Fixed point property for nonexpansive
mappings and nonexpansive semigroups on
the unit disk

LUIS BENÍTEZ-BABILONIA*

Universidad de Antioquia, Instituto de Matemáticas, Medellín, Colombia.


Abstract. For closed convex subsets D of a Banach spaces, in 2009, Tomonari Suzuki [11] proved that the fixed point property (FPP) for nonexpansive mappings and the FPP for nonexpansive semigroups are equivalent. In this paper some relations between the aforementioned properties for mappings and semigroups defined on D, a closed convex subset of the hyperbolic metric space (, ρ), are studied. This work arises as a generalization to the space (, ρ) of the study made by Suzuki.

Keywords: ρ-nonexpansive mappings, fixed point property, semigroups.
MSC2010: 47H09, 47H10, 30C99.

Propiedad del punto fijo para funciones y semigrupos
no expansivos en el disco unidad

Resumen. Para subconjuntos D cerrados y convexos de espacios de Banach, Tomonari Suzuki [11] demostró en 2009 que la propiedad del punto fijo (PPF) para funciones no expansivas y la PPF para semigrupos de funciones no expansivas son equivalentes. En este trabajo se estudian algunas relaciones entre dichas propiedades, cuando D es un subconjunto del espacio mético (, ρ). Este trabajo surge como una generalización al espacio (, ρ) de los resultados de Suzuki.

Palabras clave: Funciones ρ-no expansivas, propiedad del punto fijo, semigrupos.


Texto Completo disponible en PDF


References

[1] Browder F.E., "Fixed-point theorems for noncompact mappings in Hilbert space", Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1272-1276.

[2] Browder F.E., "Nonexpansive nonlinear operators in Banach spaces", Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041-1044.

[3] Bruck R.E., "A common fixed point theorem for a commuting family of nonexpansive mappings", Pacific J. Math. 53 (1974), 59-71.

[4] Day M.M., "Fixed-point theorem for compact convex sets", Illinois J. Math. 5 (1961), 585-590.

[5] DeMarr R., "Common fixed points for commuting contraction mappings", Pacific J. Math. 13 (1963), 1139-1141.

[6] Domínguez-Benavides T. and Japón-Pineda M.A., "Fixed points of nonexpansive mappings in spaces of continuous functions", Proc. Amer. Math. Soc. 133 (2005), no. 10, 3037-3046.

[7] Gulevich N.M., "Fixed points of nonexpansive mappings. Analysis, 7", J. Math. Sci. 79 (1996), no. 1, 755-815.

[8] Lau A.T. and Zhang Y., "Fixed point properties of semigroups of non-expansive mappings" J. Funct. Anal. 254 (2008), no. 10, 2534-2554.

[9] Reich S. and Shoikhet D., Nonlinear semigroups, fixed points and the geometry of domains in Banach spaces, Imperial College Press, London, 2005.

[10] Shoikhet D., Semigroups in geometrical function theory, Kluwer Academic Publishers, Dordrecht, 2001.

[11] Suzuki T., "Fixed point property for nonexpansive mappings versus that for nonexpansive semigroups", Nonlinear Anal. 70 (2009), no. 9, 3358-3361.

[12] Suzuki T., "Common fixed points of one-parameter nonexpansive semigroups", Bull. London Math. Soc. 38 (2006), no. 6, 1009-1018.

[13] Suzuki T., "The set of common fixed points of a one-parameter continuous semigroup of mappings is F(T(1)) n F(T(√2)", Proc. Amer. Math. Soc. 134 (2006), no. 3, 673-681.


*E-mail: lebenitez@cimat.mx.
Received: 11 December 2014, Accepted: 19 March 2015.
To cite this article: L. Benítez-Babilonia, Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk, Rev. Integr. Temas Mat. 33 (2015), no. 1, 41-50.