































−ν∆wm + (vǫ
1 ·∇)wm + (wm ·∇)vǫ

2 + ∇(pm,ǫ
1 − p

m,ǫ
2 ) = 0, in Ω,

div wm = 0, in Ω,

wm
∣

∣

∣

Γ
+

1

m

{

ν ∂nw
m − (pm,ǫ

1 − pmǫ
2 )n

1

2
(vǫ

1 · n)wm − (wm · n)vǫ
2

}∣

∣

∣

∣

Γ

= g1 − g2.

Formally speaking ,when m → ∞, we obtain the Problem (P ). Problem (Pp) can be
written in variational form as:

ν

∫

Ω

∇wm : ∇Ψ −

∫

Ω

(vǫ
1 · ∇)Ψ · wm −

∫

Ω

(wm · ∇)Ψ · vǫ
2

+ m

∫

Γ

wm · Ψ = m

∫

Γ

(g1 − g2) · Ψ −
1

2

∫

Γ

(vǫ
1 · n)wm · Ψ, (5)

for all Ψ ∈ H1
div ≡ {Ψ ∈ H1(Ω) : div Ψ = 0}. Using the arguments of [4], we can

obtain the existence of a unique solution wm in H1
div(Ω) of the equation (5) such that:

|wm|L2(Γ) ≤ C(vǫ
1,v

ǫ
2)|(g1 − g2)|L2(Γ). (6)

In fact, we consider the bilinear form a : H1
div × H1

div → R defined by

a(Φ,Ψ) = ν

∫

Ω

∇Φ : ∇Ψ −

∫

Ω

(vǫ
1 · ∇)Ψ · Φ + m

∫

Γ

Φ · Ψ +
1

2

∫

Γ

(vǫ
1 · n)Φ · Ψ,

which satisfies: a(Φ,Φ) = ν

∫

Ω

|∇Φ|2 + m

∫

Γ

|Φ|2.

Due the Lax-Milgram theorem we obtain the existence of a unique solution wm ∈
H1

div of (5). In order to obtain the ellipticity of the bilinear form a, we use the following
inequality of the Poincaré-type:

|φ|L2(Ω) ≤ C(|∇φ|L2(Ω) + |φ|L2(Γ)), ∀φ ∈ H1(Ω). (7)

Note that wm satisfies

a(wm,wm) = m

∫

Γ

(g1 − g2) · w
m +

∫

Ω

(wm · ∇)wm · vǫ
2

≤ m|g1 − g2|L2(Γ) |w
m|L2(Γ) + ‖wm‖2

1 |v
ǫ
2|3.

(8)

We remark that using the inequality (7) and noting that |vǫ
2|3 ≤

ν

2
, the former ex-

pression implies that

ν

2

∫

Ω

|∇wm|2 + m

∫

Γ

|wm|2 ≤ m|g1 − g2|L2(Γ) |w
m|L2(Γ),

and consequently, |wm|L2(Γ) ≤ |g1 − g2|L2(Γ).
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In order to obtain the very weak solution w = vǫ
1 − vǫ

2, we study the dual problem,
that is,







−ν∆Φ − (vǫ
1 · ∇)Φ − (vǫ

2 · ∇
t)Φ + ∇π = F, in Ω,

div Φ = 0, in Ω,

Φ| = 0, on Γ,

where F ∈ L3/2(Ω). Therefore we obtain

‖Φ‖W 2,3/2(Ω) + ‖π‖W 1,3/2(Ω) ≤ c |F|3/2 (1 + |vǫ
1|3 + |vǫ

2|3) .

This proof is an adaptation of the proof of Lemma VIII.5.1 from [2]. It is based on
a similar estimate for the Stokes system. Now, taking Ψ as test function in (5), with
F = |wm|wm, we obtain that

|wm|33 +

∫

Γ

(ν ∂nΨ − π n) · wm dσ = 0.

Hence, using (6) we have:
∫

Γ

(ν ∂nΦ − π n) · wm dσ ≤
(

ν |∂nΦ)|L2(Γ) + |π|L2(Γ)

)

|wm|L2(Γ)

≤ C
(

‖Ψ‖W 2,3/2(Ω) + ‖π‖W 1,3/2(Ω)

)

|g1 − g2|L2(Γ)

≤ C |wm|23 (1 + |vǫ
1|3 + |vǫ

2|3) |g1 − g2|L2(Γ).

Consequently we obtain

|wm|3 ≤ C
(

1 + |vǫ
1|3 + |vǫ

2|3

)

|g1 − g2|L2(Γ). (9)

The former remarks allow to show the following theorem:

Theorem 2.1. Let vǫ
1,v

ǫ
2 two very weak solutions of Navier-Stokes system with external

forces f1, f2 ∈ H−1(Ω) and boundary data g1,g2 ∈ L2(Γ), respectively. Then there

exists a unique very weak solution w of Problem (P ) satisfying

|w|3 ≤ C
(

1 + |vǫ
1|3 + |vǫ

2|3

)

|g1 − g2|L2(Γ) + C|f1 − f2|H−1(Ω). (10)

Proof. Firstly we consider the case f1− f2 = 0. By the former remarks we have that
there exists w0 ∈ L3(Ω) and ξ ∈ L2(Γ) such that, passing eventually to a subsequence,

wm ⇀ w0, weakly in L2(Ω), wm
∣

∣

Γ
⇀ ξ, weakly in L2(Γ).

First we prove that ξ = g1 − g2. Taking Ψ ∈ C2(Ω̄) as test function in (5), we obtain

m

∫

Γ

(wm − (g1 − g2))Ψ =

∫

Ω

wm∆Ψ −

∫

Γ

wm∂nΨ +

∫

Ω

(vǫ
1 · ∇)Ψ · wm +

+

∫

Ω

(wm · ∇)Ψ · vǫ
2 +

1

2

∫

Γ

(vǫ
1 · n)wm · Ψ

≤ |wm|3|∆Ψ|3/2 + |wm|L2(Γ)|∂nΨ|L2(Γ)

+|vǫ
1|3|w

m|3|∇Ψ|3 + |vǫ
2|3|w

m|3|∇Ψ|3

+|vǫ
1 · n|L2(Γ)|w

m|L4(Γ)|Ψ|L4(Γ) ≤ C.
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Therefore, taking to the limit when m → ∞, we get
∫

Γ

(ξ − (g1 − g2))Ψ = 0. (11)

Hence, (11) holds for Ψ ∈ L2; in particular for Ψ = ξ − (g1 − g2). This implies that
ξ = (g1 − g2). On the other hand, for Ψ ∈ V, we have

∫

Ω

wm∆Ψ +

∫

Ω

(vǫ
1 · ∇)Ψ · wm +

∫

Ω

(wm · ∇)Ψ · vǫ
2 = 0.

Therefore, taking to the limit when m → ∞, we obtain
∫

Ω

w0∆Ψ +

∫

Ω

(vǫ
1 · ∇)Ψ · w0 +

∫

Ω

(w0 · ∇)Ψ · vǫ
2 = 0.

Analogously, for τ ∈ W 1,3/2(Ω),
∫

Ω
τ = 0, we obtain:

∫

Ω

wm∆τ =

∫

Γ

τ(wm · n),

this implies that
∫

Ω

w0∆τ =

∫

Γ

τ((g1 − g2) · n).

Hence w0 is a very weak solution of (P ) with f1 − f2 = 0. The uniqueness is due to
linearity and it implies that the whole sequence {wm} converges to w0. The estimate
(10), for the first case, follows from (9) and the lower semicontinuity of the norm | · |3.
Finally, for the case f1 − f2 6= 0, we consider the solution w̃ ∈ H1(Ω) of the problem







−∆w̃ + ∇q̃ = f1 − f2, in Ω,

div w̃ = 0, in Ω,

w̃ = 0, on Γ.

Hence, the unique very weak solution is obtained as w = w0 + w̃. As we have the
inequality |w̃|2 ≤ C|f1 − f2|H−1 , the estimate (10) is true.
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