De los números de Midy a la primalidad
JOHN H. CASTILLOa *, GILBERTO GARCÍA-PULGARÍNb,
JUAN MIGUEL VELÁSQUEZ-SOTOc
a Universidad de Nariño, Departamento de Matemáticas y Estadística, Pasto, Colombia.
b Universidad de Antioquia, Instituto de Matemáticas, Medellín, Colombia.
c Universidad del Valle, Departamento de Matemáticas, Cali, Colombia.
Resumen Utilizando propiedades de los números de Midy se define el concepto de q-seudoprimo base b, el cual extiende la idea de seudoprimo fuerte base b, y a partir de dicho concepto se establece un nuevo criterio de primalidad que refina el Teorema de Pocklington.
Palabras claves: Números primos, seudoprimalidad fuerte, números de Midy,
Teorema de Pocklington.
MSC2010: 11A51, 11Y11, 11Y55, 11B83.
From Midy numbers to primality
Abstract We define the concept of q-pseudoprime to base b, which extends the idea of strong pseudoprime to base b. We stablish a new test of primality that refines the Pocklinton's Theorem using some properties of the Midy numbers.
Keywords: Prime numbers, strong pseudoprimality, Midy's numbers, Pocklington's Theorem.
Texto Completo disponible en PDF
Referencias
[1] Adleman L.M., Pomerance C. and Rumely R.S., "On distinguishing prime numbers from composite numbers", Ann. of Math. (2) 117 (1983), no. 1, 173-206.
[2] Agrawal M., Kayal N. and Saxena N., "PRIMES is in P", Ann. of Math. (2) 160 (2004), no. 2, 781-793.
[3] Berrizbeitia P., "Sharpening PRIMES is in P for a large family of numbers", Math. Comp. 74 (2005), no. 252, 2043-2059.
[4] Brillhart J. and Selfridge J.L., "Some factorizations of 2n ± 1 and related results", Math. Comp. 21 (1967), 87-96; corrigendum, ibid. 21 (1967), 751.
[5] Castillo J.H., García-Pulgarín G. and Velásquez-Soto J.M., "Structure of associated sets to Midy's Property", Mat. Enseñ. Univ. 20 (2012), no. 1, 21-28.
[6] Cheng Q., "Primality proving via one round in ECPP and one iteration in AKS", J. Cryptology. 20 (2007), no. 3, 375-387.
[7] Crandall R. and Pomerance C., Prime numbers. A computational perspective, Springer, New York, 2005.
[8] García-Pulgarín G. and Giraldo H., "Characterizations of Midy's property", Integers 9 (2009), 191-197.
[9] Gauss C.F., "Disquisitiones arithmeticae", in Colección Enrique Pérez Arbeláez, Academia Colombiana de Ciencias Exactas, Físicas y Naturales, Translated from the Latin by Hugo Barrantes Campos, Michael Josephy and Ángel Ruiz Zúñiga, with a preface by Ruiz Zúñiga, 10 (1995).
[10] Lenstra H.W. Jr. and Pomerance C., "Primality testing with gaussian periods", https://www.math.dartmouth.edu/ carlp/aks041411.pdf, consultado el día 22 de abril de 2014, unpublished.
[11] Motose K., "On values of cyclotomic polynomials. II", Math. J. Okayama Univ. 37 (1995), 27-36.
[12] Nathanson M.B., Elementary methods in number theory, Springer-Verlag, New York, 2000.
[13] Shevelev V., Castillo J.H., García-Pulgarín G. and Velásquez-Soto J.M., "Overpseudoprimes, and Mersenne and Fermat Numbers as Primover Numbers", J. Integer Seq. 15 (2012), no. 7, 1-10.
[14] Zhang Z., "Notes on some new kinds of pseudoprimes", Math. Comp. 75 (2006), no. 253, 451-460.
*E-mail: jhcastillo@gmail.com
Recibido: 23 de mayo de 2014, Aceptado: 02 de enero de 2015.
Para citar este artículo: J.H. Castillo, G. García-Pulgarín, J.M. Velásquez-Soto, De los números de Midy a
la primalidad, Rev. Integr. Temas Mat. 33 (2015), no. 1, 1-10.