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Minimal hypersurfaces in R
n as

regular values of a function∗

Óscar Mario Perdomo∗∗

Abstract. In this paper we prove that if M = f−1(0) is a minimal hypersurface

of R
n, where f : V ⊂ R

n → R is a smooth function defined on a open set V ,

then f must satisfy the equation |∇f |2∆f = 1

2
〈∇|∇f |2,∇f〉 for every x ∈ M .

We will also prove that if M is the zero level set of a homogeneous 2 polynomial,

then M must be a Clifford minimal hypersurface.

1. Introduction and preliminaries

In this paper we will consider hypersurfaces M ⊂ R
n that are level sets of functions,

i.e. we will assume that M = {x ∈ V : f(x) = 0} where f : V → R is a smooth
function defined in an open set V of R

n and |∇f(x)| 6= 0 for all x ∈ M . For these
hypersurfaces, we have that the Gauss map can be written as ν(x) = |∇f(x)|−1∇f(x)
for all x ∈ M . Clearly, the tangent space of M at a point x is the space of vectors
v ∈ R

n such that 〈v,∇f(x)〉 = 0. Notice that the mean curvature of M at x is given
by

−
n−1
∑

i=1

〈dνx(vi), vi〉, (1)

where {v1, . . . , vn−1} is an orthonormal bases of the vector space TxM .

It is worth mentioning some elementary facts about real value functions on R
n that

will be used later on.

Lemma 1.1. If f : V → R is a smooth function defined in an open set V of R
n, then
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(a)
∆f(x) =

∂2f

∂x2
1

+ · · · + ∂2f

∂x2
n

=
n

∑

i=1

〈Hess(f)x(wj), wj〉,

where {w1, . . . , wn} is any orthonormal basis of R
n and Hess(f) is the n × n

Hessian matrix of f .

(b) 〈Hess(f)∇f,∇f〉 = 1
2 〈∇|∇f |2,∇f〉.

(c)
d∇f(α(t))

dt
= Hess(f)α(t)α

′(t) for any smooth curve α : (a, b) → V .

Proof. (a) holds true because ∆f(x) is the trace of the matrix Hess(f)x, and the trace
of a matrix is invariant under change of basis.
(b) Is a direct computation and (c) follows from the chain rule. ¤XXX

2. Main result

In this section we will state and prove one of the main results of this paper.

Theorem 2.1. Let M = {x ∈ V : f(x) = 0} where f : V → R is a smooth function

defined in an open set V of R
n with |∇f(x)| 6= 0 for all x ∈ M . M is minimal if and

only if |∇f |2∆f = 1
2 〈∇|∇f |2,∇f〉 for every x ∈ M .

Proof. We are going to compute the mean curvature H of M in terms of the function
f and its partial derivatives. Let us start computing 〈dνx(v), v〉 for any v ∈ TxM . Let
us take a smooth curve α : (−ǫ, ǫ) → M such that α(0) = x and α′(0) = v. We have
that

〈dνx(v), v〉 =

〈

dν(α(t))

dt

∣

∣

∣

t=0
, v

〉

=

〈

d|∇f(α(t))|−1∇f(α(t))

dt

∣

∣

∣

t=0
, v

〉

=
d|∇f(α(t))|−1

dt

∣

∣

∣

t=0
〈∇f(x), v〉 + |∇f(x)|−1

〈

d∇f(α(t))

dt

∣

∣

∣

t=0
, v

〉

= 0 + |∇f(x)|−1 〈Hess(f)xv, v〉 = |∇f(x)|−1 〈Hess(f)xv, v〉 .

Now, if {v1, . . . , vn−1} is an orthonormal bases of TxM , then by the equation (1) in
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section 1, we get that

H = −
n−1
∑

i=1

〈dνx(vi), vi〉 = −|∇f(x)|−1〈Hess(f)xvi, vi〉

= |∇f(x)|−1(−∆f(x)+〈Hess(f)x|∇f(x)|−1∇f(x), |∇f(x)|−1∇f(x)〉)

= |∇f(x)|−1(−∆f(x) + |∇f(x)|−2 1

2
〈∇|∇f |2,∇f〉).

Therefore we get that M is minimal, if and only if, for every x ∈ M , we have that
|∇f(x)|2∆f(x) = 1

2 〈∇|∇f |2,∇f〉. ¤XXX

Example 2.2 (Clifford minimal cones). Let k and l be two positive integers such that

k + l = n − 2, and let f : R
n \ {0} → R be the function given by

f(x) = f(x1, . . . , xn) = k(x2
1 + · · · + x2

l+1) − l(x2
1+2 + · · · + x2

n).

Let us check that Mlk = f−1(0) is a minimal hypersurface. A direct computation shows

that

∇f(x) =2(kx1, . . . , kxl+1,−lxl+2, . . . ,−lxn),

|∇f(x)|2 =4k2(x2
1 + · · · + x2

l+1) + 4l2(x2
l+2 + · · · + x2

n),

∇|∇f(x)|2 =8(k2x1, . . . , k
2xl+1, l

2xl+2, . . . ,
2 lxn),

1

2
〈∇|∇f |2,∇f〉 =8k3(x2

1 + · · · + x2
l+1) − 8l3(x2

l+2 + · · · + lx2
n),

∆f(x) =2k(l + 1) − 2l(k + 1) = 2k(k − l).

Therefore, we have that if x ∈ M , i.e. if

k(x2
1 + · · · + x2

l+1) = l(x2
1+2 + · · · + x2

n),

then,

|∇f(x)|2∆f =2(k − l)(4k2 − 4lk)(x2
1 + · · · + x2

l+1)

=8k(k2 − l2)(x2
1 + · · · + x2

l+1)

=8k3x2
1 + · · · + x2

l+1) − 8l3(x2
1+2 + · · · + x2

n)

=
1

2
〈∇|∇f |2,∇f〉.

We will say that M is a Clifford minimal cone if M = Mkl up to a rigid motion in

R
n.

Let us assume now that (N, g) is a riemannian n dimensional manifold, V is an
open subset of N and f : V → R is a smooth function such that M = f−1(0)
is a hypersurface of N , i.e. 0 is a regular value of f . In this case we will denote by
Hess(f)x : TxM×TxM → R the bilinear form defined by Hess(f)x(v, w) = 〈Dv∇f, w〉,
where D is the Levi-Civita connection on N .

The exact same proof of the previous theorem gives us the following result.
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Theorem 2.3. Let N be a riemannian manifold and let M = {x ∈ V : f(x) = 0},
where f : V → R is a smooth function defined in an open set V of N with |∇f(x)| 6= 0
for all x ∈ M . M is minimal if and only if |∇f |2∆f = 1

2 〈∇|∇f |2,∇f〉 for every

x ∈ M .

3. Minimal hypersurfaces of R
n given by quadratic form

In this section we characterize the minimal Clifford cones as the only hypersurfaces
that are level sets of quadratic forms. More precisely we prove,

Theorem 3.1. Let f : R
n \ {0} → R be the function defined by f(x) = 〈Bx, x〉, where

B is a n× n symmetric matrix and take M = {x ∈ R
n : 〈Bx, x〉 = 0} \ {0} = f−1(0).

The value 0 is a regular value of f and M is a minimal hypersurface if and only if M

is a Clifford minimal cone.

Before we prove this theorem we will need the following lemma.

Lemma 3.2. Let B be an invertible symmetric matrix with both, positive and negative

eigenvalues. If C is a matrix that commutes with B such that 〈Cx, x〉 = 0 whenever

〈Bx, x〉 = 0, then C = λB for some real number λ.

Proof. Since B and C commutes, after an orthogonal change of coordinates, we can
assume that

C =



















c1

. . .

cr

cr+1

. . .

cn



















, B =



















b1

. . .

br

br+1

. . .

bn



















,

where 0 < r < n, b1, . . . , br are positive real numbers and br+1, . . . , bn are negative real
numbers. Let us denote e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) the canonical bases for
R

n, and for 1 ≤ i ≤ r and r < j ≤ n we will denote xij =
√

−bjei +
√

biej . Note that
〈Bxij , xij〉 = 0, therefore 〈Cxij , xij〉 = 0, i.e.,

−bjci + bicj = 0;

from the equation above we get that ci = cn

bn

bi for 1 ≤ i ≤ r, and for r < j ≤ n we
have, using the expression for c1,

cj =
c1

b1
bj =

cn

bn

b1
1

b1
bj =

cn

bn

bj .

Therefore C = cn

bn

B, and this completes the proof. ¤XXX
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Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. A Direct computation shows that ∇f(x) = 2Bx. Since we are
assuming that 0 is a regular value, then ∇f(x) 6= 0 for all x ∈ M ; in particular,
Bx0 6= 0 for every x0 6= 0, because if Bx0 = 0 for some x0 6= 0 we would have that
x0 ∈ M and ∇f(x0) = 0. Therefore B is an invertible matrix. We also have that, since
M 6= ∅, then B must have positive eigenvalues and negative eigenvalues. We have them

|∇f(x)|2 = 〈2Bx, 2Bx〉 = 4〈Bx,Bx〉 = 4〈B2x, x〉.

Since B2 is symmetric, then ∇|∇f |2(x) = 8B2x. A direct computation shows that
∆f = 2 trace(B). Using Theorem 2.1, we have that M is minimal if and only if
|∇f |2∆f = 1

2 〈∇|∇f |2,∇f〉 for every x ∈ M , i.e. if, for every x 6= 0 such that
〈Bx, x〉 = 0 we have that

4〈B2x, x〉(2 trace(B)) =
1

2
〈8B2x, 2Bx〉 = 8〈B3x, x〉.

In others words, if we define C = trace(B)B2 −B3, we have that M is minimal if and
only if 〈Cx, x〉 = 0 for every x such that 〈Bx, x〉 = 0. Using Lemma 3.2 we concluded
that there exists a real number a such that trace(B)B2 − B3 = aB. Since B is an
invertible matrix, we get that B satisfies the polynomial equation

B2 − trace(B)B + aI = 0. (2)

Therefore B can only have two eigenvalues. Since B has negative and positive eigen-
values, we can assume that the eigenvalues of B are λ1 > 0 with multiplicity r ≥ 1
and λ2 < 0 with multiplicity n − r ≥ 1. Note that trace(B) = rλ1 + (n − r)λ2. The
equation (2) is equivalent to the following system of equations for λ1, λ2 and a:

λ2
1 − (rλ1 + (n − r)λ2)λ1 + a =(1 − r)λ2

1 − (n − r)λ1λ2 + a = 0,

λ2
2 − (rλ1 + (n − r)λ2)λ2 + a = − (n − r − 1)λ2

2 − rλ1λ2 + a = 0;

combining these two equations we get

(1 − r)λ2
1 − (n − 2r)λ1λ2 + (n − r − 1)λ2

2. (3)

From this equation we get that r = 1 or r = n − 1 implies that λ1 = λ2 which is
impossible because λ1λ2 < 0. Therefore 1 < r < n− 1. From equation (3) we get that
t = λ2

λ1

satisfies the equation

(1 − r) − (n − 2r)t + (n − r − 1)t2.

Therefore, t = 1 or t =
r − 1

n − r − 1
; since we have that t must be negative, then t cannot

be 1. Therefore, up to a constant we may take λ1 = n − r − 1 and λ2 = r − 1. I.e.,
up to a rigid motion f(x) = 〈Bx, x〉 must be a multiple of the function given in the
example 2.2. This implies that M must be a Clifford minimal cone. ¤XXX
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Remark on the construction of minimal hypersurfaces using homogeneous polyno-

mials of degree k: Let f : R
n \ {0} → R be a homogeneous polynomial of degree k

such that f−1(0) = M is not empty and such that for every x ∈ M , ∇f(x) 6= 0. By
theorem 2.1 we have that M is minimal if and only if

g(x) = |∇f |2∆f − 1

2
〈∇|∇f |2,∇f〉 = 0 (4)

for every x such that f(x) = 0. Notice that the left hand side of the equation (4) is
a homogeneous polynomial of degree 3k − 4; also notice that if g(x) = h(x)f(x) for
some homogeneous polynomial h of degree 2k − 4, then M will be minimal.

It is easy to prove the veracity of the following:

Conjecture. Let f : R
n \ {0} → R be a homogeneous polynomial of degree k such that

f−1(0) = M is not empty and such that for every x ∈ M , ∇f(x) 6= 0. If g(x) is a

polynomial of degree m with m ≥ k such that g(x) = 0 for every x ∈ M , then there

exists a homogeneous polynomial h of degree m − k such that g(x) = h(x)f(x).

That conjeture implies the following result:

“Let M = f−1(0) 6= ∅, where f : R
n \ {0} → R is a homogeneous polyno-

mial. M is minimal if and only if

|∇f |2∆f − 1

2
〈∇|∇f |2,∇f〉 = hf

for some homogeneous polynomial h”.

So far the only known examples of these minimal hypersurfaces are the isoparametric
minimal hypersurfaces; the degree of f in these examples are k = 1, 2, 3, 4, 6. Note that
Theorem 2.1 proves the conjecture when k = 2.
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