Una aplicación de las funciones débilmente
contractivas a problemas de valor en la
frontera de funciones con valores en intervalos

VLADIMIR ANGULO-CASTILLO*

 Universidad Industrial de Santander, Escuela de Matemáticas, Bucaramanga, Colombia.


Resumen. Se estudia la existencia y unicidad de soluciones para problemas de valor en la frontera asociadas a ecuaciones diferenciales de funciones con valores en intervalos, usando la derivada de Hukuhara y algunos teoremas de punto fijo de funciones débilmente contractivas definidas en conjuntos parcialmente ordenados.

Palabras claves: Funciones contractivas, funciones con valores en intervalos, diferenciabilidad de funciones con valores en intervalos, ecuaciones diferenciales de funciones con valores en intervalos.
MSC2010: 47H09, 26E25, 34L30.


An application of weakly contractive mappings to
boundary value problems of interval-valued functions

Abstract. We study the existence and uniqueness of solutions for boundary value problems associated to differential equations of interval-valued functions, by using the derivative of Hukuhara and some fixed point theorems for weakly contractive mappings defined on partially ordered sets.

Keywords: Contractive functions, interval-valued functions, differentiability interval-valued functions, differential equations interval-valued.


Texto Completo disponible en PDF


Referencias

[1] Aubin J.P. and Cellina A., Differential Inclusions, Springer-Verlag, New York, 1984.

[2] Aubin J.P. and Franskowska H., Set-Valued Analysis, Birkhäuser, Boston, 1990.

[3] Aubin J.P. and Franskowska H., "Set-valued analysis in control theory", Set-Valued Anal. 8 (2000), 1-9.

[4] Banks H.T. and Jacobs M.Q., "A differential calculus for multifunctions", J. Math. Anal. Appl., 29 (1970), 246-272.

[5] Folland G., Real Analysis. Pure and Applied Mathematics, John Wiley & Sons Inc., New York, 1999.

[6] Dhutta P.N. and Choudhury B.S., "A generalization of contraction principle in metric spaces", Fixed Point Theory Appl. (2008), 8 p.

[7] Goetschel R. and Voxman W., "Elementary fuzzy calculus", Fuzzy Sets and Systems 18 (1986), 31-43.

[8] Harjani J. and Sadarangani K., "Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations", Nonlinear Anal. 72 (2010), 1188-1197.

[9] Hukuhara M., "Intégration des applications measurables dont la valeur est un compact convexe", Funkcial. Ekvac. 10 (1967), 205-223.

[10] Kaleva O., "Fuzzy differential equations", Fuzzy Sets and Systems 24 (1987), 301-317.

[11] Kaleva O., "A note on fuzzy differential equations", Nonlinear Anal. 64 (2006), 895-900.

[12] Moore R.E., Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.

[13] Moore R.E., Computational Functional Analysis, Ellis Horwood Limited, England, 1985.

[14] Negoita C.V. and Ralescu D., Applications of Fuzzy Sets to Systems Analysis, Wiley, New York, 1975.

[15] Nieto J.J. and Rodríguez-López R., "Applications of contractive-like mapping principles to fuzzy equations", Rev. Mat. Complut. 19 (2006), 361-383.

[16] Nieto J.J. and Rodríguez-López R., "Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations", Order 22 (2005), 223-239.

[17] Nieto J.J. and Rodríguez-López R., "Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations", Acta Math. Sin. (Engl. Ser.) 23 (2007), 2205-2212.

[18] Puri M. and Ralescu D., "Fuzzy random variables", J. Math. Anal. Appl. 114 (1986), 409- 422.

[19] Puri M. and Ralescu D., "Differential of fuzzy functions", J. Math. Anal. Appl. 91 (1983), 552-558.

[20] Rhoades B.E., "Some theorems on weakly contractive maps", Nonlinear Anal. 47 (2001), 2683-2693.

[21] Zadeh L.A., "Fuzzy sets", Infor. and Control 8 (1965), 338-353.


*E-mail: vladimir_angulo01@hotmail.com.
Recibido: 09 de septiembre de 2013, Aceptado: 12 de noviembre de 2013.
Para citar este artículo: V. AnguloCastillo, Una aplicación de las funciones débilmente contractivas a
problemas de valor en la frontera de funciones con valores en intervalos, Rev. Integr. Temas Mat. 32
(2014), no. 1, 27-37.