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Abstract. A preconditioning technique to improve the convergence of the
Gauss-Seidel method applied to symmetric linear systems while preserving
symmetry is proposed. The preconditioner is of the form I + K and can be
applied an arbitrary number of times. It is shown that under certain condi-
tions the application of the preconditioner a finite number of steps reduces the
matrix to a diagonal. A series of numerical experiments using matrices from
spatial discretizations of partial differential equations demonstrates that both
versions of the preconditioner, point and block version, exhibit lower iteration
counts than its non-symmetric version.
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Una técnica de aceleración para el método

Gauss-Seidel aplicado a sistemas lineales simétricos

Resumen. Se propone una técnica de precondicionamiento para mejorar la
convergencia del método Gauss-Seidel aplicado a sistemas lineales simétri-
cos pero preservando simetría. El precondicionador es de la forma I + K y
puede ser aplicado un número arbitrario de veces. Se demuestra que bajo cier-
tas condiciones la aplicación del precondicionador un número finito de pasos
reduce la matriz del sistema precondicionado a una diagonal. Una serie de
experimentos con matrices que provienen de la discretización de ecuaciones
en derivadas parciales muestra que ambas versiones del precondicionador, por
punto y por bloque, muestran un menor número de iteraciones en compara-
ción con la versión que no preserva simetría.

Palabras claves: Precondicionamiento, método de Gauss-Seidel, descomposi-
ciones regulares.
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1. Introduction

The slow convergence of the Gauss-Seidel relaxation method has prompted several re-
searchers to develop preconditioning techniques to accelerate the convergence of this
iterative method. Acceleration techniques for Jacobi and Gauss-Seidel methods applied
to diagonally dominant Z matrices were proposed in [10], [8], [6] and [7]. A survey of
such techniques can be found in [11]. A more recent analysis of preconditioners applied
to a wider class of Z matrices can be found in [13]. Extensions of these preconditioners to
other classes of matrices have also been proposed, for instance in [9, 12] for M matrices
and in [14] for H matrices.

To accelerate the convergence of the Jacobi and Gauss-Seidel methods, preconditioners
of the form I + K were originally introduced by Milaszewic in [10]. Following this idea
and using a different definition of matrix K, another preconditioner, namely I+Smax was
proposed in [7]. An extension of this preconditioner was recently proposed by the authors
in [1]. The preconditioner is based on the application of a fixed but arbitrary number
of I + Smax steps. The analysis was carried out for diagonally dominant Z matrices.
Numerical experiments showed good performance for a wider class of matrices including
those not covered by the theoretical analysis. A block version of the preconditioner was
numerically tested for the first time showing a superior performance compared to its
standard point version.

Consider the splitting A = −L+D − U of a non singular matrix A where −L and −U

are the strict lower and upper triangular parts of A and D its main diagonal. Recalling
that the Gauss-Seidel iteration is a fixed point iteration of the form

xn+1 = M−1Nxn +M−1b,

where M = D − L and N = U . The aim of the I + Smax preconditioner is to reduce
the spectral radius of the iteration matrix M−1N by annihilating, on each row of U , the
entry with greatest magnitude. Unfortunately, this technique does not preserve symmetry
when applied to a symmetric matrix; and, if such preconditioner is applied to both sides
of A, that is (I+Smax)A(I+Smax)

T , symmetry is obviously preserved, but new non zero
entries are introduced. In this work a preconditioner, S, that applies Kotakemori’s idea
while preserving symmetry is introduced. As in [1], the proposed preconditioner can be
applied a fixed but arbitrary number of steps. A block version is also numerically tested
and compared against its point version.

2. Symmetric preconditioner

The proposed preconditioner is of the form S = I + K and takes as a starting point
Kotakemori’s idea and the product SAST to preserve symmetry. The entries of matrix
K are defined as follows:

Ki,j =






−
ai,ki

+Kki,kki
ai,kki

aki,ki
+Kki,kki

aki,kki

if j = ki,

0 if j �= ki,

(1)
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where
ki = min{j | |ai,j | = max

k>i
|ai,k|}.

For ki = n the value Kn,kn
is assumed to be zero.

Lemma 2.1. Let A be a non-singular symmetric matrix and S its symmetric precondi-

tioner; then SAST is a non-singular symmetric matrix.

Proof. First notice that symmetry is trivially preserved. Since

det(SAST ) = det(S) det(A) det(ST )

and neither one of these determinants is zero, then SAST is non-singular. ����

Lemma 2.2. Let A be a symmetric positive definite matrix and S its symmetric precon-

ditioner; then SAST is a positive definite matrix.

Proof. Let x be a non-zero vector. By the non-singularity of ST the vector y = STx is
also a non null vector. Since A is symmetric positive definite we have

xTSASTx = �STx,ASTx� = �y,Ay� > 0,

which proves that SAST is also symmetric positive definite. ����

2.1. Recursive preconditioner S[k]

Following the idea presented in [1] we define a recursive preconditioner S[k] by applying a
fixed but arbitrary number of times the preconditioner S as follows. Let A be a symmetric
matrix; we set S[0] = I and A0 = (S[0])A(S[0])T = A and for all k ≥ 1 we define

Ak+1 =
�
S[k]

�
Ak

�
S[k]

�T

,

where S[k] is the preconditioner S applied to matrix Ak. We now state our main result.

Theorem 2.3. Let A be a non-singular n×n symmetric-matrix; then there exists kA ∈ N

such that AkA
is a diagonal matrix.

Proof. We proceed by induction. Let A be a non-singular 2× 2 symmetric matrix. Then

S[1] =

�
1 −

a1,2

a2,2

0 1

�

and A1 =

�
a1,1 −

a1,2a2,1

a2,2
0

0 a2,2

�

.

Now, suppose that for any n× n symmetric-matrix A, there exists kn such that Akn
is

a diagonal matrix. Let A be an (n + 1) × (n + 1) symmetric matrix; then, it can be
partitioned as follows:

A =








a1,1 a1,2 . . . a1,n+1

a2,1
... A2,2

an+1,1








.
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By the induction hypothesis, there exists an integer k1 such that after applying k1 steps
of the symmetric preconditioner to matrix A the sub-block A2,2 reduces to a diagonal
matrix. We now consider entry (1, n + 1) of the preconditioned matrix Ak1

. We have
two cases:

Case Ak1
(1, n+ 1) = 0. We can consider the following block partition of Ak1

:

Ak1
=








0

A1

...
0

0 . . . 0 ∗








.

Using the hypothesis of induction one more time, there exists an integer k2 such
that after applying k2 steps of the symmetric preconditioner to matrix Ak1

, Ak1+k2

is a diagonal matrix.

Case Ak1
(1, n+ 1) �= 0. Consider the block partition

Ak1
=










∗
0

A1

...
0

∗ 0 . . . 0 ∗










.

We consider two possible sub-cases: first, suppose that after a finite number of
preconditioning steps, k2, entry (1, n+ 1) becomes 0, that is Ak1+k2

(1, n+ 1) = 0;
the result follows since we fall into previous case. On the other hand, if for any
number k ≥ 1 of preconditioning steps entry (1, n + 1) �= 0, this means that S[k]

acts only over the block A1, for any k ≥ 1. However, by the induction hyphotesis
there exists a number k2 such that matrix A1 becomes diagonal. Therefore, after
k1 + k2 + 1 steps entry (1, n+ 1) becomes 0 which is a contradiction. ����

3. Computational issues

Taking advantage of the structure of matrix S = I + K, only two values per row are
needed to store this preconditioner: for row i, we store the value Ki,ki

in Sarray[i] and
the index value ki in Jarray[i]; both values have been defined in Equation (1). Using this
data structure, preconditioner S[k] requires a memory space O(2kn) instead of O(kn2).
An important detail to consider is that only S is stored but not ST , which is needed in
the computation of the solution of the original problem. Since ki > i, the computation
is done starting from row n− 1, as shown in Algorithm 3.1.
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Algorithm 3.1 Computation of S

1: Sarray[n] ← 0
2: for i = n− 1 : 1 do

3: Jarray[i] ← ki where ki = min{j | |ai,j | = max
k>i

|ai,k|}

4: kki
= Jarray[ki]

5: Sarray[i] ← −
ai,ki

+ Sarray[ki]ai,kki

aki,ki
+ Sarray[ki]aki,kki

6: end for

To find the index value ki a search above the main diagonal on each row is conducted.
This search takes O(nnz(i)) time and the entire process has a complexity O(nnz) where
nnz is the total number of non-zero entries in matrix A. For matrices arising from
discretizations of partial differential equations the complexity is linear O(n) with respect
to the number of unknowns, n.

The assembly of the preconditioned matrix SAST is presented in Algorithm 3.2. Given
the structure of S, row i of (SA) is a linear combination of two rows in A:

(SA)i,∗ = Ai,∗ + Sarray[i] · Aki,∗,

as shown in lines 2− 3 of Algorithm 3.2. Column j of SAST is a linear combination of
two columns of (SA):

(SAST )∗,j = (SA)∗,j + Sarray[j] · (SA)∗,kj
,

lines 4 − 6 of Algorithm 3.2. Finally, since we use a storage scheme for sparse matrix a
compression of the matrix is performed in line 7.

Algorithm 3.2 Computation of SAST

1: for i = 0 : i < n do

2: row = Ai,∗

3: row = rowi,∗ + Sarray[i] ·Aki,∗

4: for j = 0 : n− 1 do

5: rowj = rowj + Sarray[j] · rowkj

6: end for

7: Compress resulting matrix
8: end for

4. Numerical experiments

The purpose of this section is to carry out a series of experiments to assess the quality
of the proposed preconditioner applied to matrices obtained from the discretization of
partial differential equations using the Finite Volume method and the Local Discontin-
uous Galerkin (LDG) method [3, 2], which is a high order discontinuous finite element
method. The symmetric version, S[k], and its non symmetric version P [k], analyzed in

Vol. 32, No. 1, 2014]



96 J. Cajigas, I. Arenas & P. Castillo

[1], are compared as well as its point and block versions. We use a stopping criteria based
on relative residual norms, that is

�b−Axn�2 ≤ r�b−Ax0�2,

where the relative tolerance r is chosen according to the problem. Additionally, a maxi-
mum number of iterations of 5000 is used.

4.2. Porous media problem

In this experiment, matrix A is obtained from the discretization of the Laplacian operator
−∇ ◦ D∇p in Ω = [0, 1] × [0, 1] using the Finite Volume method. Dirichlet boundary
conditions are imposed at x = 0, p = 1, and at x = 1, p = 0. No flow boundary conditions
are imposed at y = 0 and y = 1. The permeability tensor takes the values D = 10−6Id
and D = Id according to the permeability field distribution proposed in [5]. Starting
from a spatial uniform discretization of 20×20 rectangular cells and by performing three
consecutive global refinement, matrices Ai, i = 1, . . . , 4 of order 400, 1600, 6400 and 25600
respectively, are considered in this set of experiments. The right hand side is chosen such
that the vector x∗ with random generated entries in (0, 1) is the exact solution of the
linear system.

Table 1 show the number of iterations until convergence for both preconditioners using
different number of preconditioning steps. For all matrices, the total number of iterations
using preconditioner S[k] is lower, almost by a factor of 2, compared to those obtained
for the non-symmetric preconditioner P [k].

P [1] S[1] P [5] S[5] P [10] S[10] P [15] S[15] P [20] S[20]

A1 431 398 183 111 112 63 89 44 75 35

A2 1787 1665 784 477 466 261 368 182 303 140

A3 – – 2850 1745 1709 972 1363 686 1131 533

A4 – – – – – 3334 4639 2393 3879 1885

Table 1. Iteration count for isotropic permeability field.

In Table 2 we show the spectral radius of the preconditioned Gauss-Seidel iteration
matrix for the first three matrices. Our numerical results indicate that when S[k] is
applied recursively the spectral radius is decreasing faster than when P [k] is applied. This
behavior agrees with the low iteration count obtained when the symmetric preconditioner
is used.

0 P [1] S[1] P [5] S[5] P [10] S[10] P [15] S[15] P [20] S[20]

A1 0.987 0.978 0.976 0.947 0.912 0.912 0.843 0.889 0.782 0.868 0.724

A2 0.997 0.996 0.995 0.989 0.982 0.981 0.966 0.976 0.951 0.971 0.936

A3 0.999 0.999 0.999 0.998 0.996 0.996 0.992 0.995 0.989 0.993 0.986

Table 2. Spectral radius of preconditioned Gauss-Seidel iteration matrix.

Since our interest is the performance of the preconditioner on sparse matrices, we consider
the standard Compressed Sparse Row, CSR, storage scheme. In Table 3 we show the
ratio of the total number of non-zero coefficients between the preconditioned and the
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original matrix as a measure of memory storage. Compared to preconditioner P [k], the
symmetric version S[k] requires more storage for the same number of preconditioning
steps.

P [1] S[1] P [5] S[5] P [10] S[10] P [15] S[15] P [20] S[20]

A1 1.4 1.8 6.07 18.7 17.22 61.8 27.48 72.7 31.66 72.8
A2 1.4 1.9 6.59 20.7 22.34 94.1 48.77 204.5 78.46 287.3
A3 1.4 1.9 6.94 20.8 24.39 109.2 58.01 289.7 107.75 547.7
A4 1.4 1.9 7.02 20.6 24.84 110.5 61.15 316.3 119.50 678.7

Table 3. Ratio of non-zeros coefficients relative to non-preconditioned matrix.

4.3. Random isotropic permeability field

We now consider a more challenging problem by using a random isotropic permeability
field. The permeability tensor of cell i is of the form Di = 10αiI where αi ∈ (−8, 1).
The right hand side was chosen as in the previous experiment. In Table 4 we report the
operation count for both preconditioners, again the symmetric version S[k] exhibits lower
iteration counts than its non symmetric version P [k].

P [1] S[1] P [5] S[5] P [10] S[10] P [15] S[15] P [20] S[20]

A1 – – 2330 1464 808 310 411 115 248 57

A2 – – – 4076 3241 1179 1869 579 1258 332

A3 – – – – – 4764 – 2570 – 1620

A4 – – – – – – – – – 4560

Table 4. Iteration count for random isotropic permeability field.

5. Block version of S [k]

Following the construction process done for the point version of the preconditioner, a
block version of it is now defined. We assume that matrix A has been partitioned with
a block structure, then K can be defined as follows:

Ki,j =

{
−(Ai,ki

+KT
ki,kki

Ai,kki
)(Aki,ki

+KT
ki,kki

Aki,kki
)−1 if j = ki,

0 if j �= ki,
(2)

where

ki = min

{

j : � Ai,j � = max
k>i

� Ai,k �

}

,

and �� is a matrix norm. The appropriate selection of which norm to choose depends
specifically on the problem. For illustration purposes we have compared different norms
on a particular problem. We considered matrices obtained from the LDG spatial dis-
cretization of a diffusion problem in a three dimensional domain using polynomials of
degree one. As described in [4], these matrices have a natural sparse block structure
where each block is a 4 × 4 dense block. The matrix is symmetric positive definite, its
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block dimensions are 2523 × 2523 and its global matrix dimensions are 10092 × 10092.
We consider the standard norms || · ||F , || · ||1, || · ||∞ and || · ||m which is defined as:

� A �m = max {|aij |, i, j = 1, 2, ..., n}

We have set the relative tolerance to 10−9. Since the right hand side is know we use as
initial guess the null vector. Table 5 shows the dependence of the iteration count with
respect to the matrix norm used. For this particular example, although a slight variations
in the iteration count is observed, the infinite norm seems to produce the lowest iteration
count.

Norm S[10] S[15] S[20] S[25]

|| · ||1 2868 1738 1220 930
|| · ||F 2811 1701 1194 902

|| · ||∞ 2759 1687 1175 902

|| · ||m 2892 1170 1250 960

Table 5. Number of iterations until convergence for the LDG stiffness matrix.

Tables 6 and 7 show the amount of memory needed by the preconditioned matrix for all
different block norms, in Megabytes and total number of non-zero entries, respectively.
In general we observe no substantial difference for a fixed number of preconditioning
steps k. For k less or equal to 10 the infinite norm yield less fill in, while for k equal
to 25 the Frobenius norm, the preconditioned matrix requires less memory. However is
important to observe that as we perform more preconditioning steps the preconditioned
matrix becomes denser no matter what norm is used; therefore asymptotically the choice
of the block norm becomes irrelevant.

Norm S[1] S[5] S[10] S[15] S[20] S[25]

|| · ||1 4.72 30.59 76.07 120.03 163.15 206.61
|| · ||F 4.63 30.28 76.09 120.48 164.38 205.68

|| · ||∞ 4.48 29.52 75.50 120.87 164.04 205.76
|| · ||M 4.68 30.22 76.58 122.48 167.67 208.93

Table 6. Memory storage (in Megabytes) for preconditioned matrix using different block norms.

Norm S[1] S[5] S[10] S[15] S[20] S[25]

|| · ||1 29697 195487 487021 768863 1045271 1323833
|| · ||F 29121 193517 487187 771715 1053125 1317861

|| · ||∞ 28143 188659 483421 774241 1050943 1318403
|| · ||M 29415 193129 490303 784525 1074251 1338707

Table 7. Total number of non zero blocks of preconditioned matrix using different norms.

5.4. Block S[k] versus block P [k]

We now compare the block version of both preconditioners: symmetric S[k] versus non-
symmetric P [k], [1]. The linear system used for this experiment is the same of the previous
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