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Hodge operator and asymmetric fluid in
unbounded domains

I. KONDRASHUK*
E. NOTTE-CUELLO**
M. A. ROJAS-MEDAR***

Abstract. A system of equations modeling the stationary flow of an incom-
pressible asymmetric fluid is studied for bounded domains of an arbitrary
form. Based on the methods of Clifford analysis, we write the system of
asymmetric fluid in the hypercomplex formulation and represent its solu-
tion in Clifford operator terms. We have significantly used Clifford algebra,
and in particular the Hodge operator of the Clifford algebra to demonstrate
the existence and uniqueness of the strong solution for arbitrary unbounded
domains.

1. Introduction

In this work we consider a boundary value problem for a system of equations modeling
the stationary flow of a incompressible asymmetric fluid, in which Navier-Stokes equa-
tions are combined with equations of angular velocity of rotation of the fluid particles.
Based on the methods of Clifford analysis and following the work of P. Cereijeiras and U.
Kahler [2], where they develop a Clifford operator calculus over unbounded domains, we
write the system of asymmetric fluid in the hypercomplex formulation, then represent its
solutions in term of Clifford operators and prove the convergence of the iterative method

used for our problem. The main technical difference between the Navier-Stokes equations
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studied in [2] and the system of the asymmetric fluid studied in this work is the term
curl w*, where w* is the angular velocity of rotation of the fluid particles. To write this

term in the hypergeometric formulation we use the Hodge star operator.

2. Hodge operator in the Clifford Algebra approach

Let V' be a vector space over the real field R of finite dimension, i.e., dimV =n,n € N.

By V* we denote the dual space of V.

We recall that the space of k-tensors (denoted Ty (V*)) are the set of all k-linear map-
pings 7% such that
T Vix-o-x V"= R

and a multitensor 7 of order m € N is an element of T'(V'), where

(V)= ki ® TH(V*),

of the form 7 = Z ® 73, with 7, € Ty, (V*), such that all the components 7, € T}, (V*)
of 7 are null for k > m. T (V) is called the space of multitensors.

The Clifford algebra Cl (V, g) of a metric vector space (V, g) is defined as the quotient

algebra
(V)
Jg
where J; C T(V) is the bilateral ideal of T (V') generated by the elements of the form
u@v+vu—2¢g(u,v), with u,v € V.C T(V). The elements of CI(V, g) are called Clifford

Cl(V,g) =

numbers.

Let py : T(V) — CI(V, g) be the natural projection of T'(V) onto the quotient algebra
Cl(V, g). Multiplication in CI(V, g) is called Clifford product and defined as

for all A, B € Cl(V,g). In particular, for u,v € V' C CI(V, g), we have
1 1
UV = §(u®v—v®u)+g(u,v)+§(u®v+v®u)—g(u,v),
and then

(u@v—v@u)+ g(u,v) =uAv+ g(u,v).

N | =

pg(u®@v) =uv =
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Hodge operator and asymmetric fluid in unbounded domains 3

From here we derive the standard relation characterizing the Clifford algebra CI(V, g),
uv 4+ vu = 2g(u, v).

In that follows we take V' = R™, and we denote by RP? (n = p + q) the real vector
space R™ endowed with a non-degenerated metric g : R™ x R™ — R, such that, if {e;},
(i=1,2,...,n) is an orthonormal basis of R*9, we have

+1, i=j5=1,...,p,

gleiej)=gij=gi= -1, i=j=p+1,....,p+q=n,

0, i#j.
The Clifford algebra CI(RP?, g) =R, 4 = Cl, 4, is the Clifford algebra over R, generated
by 1 and the {e;}, (i = 1,2,...,n) such that e? = g(ei,e;), e;e; = —eje; (i # j), and
ea =ejeg- ey £ 1.

Therefore the universal Clifford algebra Ci, , has the dimension 2". Henceforth, each

element a € Cl, , shall be written in the form

a=Y aaex,
A

where the coefficients a4 are real numbers.

Now, we briefly describe Hodge star operator, which will be used throughout these
article. The Hodge star operator (or Hodge dual) is the linear mapping x : A"V —
A""V such that

ANxB = (A-B)1y,
for every A, B € \"V* and where 7, is the volume element in A"V*. The inverse x ! :

N""V* — A\"V* of the Hodge star operator is given by
x = (=1)7" sgn(g),
where sgng = det g/ |det g| denotes the sign of the determinant of the matrix (g;; =
g(ei ;).
An important property of the Hodge star operator, which we will use in the course of
the article, is
*A, = ZTJTg = ATTg, (1)
for any A, € \"V*.

Here \"V* = CI" denotes the space of k-forms, but the same results are obtained for

k-vectors; for details see [6].
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Let Q@ C R™ and T' = 0. Then functions v defined in Q with values in Cly, (p =

0 and ¢ = n) are considered. These functions may be written as
u(z) = > eaua(z), x € Q.
A

Properties such as continuity, differentiability, integrability, and so on, which are imposed
on u have to be possessed by all components u4(z). In this way, the usual Banach
space of these functions are denoted by C*(Q, Clo,n), L4(€2, Clo,n) and WF(2, Cly ) or
in abbreviated form C*(Q2), £,(Q2) and W ().

Let us now introduce the Dirac operator as

D= Zek

&ck
It is easy to prove that D? = —A, where A is the Laplacian.

We remind that the subspace of Cly ,, generated by the basic element e4 with equal
length k is denoted by CIf,,. Its elements are called k-vectors. It follows that CIj,, is

isomorphic to R™ (Clg ,, =~ R™). In this sense, we can identify each vector u(x) € R with
u(z) = ur(z)er + -+ + un(@)en € Cly,, = Clo .

Then we can calculate Du(z) when u(z) € Clgy — Clos, ie., if u(z) = ui(z)e; +
us(x)ea + uz(x)es, so that

Ju(x)
&ck

NE

Du(z) =) ek

k=1

= eli(ul(x)el + ua(x)es + uz(x)es)

8$1

0
Teag— (ur(z)er + ua(x)ez + u(r)es)
€r2

0
+ €35~ (ur(z)er + ua(x)es + ug(x)es).
]
We can compute that
- 6’11,1 8u2 6’11,3 8u2 6’11,1
Du(z) = O0r1 Oxy Oxs tern (83:1 81:2>
6’11,3 8u1 6’11,3 8u2 (2)
teihes (8171 8{E3>+62/\63 (8172 8353)
= —div(u*(z)) + * curl(uv”(z)),
where u*(z) € R®. Thus, we have
curl(u*(z)) =« div(u*(2)) + **Du(z). (3)
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Now, we can demonstrate that x~!Du(z) = D~ !u(x). From equation (3) we derive (we

remind that x~! = (=1)"""sgn(g)),
*tDu(z) = (—1)"™ sgn(g) (- div(u*(z)))e1 A eg A es + curl(u*(z)). (4)

On the other hand,

D« u(z) = (1) Vsgn(g) D x u(x) (5)
and
*xu(z) = (e3 A ea)ur(z) + (e1 A ez)ua(z) + (e2 A eq)ug (z); (6)
then,
3
0
D xu(zx) = Zek—((eg Aeg)ur(z) + (e1 A esz)ua(z) + (e2 Aey)uz(x))
1 afk
0 0 0
= (61 VANCEWAN 62)8—1:11: - (62 VANGCEWAN el)a—zz + (63 N ez A el)a—zz
8U1 8’&2 8U3 8’(1,1 8’(1,2 811,3
+e3 <8—,’E2_a—{[:1> + e9 <8—,’E1_a—{[:3> + e (a—wB—a—xQ>,
or
D xu(z) = — div(u*(z))7y — curl(u*(z)), (7)

where 74 = e1 A e2 A e3. Thus we obtain
D+ u(w) = (1) Msgn(g)(— div(u* (2)))7
— ((=1)"" sgn(g)) curl(u*(x)) (8)
= div(u*(x))1y + curl(u*(x)),
where
((=1)"™ Isgn(g)) curl(u*(x)) = — curl(u*(x)),
(=1 sgn(g)) div(u*(z)) = — div(u*(z)).

Finally, from equations (4) and (8) we obtain that
*x ' Du(z) = D x ' u(z); 9)

then, the equation (3) can be written as

curl(u*(z)) =+t div(u*(z)) + D« ' u(x)
(10)
= —(Du(x)) A7y + D u(x).
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Other useful relations are listed below:
1
uDu = —udivu® — EDUQ —u* - Vu+u curlu™ry,

(Du)u = —udivu® + 1Du2 +u" - Vu+u* curlu*r,
uDu — (Du)u = —2u* - Vu* — Du?,
uDu + (Du)u = —2divu™ + 27,u” curl u™, (11)
Du? = (Du)u — uDu — 2u* - Vu,
D(uw) = (Du)w — uDw — 2u* - Vw,
2u* - Vu = (Du)u — uDu — Du?,
2u* - Vw = (Du)w — uDw — D(uw).

3. Asymmetric Fluid and Hodge Operator

In this section we consider the stationary incompressible asymmetric fluid in bounded
domains with density constant. A detailed study of this system can be viewed in [4] (see
also [5]) and in exterior domains in [1]. Thus, let us denote by u*, w* and p the velocity
field, the angular velocity of rotation of the fluid particles and the pressure distribution,

respectively. The governing equations are the following:

1 2 r *
—Au*—i—i(u*-V)u*—i-—Vp: i curlw® + f7,
nly pli Iy
divu* =0, (12)
1 l 4 s 2 T * *
—Aw* 4+ —(u* - V)w* — 2V div w* + Pr e = 22 el +91-
12 12 l2 l2

For simplicity, they will be completed with the following boundary conditions:
u () =0, w'(x)=0 ondQ=T. (13)

In (12), f* and ¢g* are known density functions of external sources for the linear and
the angular momentum of particles, respectively. The positive constants l1,ly and I3 are

given by

Cq t+Cq Co+C4—Cq
li= ;o L= ;o 3= —,
P P P

where u, i, co, cq and cq characterize the physical properties of the fluid. Thus, u is the

usual Newtonian viscosity; u., co, cq and cq are additional viscosities related to the lack
of symmetry of the stress tensor and, consequently, to the fact that the field of internal

rotation w does not vanish. These constants must satisfy the inequality co + cq4 > ¢q.
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Now, we can write the system (12,13) in the Clifford formalism with

’U,($),’LU(I) S Ol(]}yg — Clo_’g

as
2 P 2 L 2 g _
D*u+ —((Du)u —uDu — Du®) + —Dp — (D*"w— (Dw) A1) — f1 =0,
2nly pl1 A ‘
DuNTty =0,
2 1 l3 4:”’7“ 2:“"‘ —1
D*w + —((Du)w — uDw — D(uw)) — =D * (Dw A1) + w = Dx"u+ ¢,
21y lo lo la
u=0, w=0 ondQ=T.
(14)
For further use, we introduce the operators M (u) and N (u,w) defined by
M (u) = 3((Du)u — uDu — Du?) — nh 1
p (15)

N(u,w) = $((Du)w — uDw — D(uw)) — lags.
Although this section is dedicated to the model in bounded domains, we recall that in

this paper we consider unbounded domains.

4. Hodge Operator and Projections

Now, we recall without proof the theorems and operators introduced in [2]. Let a fixed
point z lying in the complement of the closure of €2, which contains a non-empty open

set. Then we can consider the operator

Tf(y) = /Q K. (2,9 (2)d9,. (16)

with K, (z,y) = G(z — y) — G(z — z), where G(x) is the so-called generalized Cauchy
kernel, the Green function of the Dirac operator. This operator is a continuous mapping
of WF(Q) in WFT1(Q), 1 < ¢ < o0, k=0,1,... and is bounded operator of W, () in
L4(9), 1< q<o0.

Theorem 4.1 (Borel-Pompeiu’s formula). If f € W(Q), 1 < g < oo, then we have
Frf =f-TDJ,

with
Frf= / K. (z, y)a(a) f(2)dTs,

where a(x) is the outward pointing normal unit vector to T' at the point x.
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Proposition 4.2. If k € N, then the operator
Fr: WEY9T) - WE(Q) nker D
18 a continuous operator.

Theorem 4.3 (Plemelj-Sokhotzki's formula). If f € W)(T), 1 < g < oo, I > 0, then we

have
trFpf = 1f + 13 f
rerj = 5 D) rJ,
whereby
Sef =2 [ K.le.g)a@) (@)L,
r

is the singular integral operator of Cauchy type over the boundary.

Theorem 4.4. The space L4(2), 1 < g < 00, allows the direct decomposition

£,(9) = ker D(Q) N £,(Q) & D(VO\/Z(Q)).

The above theorem allows to obtain the projections
P:L,(Q) = ker D(Q2) N LH(Q)

and
1
Q: £,(2) — DOW,(Q);

for ¢ = 2 these projections are orthoprojections. Moreover, in [2] it is shown that
Qf = DA, D,

where Agl, 1s the solution operator of the Dirichlet problem of the Poisson equation with

homogeneous boundary data

—Au=f inQ,

u=0 onl,
for fe W (), 1 < g < 0.

Theorem 4.5. Suppose fi,91 € W;'(Q), p € Ly(,R), 1 < g < 005 then any solution of
the system (14) has the representation
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U 1 ~ 2ty ~ .
u+ %TQTM(uH—pTTQp: P (TQ «* w—TQTDw A7)
1

Nl Iy
AL QT M L op) = — 2 -1 TD 7
Tg (TQ (U)+TQP)—— ] Tg AN QR+ w— QT Dw A y) (17)
ni1 pl1 1
1~ -~ Is ~ Appr ~ ~ 2y~
w+ -TQTN(u,w) = 2TQ((Dw A,)) - l“ TQTw + l“ TQur,
2 2 2 2

Proof. Recall that Qf = DA;'Df and fo(y) = f(y), and the Borel-Pompeiu’s for-

mula
. - 01l
TDu =u— Fru = u, u €W, (Q),
we can write

TQTDDu = T(DA;'D)TDDu = TDA;*DDu = TDu = u. (18)

On the other hand,
TQT(D xtw—DwATy) = TQTD * L — TQTD’LU ATy (19)
=TQ+'w—TQTDw A Tgs
then by applying the TQT operator to system (14) and using the formulas (18) and (19),

we obtain the expected result. v

Lemma 4.6. 1. Let n/2 < q < oco. Then the operator M : W;() — W;1(Q) is a

continuous operator and we have

IB(wD ATl 10y < Co lulliys oy -

2. Letn/2 < q < co. Then the operator N, : W) (Q) x W, () = W, 1(Q) is a continuous

operator and we have
1D A )] w1 gy < Co [l el oy -
Proof. See [2]. v

On the other hand, the system (17) can be solved by the following iterative method
similar to [2]:
2y
l
2y

l—Tg AN (Q *x 1 Wi — QTD’U)Z' N Tq) =0 (20)
1

-~ 1 ~ ~ - -
w; + L TQT M (ui_y) + —TQp; = F-(TQ+ " wi = TQTDw; Ay) =0
143}

7711

AL QT M (ui1) + —Qpy)
Tg N~ i —&pi) —
7l Yol P
1
lo

- I T TS
wi+ QTN (usyw) = 2TQ(Dwi A 1y)) + F2TQTw, = FHTQ " s = 0
2

lo la

Vol. 27, No. 1, 2009]



10 I. koNDRASHUK, E. NoTTE-CUELLO, & M. A. Rojas-MEDAR

Note that the first two equations above represent an interaction similar to the case of

Navier-Stokes equations and their treatment is identical to [2]. Indeed,

‘ ) P H~ T . . H 1 HN . . H
. < P ANTQT(M(ui—r) — M(u; o | TRWP — i
|wi —u 1||Wé(9) nl1 (M (ui-1) (i=2)) wiQ)  ph (pi = pi-1) Wa (@)
2Mr o 2y || 7=
w + TQTD(wi—y — wi_s) A
ll ZQ* (w; — wi—1)T, wi@) I (wi—1 —wi—2) ATy Wi (@)

Now, using the second equation of (20), we have
lui = wi1ll @y < 200 [M (wim1) = M (ui-2)llyy 10
where

Cy=—

— , TH
nl H H[Lq(ﬂ)ﬂimQ,W(}(Q)] 1€, 0.2, @nimal H

W H(Q),£4(Q)]

Now, due to previous Lemma, we have

1Se(uD)] ullyy1 ) < Co llulliy oy -

[Se(uD)] w”w L) = Cy ||u||W1 Q) ||w||W1(Q
then, similarly as in [2], this results in
1M (i 1) = M (ui2) [y < Ca uicr = uizally o (||Ui—1||w;(n) + ||Uz'—2||w;(sz)> -
With L; = 2C1Ca([[ui-1 [y ) + [[wi-2llyi o)) we obtain
[lu; — Ui71||wé(g) < Lifjui—1 — Ui72||wé(Q) .

Furthermore, by using the second equation of (20) and consider that the element of

volume, 7,4, has norm bounded, we have

0 (l~m
[illys o) < i HTQTM(ui‘l)Hw;(Q)

¥ H - TQpi+ 2 (T Qui ~ TQT (D A7),

Wi ()

HTQTM Wit H QT M (u;_1)

2 17l |
wi@)  nlh wl Wi(Q)

HTQTM Wiy H
Wi(Q)

<2C,0y ||Ui—1||wt}(sz) + Cl; ||f1||w;1(9) )
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then, by using arguments similar to [2] (see page 97), to ensure that ||ui|\wl(9) <
q
Huilew;(Q) , we must have that (p/nl1) [ f1llyy-1(q) < (16C2C32)~1; then,

1
lwi-allwi o) = 10,0,

— )

1/2
with W = [(40102)*2 — oIl e /(nllcz)} . Finally, it can be shown that
[ui = wicillw @) < (1= 4C1CW) [luioy = izl (o) »

with the condition L; < (1 —4C1CeW) = L < 1. Then, by Banach’s fixed point theorem
the iterative method (20) converges. Now we demonstrate convergence for the third

equation of (20) in which w; is calculated by the third equation of (20) in analogy to [2]

placing
j l == -1y, I3 j Apr 55 5 2
wiz—l—TQTN(ui,wi )—i—l—TQ(*(Dwi/\Tg))—i— ] TQTwi—l—TQuiTg;
2 2 2 2
thus,
Hwﬂf —wﬂ.'*lH <21 HTQT(N(ui wi™) = N(u; wﬂ.'*2))H
v Collwie) Tl T T Wi
ls |1~ o
| TQue@! —wi ) A (21)
A || s~ G -1
+ b TRT (w] —w] )ng’
where
a)
1~ ~ . _ _
~ N TOTN (us, w ™) — N(u; 2” < HN i1y _ N (u, 2”
3 QTN s wl™) = NG wl )| < P [N il ™) = Nl )
:E’Uszf —uinfsz )
Wq
- Fl‘ ui(wa-_l — wa-_Q)HVW1
i1 il
< il [l ™ =0l

where P, = P;C and

1y~ ~
= |7 mar |7 '
1= (Ca@nim@ W) 1Qll 1z, (©),2,()nima) Wi ()£
b)
I3 |5 i1 i1
EHTQ*(D(wi — w] ))/\TQHW; SPg‘wi — w] ng’
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where
P, = _2 H H[ﬁqmeW(}] HQH[Lq,EqﬁimQ] ||V|‘[w;,£q] :
c)
Aty ||~ ~ . .
2N TQT(w] — i ™| < Pywl —wl ™|
l2 Wé Wé
where
4/1'r T
m= |7 ) -
s Iy [£4nim@, W] ”Q”M‘I’Lqm @l [wiwnz
Then, from (21) and the above estimates, we can write
o Pl ot = 2P o =
wiHQ) ~ w}
where P = max {P,, P3}. Thus, if 2P < 1 we can write
] 1 1 . J-1 _ J_‘—zH
‘ Hw;(n) ~1-2P HUZ”Wz} Wi wr’
‘ 0!
Then, 1f 2P ||Usz1 < 1, we have that { f} converges in W, (Q).

Consequently, we have proved that the system (14) has a unique solution.
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