Minimal hypersurfaces in \mathbb{R}^n as regular values of a function^{*}

Óscar Mario Perdomo**

Abstract. In this paper we prove that if $M = f^{-1}(0)$ is a minimal hypersurface of \mathbb{R}^n , where $f: V \subset \mathbb{R}^n \to \mathbb{R}$ is a smooth function defined on a open set V, then f must satisfy the equation $|\nabla f|^2 \Delta f = \frac{1}{2} \langle \nabla |\nabla f|^2, \nabla f \rangle$ for every $x \in M$. We will also prove that if M is the zero level set of a homogeneous 2 polynomial, then M must be a Clifford minimal hypersurface.

1. Introduction and preliminaries

In this paper we will consider hypersurfaces $M \subset \mathbb{R}^n$ that are level sets of functions, i.e. we will assume that $M = \{x \in V : f(x) = 0\}$ where $f : V \to \mathbb{R}$ is a smooth function defined in an open set V of \mathbb{R}^n and $|\nabla f(x)| \neq 0$ for all $x \in M$. For these hypersurfaces, we have that the Gauss map can be written as $\nu(x) = |\nabla f(x)|^{-1} \nabla f(x)$ for all $x \in M$. Clearly, the tangent space of M at a point x is the space of vectors $v \in \mathbb{R}^n$ such that $\langle v, \nabla f(x) \rangle = 0$. Notice that the mean curvature of M at x is given by

$$-\sum_{i=1}^{n-1} \langle d\nu_x(v_i), v_i \rangle, \tag{1}$$

where $\{v_1, \ldots, v_{n-1}\}$ is an orthonormal bases of the vector space $T_x M$.

It is worth mentioning some elementary facts about real value functions on \mathbb{R}^n that will be used later on.

Lemma 1.1. If $f: V \to \mathbb{R}$ is a smooth function defined in an open set V of \mathbb{R}^n , then

Keywords: minimal hypersurfaces in \mathbb{R}^n , Clifford minimal hypersurface.

MSC2000: Primary: 49Q05. Seconday: 53A10.

^{*} The author wishes to thank Colciencias and Universidad del Valle for their financial support.

^{**} Departamento de Matemáticas, Universidad del Valle, Cali, Colombia, *e-mail*: osperdom@univalle.edu.co.

 $\mathbf{2}$

$$\Delta f(x) = \frac{\partial^2 f}{\partial x_1^2} + \dots + \frac{\partial^2 f}{\partial x_n^2} = \sum_{i=1}^n \langle \operatorname{Hess}(f)_x(w_j), w_j \rangle,$$

where $\{w_1, \ldots, w_n\}$ is any orthonormal basis of \mathbb{R}^n and $\operatorname{Hess}(f)$ is the $n \times n$ Hessian matrix of f.

(b)
$$\langle \operatorname{Hess}(f)\nabla f, \nabla f \rangle = \frac{1}{2} \langle \nabla |\nabla f|^2, \nabla f \rangle.$$

(c)
$$\frac{d\nabla f(\alpha(t))}{dt} = \operatorname{Hess}(f)_{\alpha(t)}\alpha'(t)$$
 for any smooth curve $\alpha: (a,b) \to V$.

Proof. (a) holds true because $\Delta f(x)$ is the trace of the matrix $\text{Hess}(f)_x$, and the trace of a matrix is invariant under change of basis.

(b) Is a direct computation and (c) follows from the chain rule.

\checkmark

2. Main result

In this section we will state and prove one of the main results of this paper.

Theorem 2.1. Let $M = \{x \in V : f(x) = 0\}$ where $f : V \to \mathbb{R}$ is a smooth function defined in an open set V of \mathbb{R}^n with $|\nabla f(x)| \neq 0$ for all $x \in M$. M is minimal if and only if $|\nabla f|^2 \Delta f = \frac{1}{2} \langle \nabla |\nabla f|^2, \nabla f \rangle$ for every $x \in M$.

Proof. We are going to compute the mean curvature H of M in terms of the function f and its partial derivatives. Let us start computing $\langle d\nu_x(v), v \rangle$ for any $v \in T_x M$. Let us take a smooth curve $\alpha : (-\epsilon, \epsilon) \to M$ such that $\alpha(0) = x$ and $\alpha'(0) = v$. We have that

$$\begin{aligned} \langle d\nu_x(v), v \rangle &= \left\langle \frac{d\nu(\alpha(t))}{dt} \Big|_{t=0}, v \right\rangle \\ &= \left\langle \frac{d|\nabla f(\alpha(t))|^{-1} \nabla f(\alpha(t))}{dt} \Big|_{t=0}, v \right\rangle \\ &= \frac{d|\nabla f(\alpha(t))|^{-1}}{dt} \Big|_{t=0} \left\langle \nabla f(x), v \right\rangle + |\nabla f(x)|^{-1} \left\langle \frac{d\nabla f(\alpha(t))}{dt} \Big|_{t=0}, v \right\rangle \\ &= 0 + |\nabla f(x)|^{-1} \left\langle \operatorname{Hess}(f)_x v, v \right\rangle = |\nabla f(x)|^{-1} \left\langle \operatorname{Hess}(f)_x v, v \right\rangle. \end{aligned}$$

Now, if $\{v_1, \ldots, v_{n-1}\}$ is an orthonormal bases of $T_x M$, then by the equation (1) in

[Revista Integración

section 1, we get that

$$H = -\sum_{i=1}^{n-1} \langle d\nu_x(v_i), v_i \rangle = -|\nabla f(x)|^{-1} \langle \operatorname{Hess}(f)_x v_i, v_i \rangle$$

$$= |\nabla f(x)|^{-1} (-\Delta f(x) + \langle \operatorname{Hess}(f)_x |\nabla f(x)|^{-1} \nabla f(x), |\nabla f(x)|^{-1} \nabla f(x) \rangle)$$

$$= |\nabla f(x)|^{-1} (-\Delta f(x) + |\nabla f(x)|^{-2} \frac{1}{2} \langle \nabla |\nabla f|^2, \nabla f \rangle).$$

Therefore we get that M is minimal, if and only if, for every $x \in M$, we have that $|\nabla f(x)|^2 \Delta f(x) = \frac{1}{2} \langle \nabla |\nabla f|^2, \nabla f \rangle.$

Example 2.2 (Clifford minimal cones). Let k and l be two positive integers such that k + l = n - 2, and let $f : \mathbb{R}^n \setminus \{\mathbf{0}\} \to \mathbb{R}$ be the function given by

$$f(x) = f(x_1, \dots, x_n) = k(x_1^2 + \dots + x_{l+1}^2) - l(x_{1+2}^2 + \dots + x_n^2).$$

Let us check that $M_{lk} = f^{-1}(0)$ is a minimal hypersurface. A direct computation shows that

$$\nabla f(x) = 2(kx_1, \dots, kx_{l+1}, -lx_{l+2}, \dots, -lx_n),$$

$$|\nabla f(x)|^2 = 4k^2(x_1^2 + \dots + x_{l+1}^2) + 4l^2(x_{l+2}^2 + \dots + x_n^2),$$

$$\nabla |\nabla f(x)|^2 = 8(k^2x_1, \dots, k^2x_{l+1}, l^2x_{l+2}, \dots, l^2x_n),$$

$$\frac{1}{2} \langle \nabla |\nabla f|^2, \nabla f \rangle = 8k^3(x_1^2 + \dots + x_{l+1}^2) - 8l^3(x_{l+2}^2 + \dots + lx_n^2),$$

$$\Delta f(x) = 2k(l+1) - 2l(k+1) = 2k(k-l).$$

Therefore, we have that if $x \in M$, i.e. if

$$k(x_1^2 + \dots + x_{l+1}^2) = l(x_{1+2}^2 + \dots + x_n^2),$$

then,

$$\begin{split} \nabla f(x)|^2 \Delta f &= 2(k-l)(4k^2 - 4lk)(x_1^2 + \dots + x_{l+1}^2) \\ &= 8k(k^2 - l^2)(x_1^2 + \dots + x_{l+1}^2) \\ &= 8k^3 x_1^2 + \dots + x_{l+1}^2) - 8l^3(x_{1+2}^2 + \dots + x_n^2) \\ &= \frac{1}{2} \langle \nabla | \nabla f |^2, \nabla f \rangle. \end{split}$$

We will say that M is a Clifford minimal cone if $M = M_{kl}$ up to a rigid motion in \mathbb{R}^n .

Let us assume now that (N,g) is a riemannian n dimensional manifold, V is an open subset of N and $f: V \to \mathbb{R}$ is a smooth function such that $M = f^{-1}(0)$ is a hypersurface of N, i.e. 0 is a regular value of f. In this case we will denote by $\operatorname{Hess}(f)_x: T_x M \times T_x M \to \mathbb{R}$ the bilinear form defined by $\operatorname{Hess}(f)_x(v,w) = \langle D_v \nabla f, w \rangle$, where D is the Levi-Civita connection on N.

The exact same proof of the previous theorem gives us the following result.

Vol. 22, Nos. 1 y 2, 2004]

Theorem 2.3. Let N be a riemannian manifold and let $M = \{x \in V : f(x) = 0\}$, where $f: V \to \mathbb{R}$ is a smooth function defined in an open set V of N with $|\nabla f(x)| \neq 0$ for all $x \in M$. M is minimal if and only if $|\nabla f|^2 \Delta f = \frac{1}{2} \langle \nabla |\nabla f|^2, \nabla f \rangle$ for every $x \in M$.

3. Minimal hypersurfaces of \mathbb{R}^n given by quadratic form

In this section we characterize the minimal Clifford cones as the only hypersurfaces that are level sets of quadratic forms. More precisely we prove,

Theorem 3.1. Let $f : \mathbb{R}^n \setminus \{\mathbf{0}\} \to \mathbb{R}$ be the function defined by $f(x) = \langle Bx, x \rangle$, where *B* is a $n \times n$ symmetric matrix and take $M = \{x \in \mathbb{R}^n : \langle Bx, x \rangle = 0\} \setminus \{\mathbf{0}\} = f^{-1}(0)$. The value 0 is a regular value of *f* and *M* is a minimal hypersurface if and only if *M* is a Clifford minimal cone.

Before we prove this theorem we will need the following lemma.

Lemma 3.2. Let B be an invertible symmetric matrix with both, positive and negative eigenvalues. If C is a matrix that commutes with B such that $\langle Cx, x \rangle = 0$ whenever $\langle Bx, x \rangle = 0$, then $C = \lambda B$ for some real number λ .

Proof. Since B and C commutes, after an orthogonal change of coordinates, we can assume that

$$C = \begin{pmatrix} c_1 & & & \\ & \ddots & & & \\ & & c_r & & \\ & & & c_{r+1} & \\ & & & & \ddots & \\ & & & & & c_n \end{pmatrix}, \qquad B = \begin{pmatrix} b_1 & & & & \\ & \ddots & & & & \\ & & b_r & & & \\ & & & b_{r+1} & & \\ & & & & b_n \end{pmatrix},$$

where $0 < r < n, b_1, \ldots, b_r$ are positive real numbers and b_{r+1}, \ldots, b_n are negative real numbers. Let us denote $e_1 = (1, 0, \ldots, 0), \ldots, e_n = (0, \ldots, 0, 1)$ the canonical bases for \mathbb{R}^n , and for $1 \leq i \leq r$ and $r < j \leq n$ we will denote $x_{ij} = \sqrt{-b_j}e_i + \sqrt{b_i}e_j$. Note that $\langle Bx_{ij}, x_{ij} \rangle = 0$, therefore $\langle Cx_{ij}, x_{ij} \rangle = 0$, i.e.,

$$-b_i c_i + b_i c_j = 0;$$

from the equation above we get that $c_i = \frac{c_n}{b_n}b_i$ for $1 \le i \le r$, and for $r < j \le n$ we have, using the expression for c_1 ,

$$c_j = \frac{c_1}{b_1} b_j = \frac{c_n}{b_n} b_1 \frac{1}{b_1} b_j = \frac{c_n}{b_n} b_j$$

Therefore $C = \frac{c_n}{b_n} B$, and this completes the proof.

[Revista Integración

 \checkmark

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. A Direct computation shows that $\nabla f(x) = 2Bx$. Since we are assuming that 0 is a regular value, then $\nabla f(x) \neq \mathbf{0}$ for all $x \in M$; in particular, $Bx_0 \neq \mathbf{0}$ for every $x_0 \neq \mathbf{0}$, because if $Bx_0 = \mathbf{0}$ for some $x_0 \neq \mathbf{0}$ we would have that $x_0 \in M$ and $\nabla f(x_0) = \mathbf{0}$. Therefore B is an invertible matrix. We also have that, since $M \neq \emptyset$, then B must have positive eigenvalues and negative eigenvalues. We have them

$$|\nabla f(x)|^2 = \langle 2Bx, 2Bx \rangle = 4 \langle Bx, Bx \rangle = 4 \langle B^2x, x \rangle$$

Since B^2 is symmetric, then $\nabla |\nabla f|^2(x) = 8B^2x$. A direct computation shows that $\Delta f = 2 \operatorname{trace}(B)$. Using Theorem 2.1, we have that M is minimal if and only if $|\nabla f|^2 \Delta f = \frac{1}{2} \langle \nabla |\nabla f|^2, \nabla f \rangle$ for every $x \in M$, i.e. if, for every $x \neq \mathbf{0}$ such that $\langle Bx, x \rangle = 0$ we have that

$$4\langle B^2x,x\rangle(2\operatorname{trace}(B))=\frac{1}{2}\langle 8B^2x,2Bx\rangle=8\langle B^3x,x\rangle.$$

In others words, if we define $C = \operatorname{trace}(B)B^2 - B^3$, we have that M is minimal if and only if $\langle Cx, x \rangle = 0$ for every x such that $\langle Bx, x \rangle = 0$. Using Lemma 3.2 we concluded that there exists a real number a such that $\operatorname{trace}(B)B^2 - B^3 = aB$. Since B is an invertible matrix, we get that B satisfies the polynomial equation

$$B^2 - \operatorname{trace}(B)B + aI = 0. \tag{2}$$

Therefore B can only have two eigenvalues. Since B has negative and positive eigenvalues, we can assume that the eigenvalues of B are $\lambda_1 > 0$ with multiplicity $r \ge 1$ and $\lambda_2 < 0$ with multiplicity $n - r \ge 1$. Note that trace $(B) = r\lambda_1 + (n - r)\lambda_2$. The equation (2) is equivalent to the following system of equations for λ_1, λ_2 and a:

$$\begin{aligned} \lambda_1^2 - (r\lambda_1 + (n-r)\lambda_2)\lambda_1 + a &= (1-r)\lambda_1^2 - (n-r)\lambda_1\lambda_2 + a = 0, \\ \lambda_2^2 - (r\lambda_1 + (n-r)\lambda_2)\lambda_2 + a &= -(n-r-1)\lambda_2^2 - r\lambda_1\lambda_2 + a = 0; \end{aligned}$$

combining these two equations we get

$$(1-r)\lambda_1^2 - (n-2r)\lambda_1\lambda_2 + (n-r-1)\lambda_2^2.$$
 (3)

From this equation we get that r = 1 or r = n - 1 implies that $\lambda_1 = \lambda_2$ which is impossible because $\lambda_1 \lambda_2 < 0$. Therefore 1 < r < n - 1. From equation (3) we get that $t = \frac{\lambda_2}{\lambda_1}$ satisfies the equation

$$(1-r) - (n-2r)t + (n-r-1)t^2.$$

Therefore, t = 1 or $t = \frac{r-1}{n-r-1}$; since we have that t must be negative, then t cannot be 1. Therefore, up to a constant we may take $\lambda_1 = n - r - 1$ and $\lambda_2 = r - 1$. I.e., up to a rigid motion $f(x) = \langle Bx, x \rangle$ must be a multiple of the function given in the example 2.2. This implies that M must be a Clifford minimal cone.

Vol. 22, Nos. 1 y 2, 2004]

Remark on the construction of minimal hypersurfaces using homogeneous polynomials of degree k: Let $f : \mathbb{R}^n \setminus \{\mathbf{0}\} \to \mathbb{R}$ be a homogeneous polynomial of degree k such that $f^{-1}(0) = M$ is not empty and such that for every $x \in M$, $\nabla f(x) \neq \mathbf{0}$. By theorem 2.1 we have that M is minimal if and only if

$$g(x) = |\nabla f|^2 \Delta f - \frac{1}{2} \langle \nabla |\nabla f|^2, \nabla f \rangle = 0$$
(4)

for every x such that f(x) = 0. Notice that the left hand side of the equation (4) is a homogeneous polynomial of degree 3k - 4; also notice that if g(x) = h(x)f(x) for some homogeneous polynomial h of degree 2k - 4, then M will be minimal.

It is easy to prove the veracity of the following:

Conjecture. Let $f : \mathbb{R}^n \setminus \{\mathbf{0}\} \to \mathbb{R}$ be a homogeneous polynomial of degree k such that $f^{-1}(0) = M$ is not empty and such that for every $x \in M$, $\nabla f(x) \neq \mathbf{0}$. If g(x) is a polynomial of degree m with $m \geq k$ such that g(x) = 0 for every $x \in M$, then there exists a homogeneous polynomial h of degree m - k such that g(x) = h(x)f(x).

That conjeture implies the following result:

"Let $M = f^{-1}(0) \neq \emptyset$, where $f : \mathbb{R}^n \setminus \{\mathbf{0}\} \to \mathbb{R}$ is a homogeneous polynomial. M is minimal if and only if

$$|\nabla f|^2 \Delta f - \frac{1}{2} \langle \nabla |\nabla f|^2, \nabla f \rangle = hf$$

for some homogeneous polynomial h".

So far the only known examples of these minimal hypersurfaces are the isoparametric minimal hypersurfaces; the degree of f in these examples are k = 1, 2, 3, 4, 6. Note that Theorem 2.1 proves the conjecture when k = 2.

References

[1] MANFREDO P. DO CARMO. Riemannian Geometry, Birkhäuser, 1992.

Óscar Mario Perdomo Departamento de Matemáticas Universidad del Valle Cali, Colombia. *e-mail*: osperdom@univalle.edu.co.

[Revista Integración