The problem of the first return attached to a
pseudodifferential operator in dimension 3

OSCAR F. CASAS-SÁNCHEZa,*, JEANNETH GALEANO-PEÑALOZAb,
JOHN J. RODRÍGUEZ-VEGAb

aUniversidad de los Andes, Departamento de Matemáticas, Bogotá, Colombia.

bUniversidad Nacional de Colombia, Departamento de Matemáticas, Bogotá, Colombia.


Abstract. In this article we study the problem of first return associated to an elliptic pseudodifferential operator with non-radial symbol of dimension 3 over the p-adics.

Keywords: Random walks, ultradiffusion, p-adic numbers, non-archimedean analysis.
MSC2010: 82B41, 82C44, 26E30.


El problema del primer retorno asociado a un
operador seudodiferencial en dimensión 3

Resumen. En este artículo estudiamos el problema del primer retorno asociado a un operador seudodiferencial elíptico con símbolo no radial de dimensión 3 sobre el cuerpo de los números p-ádicos.

Palabras claves: Caminatas aleatorias, ultradifusión, números p-ádicos, análisis no arquimediano.


Texto Completo disponible en PDF


References

[1] Albeverio S., Khrennikov A.Y. and Shelkovich V.M., Theory of p-adic distributions: linear and nonlinear models, London Mathematical Society Lecture Note Series, 370, Cambridge University Press, Cambridge, 2010.

[2] Avetisov V.A. and Bikulov A.K., "On the ultrametricity of the fluctuation dynamic mobility of protein molecules" (Russian) Tr. Mat. Inst. Steklova 265 (2009), Izbrannye Voprosy Matematicheskaya Fiziki i p-adicheskaya Analiza, 82-89; translation in Proc. Steklov Inst. Math. 265 (2009), No. 1, 75-81.

[3] Avetisov V.A., Bikulov A.K. and Kozyrev S.V., "Description of logarithmic relaxation by a model of a hierarchical random walk", (Russian) Dokl. Akad. Nauk 368 (1999), No. 2, 164-167.

[4] Avetisov V.A., Bikulov A.K. and Zubarev A.P., "First passage time distribution and the number of returns for ultrametric random walks", J. Phys. A 42 (2009), No. 8, 18 pp.

[5] Casas-Sánchez O.F., Galeano-Peñaloza J. and Rodríguez-Vega J.J., "Parabolic-type pseudodifferential equations with elliptic symbols in dimension 3 over p-adics", p-Adic Numbers Ultrametric Anal. Appl. 7 (2015), No. 1, 1-16.

[6] Chacón-Cortés L.F., "The problem of the first passage time for some elliptic pseudodifferential operators over the p-adics", Rev. Colombiana Mat. 48 (2014), No. 2, 191-209.

[7] Chacón-Cortés L.F. and Zúñiga-Galindo W.A., "Nonlocal operators, parabolic-type equations, and ultrametric random walks", J. Math. Phys. 54 (2013), No. 11, 17 pp.

[8] Dynkin E.B., Markov processes Vol. I. Die Grundlehren der Mathematischen Wissenschaften, Bände 121, Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg 1965.

[9] Kochubei A.N., Pseudo-differential equations and stochastics over non-Archimedian fields. Monographs and Textbooks in Pure and Applied Mathematics, 244. Marcel Dekker, Inc., New York, 2001.

[10] Vladimirov V.S., Volovich I.V. and Zelenov E.I., p-adic analysis and mathematical physics. Series on Soviet and East European Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 1994.

[11] Zúñiga-Galindo W.A., "Parabolic equations and Markov processes over p-adic fields", Potential Anal. 28 (2008), No. 2, 185-200.


*Email:oscasas@uniandes.edu.co
Received: 16 July 2015, Accepted: 20 August 2015.
To cite this article: O.F. Casas-Sánchez, J. Galeano-Peñaloza, J.J. Rodríguez-Vega, The problem of the first return attached to a pseudodifferential operator in dimension 3, Rev. Integr. Temas Mat. 33 (2015), No. 2, 107-119.