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Nonlinear stability for 2 dimensional

plane Couette flow

Pablo Braz e Silva
∗

Abstract. In this expository article, we discuss the application of the resol-
vent technique to prove nonlinear stability of 2 dimensional plane Couette flow.
Using this technique, we show how one can derive a threshold amplitude for
perturbations that can lead to turbulence in terms of the parameter called
Reynolds number. Our objective is to present this argument in details, trying
to be accessible to a wide class of readers, and hopefully catching their attention
to the beautiful subject of stability questions in fluid mechanics.

1. Introduction

We discuss nonlinear stability of plane 2 dimensional plane Couette flow via the
resolvent method. Applying this method, one can derive lower bounds for the norms
of perturbations of the flow that can grow with time. The resolvent method is an
interesting technique for proving stability of solutions of differential equations. For
a general discussion in various cases, see [3] and [4]. For nonlinear stability of plane
Couette flow, this technique has been used in [5], [6]. Linear stability of the flow has
been proved in [9].

Application of the resolvent method requires estimates for the resolvent of a linear
operator. Moreover, for the specific case of Couette flow, one is interested in deter-
mining the exact dependence of the resolvent on a parameter called Reynolds number.
This dependence is usually hard to derive. Regarding this question, both numerical
and analytical studies can be found in [1], [5], [7], [8], [10]. A complete analytical proof
of the dependence of the resolvent on the Reynolds number is still an open problem,
as far as we know.
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2. The problem

We are interested in the following initial boundary value problem:




ut + (u · ∇)u + ∇p =
1

R
∆u,

∇ · u = 0,

u(x, 0, t) = (0, 0),

u(x, 1, t) = (1, 0),

u(x, y, t) = u(x + 1, y, t),

u(x, y, 0) = f(x, y),

(1)

where u : R × [0, 1] × [0,∞) −→ R
2 is the unknown function u(x, y, t) =

(u1(x, y, t), u2(x, y, t)). The positive parameter R is the Reynolds number. The initial
condition f(x, y) is assumed to be divergence free and compatible with the boundary
conditions. The pressure p(x, y, t) can be determined in terms of u by the elliptic
problem 




∆p = −∇ · ((u · ∇)u),

py(x, 0, t) =
1

R
u2yy(x, 0, t),

py(x, 1, t) =
1

R
u2yy(x, 1, t).

(2)

It can be easily seen that U(x, y) = (y, 0), P = constant is a steady solution of
problem (1). The vector field U(x, y) = (y, 0) is known as Couette flow. We note that
all functions considered here are assumed to be smooth.

Using the resolvent technique, one can prove and quantify asymptotic stability for
this flow. By quantification we mean the derivation of a number M(R) such that
disturbances of the flow with norm less than M(R) will tend to zero as time t tends
to infinity. In other words, deriving a lower bound for the norm of perturbations that
can grow with time t.

Our exposition is divided in 3 sections: in section 3, we introduce some basic notation
and derive the equations for perturbations of the Couette flow; in section 4 we derive
estimates for the solution of the linearized equations for the perturbations; in 5, we use
those estimates to prove asymptotic stability for the flow, and to derive the threshold
amplitude M(R). In the appendix A, we show the proof of a technical lemma used
in Section 5. In the appendix B, the proofs of some simple Sobolev-type inequalities
used are given.

3. Notation and equations for the perturbations

We denote by 〈·, ·〉 and ‖ · ‖ the L2 inner product and norm over Ω = [0, 1] × [0, 1]:

〈u,w〉 =

∫

Ω

u · w dxdy ; ‖u‖2 = 〈u, u〉.
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Nonlinear stability for 2 dimensional plane Couette flow 69

All the matrix norms that appear in this paper are the usual Frobenius norms. The
usual Sobolev norm of u over Ω is denoted by

‖u‖2
Hn(Ω) =

n∑

j=0

‖Dju‖2,

where Dj denotes the j-th derivative of u with respect to the space variables. Unless
stated otherwise, all norms in the space variables will be calculated over Ω, and there-
fore we will write ‖ · ‖Hn(Ω) as ‖ · ‖Hn . We make use of a 2 dimensional version of the
weighted norm ‖ · ‖

H̃
used in [5]:

‖u‖2
H̃

= ‖u‖2 +
1

R
‖Du‖2 +

1

R2
‖uxy‖

2. (3)

The maximum norm over Ω is denoted by | · |∞. The norm ‖ · ‖
H̃

is related with the
maximum norm by the Sobolev type inequality (see Appendix B)

| · |2∞ ≤ C̃R‖ · ‖2
H̃

. (4)

Since we are interested in functions which are also dependent on time, we use that

|u(·, t)|2∞ ≤ C̃R‖u(·, t)‖2
H̃

, ∀ t ≥ 0, (5)

where C̃ is a constant independent of any of the parameters.

We are interested in proving asymptotic stability for the Couette flow, which is
a stationary solution of (1), that is, to prove that perturbations of the stationary
solution that are small enough in some norm will tend to 0 as t tends to infinity. In
our presentation here, we show that perturbations having norm ‖ · ‖H6 of order R−3

decay with time.

To this aim, let U = U(x, y), P = P (x, y) be a stationary solution of (1). We
can obviously use the Couette flow, but we think that the structure of the argument
is easier to be understood if one uses any stationary solution. This will not change
the estimates we will prove. We derive the equations satisfied by perturbations of
this base flow. Let u(x, y, t) , p(x, y, t) be a solution of (1) with initial condition
f(x, y) = U(x, y) + ǫf ′(x, y), where f ′ is divergence free and ‖f ′‖H6(Ω) = 1. Then, ǫ

defines a unique perturbation amplitude. Write u(x, y, t) = U(x, y) + ǫu′(x, y, t) and
p(x, y, t) = P (x, y) + ǫp′1(x, y, t) + ǫ2p′2(x, y, t). Then u′,p′1,p

′
2 satisfy the system





u′
t + (u′ · ∇)U + (U · ∇)u′ + ∇p′1 + ǫ(u′ · ∇)u′ + ǫ∇p′2 =

1

R
∆u′,

∇ · u′ = 0,

u′(x, 0, t) = (0, 0),

u′(x, 1, t) = (0, 0),

u′(x, y, t) = u′(x + 1, y, t),

u′(x, y, 0) = f ′(x, y).
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70 Pablo Braz e Silva

The functions p′1 and p′2 are given in terms of u′ by





∆p′1 = −∇ · ((u′ · ∇)U) −∇ · ((U · ∇)u′),

p′1y(x, 0, t) =
1

R
u′

2yy(x, 0, t),

p′1y(x, 1, t) =
1

R
u′

2yy(x, 1, t),

and 



∆p′2 = −∇ · ((u′ · ∇)u′),

p′2y(x, 0, t) = 0,

p′2y(x, 1, t) = 0.

The functions p′1 and p′2 can be estimated in terms of u′ by

‖∇p′1(·, ·, t)‖
2 ≤ C‖u′(·, ·, t)‖2

H3 , ∀ t ≥ 0,

‖∇p′2(·, ·, t)‖
2 ≤ ‖(u′ · ∇)u′(·, ·, t)‖2 , ∀ t ≥ 0.

From now on, to simplify the notation, we drop the ′ in the equations above, and just
write u, p1, p2. With this notation, the equations above are





ut + (u · ∇)U + (U · ∇)u + ∇p1 + ǫ(u · ∇)u + ǫ∇p2 =
1

R
∆u,

∇ · u = 0,

u(x, 0, t) = (0, 0),

u(x, 1, t) = (0, 0),

u(x, y, t) = u(x + 1, y, t),

u(x, y, 0) = f(x, y),

(6)





∆p1 = −∇ · ((u · ∇)U) −∇ · ((U · ∇)u),

p1y(x, 0, t) =
1

R
u2yy(x, 0, t),

p1y(x, 1, t) =
1

R
u2yy(x, 1, t),

(7)

and {
∆p2 = −∇ · ((u · ∇)u),

p2y(x, 0, t) = 0, p2y(x, 1, t) = 0.
(8)

Note that p1 depends linearly on u. Moreover, for all t ≥ 0, we have

‖∇p1(·, ·, t)‖
2 ≤ C‖u(·, ·, t)‖2

H3 , (9)

‖∇p2(·, ·, t)‖
2 ≤ ‖(u · ∇)u(·, ·, t)‖2. (10)
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Nonlinear stability for 2 dimensional plane Couette flow 71

When the initial data are divergence free and the terms of pressure are given by the
equations (7) and (8) above, the solution u of problem (6) remains divergence free for
all time t. Therefore, we drop the continuity equation and write problem (6) as





ut = Lu − ǫ(u · ∇)u − ǫ∇p2,

u(x, 0, t) = (0, 0),

u(x, 1, t) = (0, 0),

u(x, y, t) = u(x + 1, y, t),

u(x, y, 0) = f(x, y),

(11)

where L is a linear operator depending on the parameter R, defined by

Lu =
1

R
∆u − (u · ∇)U − (U · ∇)u −∇p1, (12)

with p1 given by (7). Note that this linear operator has an integral part, which is the
term ∇p1.

To apply the resolvent technique to prove stability of the stationary flow, it is con-
venient to have homogeneous initial conditions. Therefore, we transform the problem
(11) to a similar problem with homogeneous initial condition by defining

v(x, y, t) := u(x, y, t) − e−tf(x, y). (13)

Note that v and u have the same behavior as t → ∞. Moreover, v given by (13)
satisfies





vt = Lv − ǫ{(v · ∇)v + e−t(v · ∇)f + e−t(f · ∇)v} − ǫ∇p2 + F (x, y, t),

v(x, 0, t) = (0, 0),

v(x, 1, t) = (0, 0),

v(x, y, t) = v(x + 1, y, t),

v(x, y, 0) = (0, 0),

(14)

where F (x, y, t) = e−t((L+ I)f − ǫe−t(f · ∇)f). Note that F , Ft ∈ L2([0,∞);L2(Ω)),
that is, both ‖F (·, ·, t)‖2 and ‖Ft(·, ·, t)‖

2 are integrable over [0,∞).

Our aim is to prove that if ǫ is small enough, then

lim
t→∞

|v(·, t)|2∞ = 0.
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4. Linear problem

We first consider the general linear problem





vt = Lv + F (x, y, t),

v(x, 0, t) = (0, 0),

v(x, 1, t) = (0, 0),

v(x, y, t) = v(x + 1, y, t),

v(x, y, 0) = (0, 0),

(15)

where ‖F (·, t)‖2 and ‖Ft(·, t)‖
2 integrable over the domain [0,∞):

∫ ∞

0

(
‖F (·, t)‖2 + ‖Ft(·, t)‖

2
)
dt < ∞.

In our case of two spatial dimensions, resolvent estimates were found in [1]:

‖ṽ(·, s)‖2 ≤ C1R
2‖F̃ (·, s)‖2 , Re(s) ≥ 0, (16)

where ˜ stands for the Laplace transform with respect to t , s is its variable and C1 is
an absolute constant, that is, it does not depend on any of the parameters or functions
(readers that are not familiar with the Laplace transform and its basic properties can
look at [11], for example).

One can prove, as in [5], Appendix A, that (16) implies

‖ṽ(·, s)‖2
H̃

≤ CR2‖F̃ (·, s)‖2, (17)

where C depends on C1 and on U and its first derivative. Since for our problem U is
fixed as the Couette flow, C is an absolute constant as well. From now on, we will use
C for any absolute constant, and replace its value as necessary keeping the notation
C.

Using Parseval’s relation for Laplace transformation, inequality (17) for the trans-
formed functions is translated to the original functions as

∫ ∞

0

‖v(·, t)‖2
H̃

dt ≤ CR2

∫ ∞

0

‖F (·, t)‖2dt. (18)

Obviously, ∫ T

0

‖v(·, t)‖2
H̃

dt ≤

∫ ∞

0

‖v(·, t)‖2
H̃

dt , ∀T ≥ 0.

Moreover, since the solution of the equation up to time T does not depend on the
forcing F (x, y, t) for t > T , we have

∫ T

0

‖v(·, t)‖2
H̃

dt ≤ CR2

∫ T

0

‖F (·, t)‖2dt , ∀T ≥ 0. (19)
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Nonlinear stability for 2 dimensional plane Couette flow 73

For our argument, we also need similar estimates for vt. To this end, differentiate
equation (15) to get





vtt = Lvt + Ft(x, y, t),

vt(x, 0, t) = (0, 0),

vt(x, 1, t) = (0, 0),

vt(x, y, t) = vt(x + 1, y, t),

vt(x, y, 0) = F (x, y, 0) =: g(x, y),

(20)

that is, vt satisfies an equation of the same type as (15), but with non-homogeneus
initial conditions g(x, y) = F (x, y, 0). Performing the same type of initialization as
before, that is, defining ϕ := vt−e−tg, we get a similar problem for ϕ, with homogeneus
initial conditions and an extra forcing term. Using the estimates for the resolvent, and
writing those in terms of vt, we get

∫ T

0

‖vt(·, t)‖
2
H̃

dt ≤ ‖ F (x, y, 0)‖2
H̃

+ CR2‖(L + I)F (x, y, 0)‖2

+ CR2

∫ T

0

‖Ft(·, t)‖
2dt, ∀T ≥ 0. (21)

Combining (19) and (21) gives, for v the solution of (15),

∫ T

0

(
‖v(·, t)‖2

H̃
+ ‖vt(·, t)‖

2
H̃

)
dt ≤ ‖F (x, y, 0)‖2

H̃
CR2‖(L + I)F (x, y, 0)‖2

+ CR2

∫ T

0

(
‖F (·, t)‖2 + ‖Ft(·, t)‖

2
)
dt, ∀T ≥ 0. (22)

Now, using these estimates for the solution of the linear problem, we can prove a
stability result for the nonlinear equation.

5. Stability for the nonlinear problem

The nonlinear problem (14) is





vt = Lv − ǫ{(v · ∇)v + e−t(v · ∇)f + e−t(f · ∇)v} − ǫ∇p2 + F (x, y, t),

v(x, 0, t) = (0, 0),

v(x, 1, t) = (0, 0),

v(x, y, t) = v(x + 1, y, t),

v(x, y, 0) = (0, 0),

(23)

where F (x, y, t) = e−t((L + I)f − ǫe−t(f · ∇)f). We prove the following:
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Theorem 5.1. There exists ǫ0 > 0, ǫ0 = ǫ0(R), such that if 0 ≤ |ǫ| < ǫ0, then the
solution v(x, y, t) of (23) satisfies

lim
t→∞

|v(·, t)|∞ = 0.

Moreover, ǫ0 = O(R−3).

Proof. We consider problem (23) as a linear problem with forcing

G(x, y, t) := F (x, y, t) − ǫ{(v · ∇)v + e−t(v · ∇)f + e−t(f · ∇)v} − ǫ∇p2. (24)

Applying inequality (22) with forcing term G gives

∫ T

0

(
‖v(·, t)‖2

H̃
+ ‖vt(·, t)‖

2
H̃

)
dt ≤ ‖G(x, y, 0)‖2

H̃
+ CR2‖(L + I)G(x, y, 0)‖2+

+ CR2

∫ T

0

(
‖G(·, t)‖2 + ‖Gt(·, t)‖

2
)
dt, ∀T ≥ 0. (25)

From the definition of G, we have

∫ T

0

(
‖v(·, t)‖2

H̃
+ ‖vt(·, t)‖

2
H̃

)
dt ≤ 2‖F (x, y, 0)‖2

H̃
+ 2ǫ2‖∇p2(x, y, 0)‖2

H̃

+ CR2‖(LR + I)F (x, y, 0)‖2 + CR2‖(LR + I)p2(x, y, 0)‖2

+ CR2

∫ T

0

(
‖F − ǫ{(v · ∇)v + e−t(v · ∇)f + e−t(f · ∇)v} − ǫ∇p2‖

2
)
dt

+ CR2

∫ T

0

(
‖(F − ǫ{(v · ∇)v + e−t(v · ∇)f + e−t(f · ∇)v} − ǫ∇p2)t‖

2
)
dt. (26)

Since p2 is given by (8), one can prove that

‖∇p2‖ ≤ ‖(u · ∇)u‖ ; ‖(∇p2)t‖ ≤ ‖((u · ∇)u)t‖.

Thus, using (13), we can estimate ∇p2 by f and v. Moreover,

‖∇p2(·, ·, 0)‖2 ≤ ‖(u · ∇)u(·, ·, 0)‖2 = ‖(f · ∇)f‖2,

and since ‖f‖2
H6 = 1, inequality (26) gives

∫ T

0

(
‖v(·, t)‖2

H̃
+ ‖vt(·, t)‖

2
H̃

)
dt ≤ ‖F (x, y, 0)‖2

H̃
+ CR2‖(L + I)F (x, y, 0)‖2

+ CR2

∫ ∞

0

(
‖F‖2 + ‖Ft‖

2
)
dt

+ CR2ǫ2
∫ T

0

(
‖(v · ∇)v‖2 + ‖(vt · ∇)v‖2 + ‖(v · ∇)vt‖

2
)
dt

+ CR2ǫ2
∫ T

0

(
‖e−t(v ·∇)f‖2+‖e−t(f ·∇)v‖2+‖e−t(vt ·∇)f‖2+‖e−t(f ·∇)vt‖

2
)
dt.
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Since
F (x, y, t) = e−t((L + I)f − ǫe−t(f · ∇)f),

we have F (x, y, 0) = (L + I)f − ǫ(f · ∇)f := Pf . With this notation, the inequality
above is

∫
T

0

(
‖v(·, t)‖2

H̃
+ ‖vt(·, t)‖

2

H̃

)
dt ≤ ‖Pf‖2

H̃
+ CR

2‖(L + I)Pf‖2 + CR
2‖(L + I)f‖2

+CR
2
ǫ
2‖(f · ∇)f‖2 + CR

2
ǫ
2

∫
T

0

(
‖(v · ∇)v‖2 + ‖(vt · ∇)v‖2 + ‖(v · ∇)vt‖

2
)
dt (27)

+ CR
2
ǫ
2

∫
T

0

(
‖e−t(v ·∇)f‖2+‖e−t(f ·∇)v‖2+‖e−t(vt ·∇)f‖2+‖e−t(f ·∇)vt‖

2
)
dt.

It is not difficult to check that all the terms depending on f of the right hand side of
inequality (27) can be bounded by C‖f‖H6 . Therefore, since ‖f‖2

H6 = 1, we replace
all these terms by an absolute constant and write inequality (27) as

∫ T

0

(
‖v‖2

H̃
+ ‖vt‖

2
H̃

)
dt ≤ CR2 + CR2ǫ2

∫ T

0

‖(v · ∇)v‖2dt

+ CR2ǫ2
∫ T

0

(
‖(vt · ∇)v‖2 + ‖(v · ∇)vt‖

2
)
dt

+ CR2ǫ2
∫ T

0

(
‖e−t(v · ∇)f‖2 + ‖e−t(f · ∇)v‖2

)
dt

+ CR2ǫ2
∫ T

0

(
‖e−t(vt · ∇)f‖2 + ‖e−t(f · ∇)vt‖

2
)
dt. (28)

From now on, we fix the constant C. To finish the proof, we use the following Lemma,
which is proved in appendix A:

Lemma 5.2. There exists ǫ0 > 0, ǫ0 = O(R−3), such that if 0 ≤ ǫ < ǫ0 then

∫ T

0

(
‖v(·, t)‖2

H̃
+ ‖vt(·, t)‖

2
H̃

)
dt < 2CR2, ∀T ≥ 0. (29)

Now, using (5) and a simple one dimensional Sobolev inequality (see appendix B),
we have

max
a≤t≤b

|v(·, t)|2∞ ≤ C̃R max
a≤t≤b

‖v(·, t)‖2
H̃

≤ C̃R

(
1 +

1

b − a

)∫ b

a

‖v(·, t)‖2
H̃

dt +

∫ b

a

‖vt(·, t)‖
2
H̃

dt.

This implies

sup
a≤t

|v(·, t)|2∞ ≤ C̃R

∫ ∞

a

(
‖v(·, t)‖2

H̃
+ ‖vt(·, t)‖

2
H̃

)
dt. (30)

Note that in view of Lemma 5.2, the right hand side of inequality (30) is finite. Letting
a → ∞ in (30), we have that lim

t→∞
|v(·, t)|2∞ = 0, which proves the theorem.

Vol. 22, Nos. 1 y 2, 2004]



76 Pablo Braz e Silva

Appendix

A. Proof of Lemma 5.2

First, note that for T > 0 small enough, inequality (29) obviously holds. Now,
suppose it does not hold for all T ≥ 0, that is, there exists T0 > 0 such that

∫ T0

0

(
‖v(·, t)‖2

H̃
+ ‖vt(·, t)‖

2
H̃

)
dt = 2CR2. (31)

Using (28), we have:

2CR2 =

∫ T0

0

(
‖v‖2

H̃
+ ‖vt‖

2
H̃

)
dt ≤

≤ CR2 + CR2ǫ2
∫ T0

0

(
‖(v · ∇)v‖2 + ‖(vt · ∇)v‖2 + ‖(v · ∇)vt‖

2
)
dt

+

∫ T0

0

(
‖e−t(v · ∇)f‖2+‖e−t(f · ∇)v‖2+‖e−t(vt · ∇)f‖2+‖e−t(f · ∇)vt‖

2
)
dt. (32)

We now estimate the integrands on the right hand side of inequality (32) by the integral
on its left hand side. To this end, we will use the inequalities (5) and

max
0≤t≤T0

‖v(·, t)‖2
H̃

≤

∫ T0

0

(
‖v(·, t)‖2

H̃
+ ‖vt(·, t)‖

2
H̃

)
dt = 2CR2. (33)

Since ‖v‖2
H̃

= ‖v‖2 +
1

R
‖Dv‖2 +

1

R2
‖vxy‖

2 , we have ‖Dv‖2 ≤ R‖v‖2
H̃

. Therefore, for

each 0 ≤ t ≤ T0:

‖ {(v · ∇)v} (·, t)‖2 ≤ |v(·, t)|2∞‖Dv(·, t)‖2

≤
(
C̃R‖v(·, t)‖2

H̃

) (
R‖v(·, t)‖2

H̃

)
(34)

≤ 2C̃CR4‖v(·, t)‖2
H̃

,

‖ {(vt · ∇)v} (·, t)‖2 ≤ |vt(·, t)|
2
∞‖Dv(·, t)‖2

≤
(
C̃R‖vt(·, t)‖

2
H̃

) (
R‖v(·, t)‖2

H̃

)
(35)

≤ 2C̃CR4‖vt(·, t)‖
2
H̃

,

‖ {(v · ∇)vt} (·, t)‖2 ≤ |v(·, t)|2∞‖Dvt(·, t)‖
2

≤
(
C̃R‖v(·, t)‖2

H̃

) (
R‖vt(·, t)‖

2
H̃

)
(36)

≤ 2C̃CR4‖vt(·, t)‖
2
H̃

,

‖e−t {(v · ∇)f} (·, t)‖2 ≤ e−2t|v(·, t)|2∞‖Df‖2 ≤ C̃R‖v(·, t)‖2
H̃

, (37)
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‖e−t {(f · ∇)v} (·, t)‖2 ≤ e−2t|f |2∞‖Dv(·, t)‖2 ≤ R‖v(·, t)‖2
H̃

, (38)

‖e−t {(vt · ∇)f} (·, t)‖2 ≤ e−2t|vt(·, t)|
2
∞‖Df‖2 ≤ C̃R‖vt(·, t)‖

2
H̃

, (39)

‖e−t {(f · ∇)vt} (·, t)‖2 ≤ e−2t|f |2∞‖Dvt(·, t)‖
2 ≤ R‖vt(·, t)‖

2
H̃

. (40)

Applying (34), (35), (36), (37), (38), (39), (40) to (32) gives

2CR2 ≤ CR2 + CR2ǫ2

{
6C̃CR4

∫ T0

0

(
‖v(·, t)‖2

H̃
+ ‖vt(·, t)‖

2
H̃

)
dt

}

= CR2 + CR2ǫ2
{

12C̃C2R6
}

. (41)

This implies
1 ≤ 12C̃C2R6ǫ2, (42)

which is equivalent to

ǫ ≥
1

CR3
√

12C̃
=

1

KR3
, (43)

where K := C
√

12C̃. Therefore, if ǫ <
1

KR3
, equality (31) never holds. This proves

the Lemma. ¤XXX

B. Proof of the Sobolev type inequalities

We state and prove the Sobolev type inequalities used here. The euclidian inner
product and norm in R

n are denoted by (·, ·) and | · |, respectively.

Lemma B.1. Let f(t) : [a, b] → R
n be a C1 function. Then,

max
a≤t≤b

|f(t)|2 ≤

(
1 +

1

b − a

)∫ b

a

|f(t)|2dt +

∫ b

a

|ft(t)|
2dt. (44)

Moreover, if there exists t0 ∈ [a, b] such that f(t0) = 0, then

max
a≤t≤b

|f(t)|2 ≤

∫ b

a

(|f(t)|2 + |ft(t)|
2)dt. (45)

Proof. Let t1, t2 ∈ [a, b] such that

|f(t1)|
2 = min

a≤t≤b
|f(t)|2 y |f(t2)|

2 = max
a≤t≤b

|f(t)|2.

Then, from

d

dt
|f(t)|2 = 2 (f(t), f ′(t)) ≤ 2|f(t)||f ′(t)| ≤ |f(t)|2 + |f ′(t)|2 (46)
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we have

|f(t2)|
2 − |f(t1)|

2 =

∫ t2

t1

d

dt
|f(t)|2dt ≤

∫ t2

t1

(
|f(t)|2 + |f ′(t)|2

)
dt

≤

∫ b

a

(
|f(t)|2 + |f ′(t)|2

)
dt,

and then

max
a≤t≤b

|f(t)|2 = |f(t2)|
2 ≤ |f(t1)|

2 +

∫ b

a

(
|f(t)|2 + |f ′(t)|2

)
dt. (47)

Since

|f(t1)|
2 = min

a≤t≤b
|f(t)|2 ≤

1

b − a

∫ b

a

|f(t)|2dt,

(47) implies the desired inequality

max
a≤t≤b

|f(t)|2 ≤

(
1 +

1

b − a

)∫ b

a

|f(t)|2dt +

∫ b

a

|ft(t)|
2dt. (48)

If there exists t0 ∈ [a, b] such that f(t0) = 0, then min
a≤t≤b

|f(t)|2 = 0 and the proof

above gives

max
a≤t≤b

|f(t)|2 ≤

∫ b

a

(|f(t)|2 + |ft(t)|
2)dt. (49)

This finishes the proof. ¤XXX

For completeness, we state the following Lemma which is a slight variation of Lemma
B.1. It will be used to prove inequality (4).

Lemma B.2. Let f : [0, 1] → R
n be a C1 function. Then,

|f |2∞ ≤ ‖f‖2 + 2‖f‖‖f ′‖. (50)

Proof. The proof is basically the same as the proof of Lemma B.1: to get the result,
just keep the inner product in (46) and use the Cauchy-Schwartz inequality. ¤XXX

We now prove inequality (4). We prove a general inequality valid for functions of
two variables defined in a strip. For the general case of more dimensions, we refer to
[2], Appendix 3. The proof given here follows the proof of this general case.

Lemma B.3. Let f : R × [0, 1] → R
2 be a C∞ function, 1-periodic in x. For any ǫ,

0 < ǫ ≤ 1,

|f |2∞ ≤ (2 + 2π)

(
1

ǫ2
‖f‖2 + ‖fx‖

2 + ‖fy‖
2 + ǫ2‖fxy‖

2

)
. (51)
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Proof. We will use the representation of f as a Fourier sum in the periodic direction
x and the Cauchy-Schwarz inequality

|f(x, y)|2 ≤

(
∑

k∈Z

|f̂(k, y)|

)2

=

(
∑

k∈Z

|f̂(k, y)|(1 + ǫ2k2)
1

2 (1 + ǫ2k2)−
1

2

)2

≤

(
∑

k∈Z

|f̂(k, y)|2(1 + ǫ2k2)

) (
∑

k∈Z

(1 + ǫ2k2)−1

)
. (52)

Now, estimate each of the factors in the product above. First,

∑

k∈Z

(1 + ǫ2k2)−1 = 1 + 2

∞∑

k=1

1

1 + ǫ2k2
≤ 1 + 2

∫ ∞

0

1

1 + ǫ2k2
dk.

Since ∫ ∞

0

1

1 + ǫ2k2
dk =

1

ǫ

∫ ∞

0

1

1 + ξ2
dξ =

π

2ǫ
,

we conclude that ∑

k∈Z

(1 + ǫ2k2)−1 ≤ 1 +
π

ǫ
≤

1 + π

ǫ
. (53)

To estimate the other factor, we use the inequality (50) to write

|f̂(k, y)|2 ≤ ‖f̂(k, ·)‖2 + 2‖f̂(k, ·)‖‖f̂y(k, ·)‖

≤ ‖f̂(k, ·)‖2 +
1

ǫ
‖f̂(k, ·)‖2 + ǫ‖f̂y(k, ·)‖2,

which implies

∑

k∈Z

|f̂(k, y)|2 ≤ ‖f‖2 +
1

ǫ
‖f‖2 + ǫ‖fy‖

2 ≤
2

ǫ
‖f‖2 + ǫ‖fy‖

2. (54)

Moreover,

k2|f̂(k, y)|2 ≤ k2‖f̂(k, ·)‖2 + 2
(
|k|‖f̂(k, ·)‖

) (
|k|‖f̂y(k, ·)‖

)

≤ k2‖f̂(k, ·)‖2 +
1

ǫ
k2‖f̂(k, ·)‖2 + ǫk2‖f̂y(k, ·)‖2

≤
2

ǫ
k2‖f̂(k, ·)‖2 + ǫk2‖f̂y(k, ·)‖2.

Summing this inequality over k, we obtain

∑

k∈Z

k2|f̂(k, y)|2 ≤
2

ǫ
‖fx‖

2 + ǫ‖fxy‖
2,

which implies ∑

k∈Z

ǫ2k2|f̂(k, y)|2 ≤ 2ǫ‖fx‖
2 + ǫ3‖fxy‖

2. (55)
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Applying (53), (54), (55) to (52), we get

|f(x, y)|2 ≤

(
1 + π

ǫ

)(
2

ǫ
‖f‖2 + ǫ‖fy‖

2 + 2ǫ‖fx‖
2 + ǫ3‖fxy‖

2

)
,

which implies the desired conclusion

|f |2∞ ≤ (2 + 2π)

(
1

ǫ2
‖f‖2 + ‖fx‖

2 + ‖fy‖
2 + ǫ2‖fxy‖

2

)
. (56)

Inequality (4) is a special case of (51). Indeed, since

‖u‖2
H̃

= ‖u‖2 +
1

R
‖Du‖2 +

1

R2
‖uxy‖

2,

we have

R‖u‖2
H̃

= R‖u‖2 + ‖Du‖2 +
1

R
‖uxy‖

2,

and (51) with ǫ2 =
1

R
implies

|u|2∞ ≤ (2 + 2π)R‖u‖2
H̃

. ¤XXX
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