Distribución de probabilidad de Maxwell
transmutada
YURI A. IRIARTE*, JUAN M. ASTORGA
Universidad de Atacama, Instituto Tecnológico, Copiapó, Chile.
Resumen En este artículo introducimos una extensión de la distribución de probabilidad de Maxwell. Esta extensión se genera utilizando el mapa de transmutación de rango cuadrático, estudiado por Shaw y Buckley en [13], considerando como función base la función de distribución acumulada del modelo de Maxwell. Estudiamos propiedades probabilísticas, realizamos inferencia estadística y estudiamos una aplicación con datos reales.
Palabras claves: Distribución de Maxwell, distribución de Maxwell transmutada, mapa de transmutación de rango cuadrático.
Transmuted Maxwell probability distribution
Abstract In this paper we introduce an extension of the Maxwell probability distribution. This extension is generated using the quadratic rank transmutation map studied by Shaw and Buckley in [13], considering as the basis function the cumulative distribution function of the Maxwell model. We study probabilistic properties, we perform statistical inference and study an application with real data.
Keywords: Maxwell distribution, transmuted Maxwell distribution, quadratic rank transmutation map.
Texto Completo disponible en PDF
Referencias
[1] Akaike H., "A new look at the statistical model identification", IEEE Trans. Automat. Control 19 (1974), no. 6, 716-723.
[2] Aryal G. and Tsokos C., "On the transmuted extreme value distribution with application", Nonlinear Anal. 71 (2009), 1401-1407.
[3] Aryal G. and Tsokos C., "Transmuted weibull distribution: a generalization of the weibull probability distribution", Eur. J. Pure and Appl. Math. 4 (2011), no. 2, 89-102.
[4] Bekker A. and Roux J., "Reliability characteristics of the Maxwell distribution: a bayes estimation study". Comm. Statist. Theory Methods 34 (2005), 2169-2178.
[5] Chaturvedi A. and Rani U., "Classical and Bayesian reliability estimation of the generalized Maxwell failure distribution", J. Statist. Res. 32 (1998), 113-120.
[6] Devore J., Probabilidad y Estadística para Ingeniería y Ciencias, Thomson. México, 2005.
[7] Kazmi S., Aslam M. and Ali S., "On the Bayesian Estimation for two Component Mixture of Maxwell Distribution, Assuming Type I Censored Data", SOURCE International Journal of Applied Science & Technology 2 (2012), no. 1, 197.
[8] Merovci F., "Transmuted Rayleigh distribution". Austrian Journal of Statistics 42 (2013), no. 1, 21-31.
[9] Merovci F., "Transmuted Generalized Rayleigh Distribution". J. of Stat. Appl. Prob. 3 (2014), no. 1, 9-20.
[10] R Development Core Team R., "A language and environment for statistical computing", R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org [citado 9 julio 2014].
[11] Schwarz G., "Estimating the dimension of a model", Ann. Statist. 6 (1978), 461-464.
[12] Shakil M., Golam B. and Chang k., "Distributions of the product and ratio of Maxwell and Rayleigh random variables", Statist. Papers 49 (2008), 729-747.
[13] Shaw W. and Buckley I., "The alchemy of probability distributions: beyond gramcharlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map", IMA, Primera Conferencia sobre Finanzas Computacionales, Cornell University, http://arxiv.org/abs/0901.0434 (2007).
[14] Tyagi R. and Bhattacharya S., "A note on the MVU estimation of reliability for the Maxwell failure distribution", Estadística 41 (1989), no. 137.
*E-mail: yuri.iriarte@uda.cl.
Recibido: 29 de enero de 2014, Aceptado: 09 de julio de 2014.
Para citar este artículo: Y.A. Iriarte, J.M. Astorga, Distribución de probabilidad de Maxwell transmutada,
Rev. Integr. Temas Mat. 32 (2014), no. 2, 211-221.