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On Intervals, Sensitivity Implies Chaos

Héctor Méndez-Lango
∗

Abstract. In this note we investigate which properties can be derived for

a continuous function f defined on an interval I if the only a priori given

information is its sensitive dependence on initial conditions. Our main result

is the following: If f is sensitive, then f is chaotic, in the sense of Devaney,

on a nonempty interior subset of I; the set of aperiodic points is dense in I

as well as the set of asintotically periodic points; moreover, f has positive

topological entropy.

1. Introduction

The three conditions of Devaney’s definition of chaos for mappings are: density
of periodic points, topological transitivity, and sensitive dependence on initial con-
ditions (see [3]). It is known that the first two conditions imply the third provided
that the mapping is defined on a perfect space (see [1]).

In this note we will focus on functions defined on the interval. In this setting,
sensitivity on initial conditions implies by itself a very interesting dynamics as we
shall see.

Let I be the interval [0, 1] in the real line R. Let f : I → I be a continuous
function. It is known (see [7] and [8]) that if f is transitive on I, then the discrete
dynamical system induced by f is chaotic in the sense of Devaney on I. On
intervals, transitivity is a strong condition.

The third condition in Devaney’s definition is very important. Most of the
authors agree in one point: chaotic dynamics must show sensitive dependence on
initial conditions. The main result of this note is a partial answer to the following
question: What can we say about the dynamics of f : I → I if we only know that
f exhibits sensitive dependence on initial conditions?

Although on spaces with dimension greater than one sensitivity generally does
not imply complex dynamics (we shall give an example on the torus showing this),
on the interval sensitivity implies a complex behavior. Our main result is stated
as follows:
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16 Héctor Méndez-Lango

Theorem 1.1. If f : I → I exhibits sensitive dependence on initial conditions, then
the next two conditions hold:

i) There exists an invariant closed subset A ⊂ I such that f
∣

∣

A
is chaotic on

A in the sense of Devaney. Furthermore, this chaotic set has nonempty
interior.

ii) The sets Γ = {x ∈ I | ω(x, f) has infinite cardinality} and its complement,
Ψ = I − Γ, are both dense in I.

In section 4 we will show that sensitivity also implies that the topological entropy
of f : I → I is positive. This fact, positive entropy of f , is accepted by other authors
(see [2]) as a criterion to decide whether f exhibits chaotic dynamics or not.

2. Basic Definitions

Let x be a point of I, and the orbit of x under f is the set

o(x, f) = {x, f(x), f2(x), . . .},

where fn is the composition of f with itself n times, fn = f ◦f ◦ · · · ◦f . Also, f0 is
the identity function and f1 = f . We say that x is a periodic point of f (of period
n) if there exists n ∈ N such that fn(x) = x and fk(x) 6= x for all 1 ≤ k < n. If
f(x) = x, then x is a periodic point of period one. Let us denote by Per(f) the
set of all periodic points of f . Each interval or subinterval referred in this note has
not empty interior.

Let y be a point in I; the set of all limit points of o(y, f) is denoted by ω(y, f),
i.e.,

ω(y, f) =

{

z ∈ I | there exists {ni} ⊂ N, lim
n1→∞

fni(y) = z

}

.

We say that y ∈ I is an asymptotically periodic point of f if there exists x ∈ Per(f)
such that lim

n→∞

|fn(y) − fn(x)| = 0. Notice that in this case ω(y, f) = o(x, f).

It is known (see [2]) that the set ω(y, f) has finite cardinality if and only if y is
asymptotically periodic point. Therefore if the cardinality of ω(y, f) is not finite
the behavior of o(y, f) does not tend to a periodic motion, thus its dynamics is not
simple. The point y ∈ I is said to be an aperiodic point of f if ω(y, f) is not a
finite set.

It is said that f exhibits sensitive dependence on initial conditions (or f is sen-
sitive) on I if there exists δ > 0 (called constant of sensitivity) such that for any
x in I and for any ε > 0, there exist y in I with |y − x| < ε, and n ≥ 0 such that
|fn(y) − fn(x)| > δ. The function f is said to be topologically transitive (or f is
transitive) on I if for any pair of nonempty open sets A and B in I there exists
n > 0 such that fn(A) ∩ B 6= ∅. Recall that, on perfect compact sets, transitivity
is equivalent to the existence of a dense orbit. Let A ⊂ I be a perfect set, we say
that f is chaotic on A if A is invariant under f , i.e. f(A) = A, Per(f

∣

∣

A
) is dense

in A, and f
∣

∣

a
is both transitive and sensitive on A. In such a case it is said that A

is a chaotic set.
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3. The Sensitivity and a Digraph

Throughout this section we will assume that f : I → I is sensitive on I with
δ > 0 its constant of sensitivity.

We associate a digraph G with the function f in this way: Let

P = {t0 = 0, t1, . . . , tm = 1}

be a partition of I with ||P || <
δ

4
. The vertices of G will be the subintervals

Ak = [tk−1, tk], 1 ≤ k ≤ m. We put an arrow from Ai to Aj if there exists n ∈ N

such that fn(Ai) ⊃ Aj and the length of the interval fn(Ai) is equal to or larger
than δ, l(fn(Ai)) ≥ δ.

Lemma 3.1. From each vertex Ai, 1 ≤ i ≤ m, there are at least three arrows to
consecutive vertices Aj, Aj+1 and Aj+2.

Proof. Let i, 1 ≤ i ≤ m. Since f is sensitive, there exists ni ∈ N such that

l(fn(Ai)) > δ. Since for any j we have that (Aj) <
δ

4
(because of ||P || <

δ

4
) we

can find Aj , Aj+1 and Aj+2 such that (Aj ∪ Aj+1 ∪ Aj+2) ⊂ fni(Ai) ≥ δ. ¤XXX

Lemma 3.2. If there exist an arrow from Ai to Aj and an arrow from Aj to Ak,
then there exists an arrow from Ai to Ak.

Proof. The arrows Ai → Aj and Aj → Ak give us two natural numbers ni and nj

such that fni(Ai) ⊃ Aj and fnj (Aj) ⊃ Ak with l(fni(Ai)) ≥ δ and l(fnj (Aj)) ≥ δ.
Then fni+nj (Ai) ⊃ fnj (Aj) ⊃ Ak, and l(fni+nj (Ai)) ≥ l(fnj (Aj)) ≥ δ. ¤XXX

The degree of the vertex Ai, dg(Ai), will be the number of arrows starting at Ai.
If there exists an arrow from Ai to Aj we say Aj is attainable from Ai.

Remark. It is immediate from Lemma 3.2 that if Aj is attainable from Aj , then
dg(Ai) ≥ dg(Aj). All the vertices which are attainable from Aj are attainable from
Ai as well.

Take any i, 1 ≤ i ≤ m, and consider the vertex Ai. Among all attainable vertices
from Ai, choose Aj such that dg(Aj) = min{dg(Ak) | Ak is attainable from Ai}.
Let us call g = dg(Aj) and Aj1 , . . . , Ajg

all the attainable vertices from Aj .

Assume these vertices are in this order: If k < 1 and x ∈ Ajk and y ∈ Ajl
,

then x ≤ y. Notice that each pair of these vertices (subintervals) have at most one
common point, and if k < l − 1, then Ajk

∩ Ajl
= ∅. Since any Ajk

, 1 ≤ k ≤ g,
is attainable from Ai, dg(Ajk

) ≥ dg(Aj) = g. On the other hand, by Lemma 3.2,
dg(Ajk

) ≤ dg(Aj) = g. Thus, for any Ajk
we have dg(Ajk

) = g. Furthermore,
by the same lemma, the g vertices that are attainable from any Ajk

must be
Aj1 , . . . , Ajg

. Now, it is immediate that for any k, 1 ≤ k ≤ g, we have:

∞
⋃

n=1

fn(Aj1) =

∞
⋃

n=1

fn(Ajk
).

Let A be the closure of the previous union: A = cl(
⋃

∞

n=1
fn(Aj1)).
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18 Héctor Méndez-Lango

Lemma 3.3. The set A satisfies the following three conditions:

i) The interior of A is not empty, int(A) 6= ∅.

ii) For any x ∈ A and any ε > 0, there exists [c, d] ⊂ I, such that
[c, d]⊂(x−ε, x+ε) and [c, d]⊂A. Note this condition implies that A is per-
fect.

iii) f(A) = A.

Proof.

i) From these arrows Aj1 → Ajk
, k = 1, 2, . . . , g, it follows that

(Aj1 ∪ Aj2 ∪ Ajg
) ⊂ A.

Therefore, int(A) 6= ∅.

ii) Because of the sensitivity, f satisfies this claim: If B is any subset of I with
int(B) 6= ∅, then int(f(B)) 6= ∅.

Let x ∈ A and let ε > 0. There exists y ∈
∞
⋃

n=1

fn(Aj1) such that |x− y| < ε.

Hence there exist z ∈ Aj1 and n1 ∈ N such that fn1(z) = y. Since fn1 is a
continuous map there exists γ > 0 such that [z − γ, z + γ] ∩ Aj1 is a closed
subinterval with

fn1([z − γ, z + γ] ∩ Aj1) ⊂ ((x − ε, x + ε) ∩ A).

Thus, there exists [c, d] ⊂ ((x − ε, x + ε) ∩ A).

iii) Let us prove this part in two steps.

First. If B is a subset of I invariant under f , then f(cl(B)) = cl(B).

Since B = f(B) ⊂ f(cl(B)) and f(cl(B)) is a closed set in I, then cl(B) ⊂
f(cl(B)).

Now, let y ∈ f(cl(B)). There exist x ∈ cl(B) and a sequence {x1, x2, · · · } in
B such that f(x) = y and lim

→∞

xn = x. Since f is continuous and B = f(B),

we obtain lim
→∞

f(xn) = y and {f(xn)} ⊂ B. Thus, y ∈ cl(B).

Second. Let us prove that f

(

∞
⋃

n=1

fn(Aj1)

)

=
∞
⋃

n=1

fn(Aj1).

It is immediate that

f

(

∞
⋃

n=1

fn(Aj1)

)

=

∞
⋃

n=2

fn(Aj1) ⊂
∞
⋃

n=1

fn(Aj1).

Furthermore, because of the arrow Aj1 → Aj1 it follows that

Aj1 ⊂
∞
⋃

n=2

fn(Aj1).
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Therefore,
∞
⋃

n=1

fn+1(Aj1) ⊂
∞
⋃

n=2

fn(Aj1).

This completes the proof of Lemma 3.3. ¤XXX

Theorem 3.4. f
∣

∣

A
: A → A is chaotic on A.

Proof. It is enough to show that the set Per(f
∣

∣

A
) is dense in A, and f

∣

∣

A
is

transitive on A.

Step 1. We will prove the density of Per(f
∣

∣

A
).

Let (a, b) ⊂ I such that (a, b)∩A 6= ∅. By part ii) of Lemma 3.3, there exist two
closed subintervals, [c, d] and [s, t], and a natural number n1 such that

[c, d] ⊂ Aji
, [s, t] ⊂ ((a, b) ∩ A), and fn1([c, d]) = [s, t].

Since f is sensitive there exist n2 ∈ N such that fn2([s, t]) contains an interval Ajk

for some 1 ≤ k ≤ g. The arrow Ajk
→ Aj1 give us n3 ∈ N such that fn3(Ajk

) ⊃ Aj1 .
Hence [c, d] ⊂ fn([c, d]), where n = n1 +n2 +n3. Thus fn has a fixed point in [c, d],
and therefore f has a periodic point in [c, d]. Since fn1([c, d]) = [s, t] ⊂ ((a, b)∩A),
f |A has a periodic point in (a, b) ∩ A.

Step 2. Let us now prove that f |A is transitive in A.

Let B and C be two open sets in I such that B∩A 6= ∅ and C∩A 6= ∅. By Lemma
3.3, there exist three closed subintervals, U , V and W , and a natural number m1

such that

U ⊂ Aj1 , V ⊂ (B ∩ A), W ⊂ (C ∩ A) and fm1(U) = W.

Due to the sensitivity and following the argument used in step 1, there exists
m2 ∈ N such that Aj1 ⊂ fm2(V ). Thus, taking m = m1 + m2 we have that
W ⊂ fm(V ), and therefore

fm(B ∩ A) ∩ (C ∩ A) 6= ∅. ¤XXX

Proposition 3.5. Take any map in the interval g : I → I, sensitive or not, and
assume B is perfect and a chaotic set for g. Then either B is a Cantor set or B
is a finite union of closed intervals.

Proof. Recall that any nonempty compact perfect totally disconnected metric
space is a Cantor set (see [4]). The set B is already compact and perfect. And it
is a metric space as well.

If every component of B has empty interior, B is totally disconnected. Hence B
is a Cantor set.

Let C be a component of B with nonempty interior. Notice that C is a closed
subinterval of I. Since g|B is chaotic, there exists a periodic point of g in C. Let
us assume that the period of that point is m. Also there exists another point in C,
say y, with a dense orbit in B under g|B . That is to say, B = cl(o(y, g)).

Now consider the following three conditions:
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20 Héctor Méndez-Lango

i) Since gm(C) ∩ C 6= ∅, gm(C) ⊂ C.

ii) It follows that ∪∞

n=0g
n(C) ⊂ C ∪ g(C) ∪ · · · ∪ gm−1(C), and

iii) B = cl(o(y, g)) ⊂ (C ∪ g(C) ∪ · · · ∪ gm−1(C)) ⊂ B.

Thus B = C ∪ g(C) ∪ · · · ∪ gm−1(C). ¤XXX

Returning to f , let us now prove that the set of asymptotically periodic points
and the set of aperiodic points are both dense in I.

Proposition 3.6. Let Γ = {x ∈ I | ω(x, f) has infinite cardinality} and Ψ = I − Γ.
Then the sets Γ and Ψ are both dense in I.

Proof. Let x ∈ I and ε > 0. We take a partition P as above adding the next
condition: ‖ P ‖ is small enough such that there exists Ai = [ti−1, ti] ⊂ (x−ε, x+ε).

Due to these arrows: Ai → Aj and Aj → Aj1 , and to the definition of set A,

A = cl

(

∞
⋃

n=1

fn(Aji
)

)

,

there exists a natural number m such that fm(Ai)∩A has not empty interior. Hence
there exist a ∈ I, |x − a| < ε, and b ∈ I, |x − b| < ε, such that fm(a) ∈ Per(fn|A)
and the orbit of fm(b) ∈ A is dense in A (since f |A is transitive on A). This
implies that the set ω(a, f) has finite cardinality and the set ω(b, f) has infinite
cardinality. ¤XXX

4. Sensotivity and Topological Entropy

There is a very important concept related to complex behavior generated by
mappings: topological entropy (see [9] for definition and main properties).

The entropy of a mapping can be zero, positive or infinite. The dynamics gener-
ated by functions on the interval with zero entropy, ent(f) = 0, have been studied.
In particular it is known (see [6]) that if f |D : D → D is transitive on D, D ⊂ I,
and ent(f) = 0, then either D is a periodic orbit or D is a Cantor set where f |D is
minimal (that is, every point of D has dense orbit in D). Thus, in such a second
case there are no periodic points of f in D. Hence zero entropy implies no chaotic
dynamics on any subset of I. Therefore, by Theorem 3.4, we have: If f is sensitive
on I, then the topological entropy of f is positive or infinite.

Lemma 4.1. Let n ∈ N. Then ent(fn) = n · ent(f).

Lemma 4.2. If there exist two disjoint closed subintervals of I, E and F , such that
E ∪ F ⊂ f(E) ∩ f(F ), then ent(f) ≥ log(2).

From now on, in this section, let us assume f : I → I is sensitive and δ is its
constant of sensitivity. Also, let us have available the results and notation that we
produced in the previous section.
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Lemma 4.3. Let V and W be two subsets of I. If there exist two natural numbers
p and q such that V ∪W ⊂ fp(V ) and V ∪W ⊂ fq(W ), then there exists a natural
number n such that V ∪ W ⊂ fn(V ) ∩ fn(W ).

Proof. Consider the following inclusions:

(V ∪ W ) ⊂ fp(V ) ⊂ fp(V ∪ W ) ⊂ fp(fq(W )) = fp+q(W ),

(V ∪ W ) ⊂ fq(W ) ⊂ fq(V ∪ W ) ⊂ fq(fp(V )) = fq+p(V ).

Taking n = p + q the proof is complete. ¤XXX

Theorem 4.4. The topological entropy of f is positive.

Proof. Let us consider the subintervals Aj1 and Aj3 . We know that the digraph
G has the following arrows: Aj1 → Aj3 and Aj3 → Aj1 . Hence there exist p, q ∈ N

such that Aj1 ⊂ fp(Aj1) and Aj1 ⊂ fq(Aj3). By Lemma 3.1, Aj3 ⊂ fp(Aj1) and
Aj3 ⊂ fq(Aj3) as well.

Aj1 ∪ Aj3 ⊂ fp(Aj1) and Aj1 ∪ Aj3 ⊂ fq(Aj3).

Due to the previous lemma, there exists n ∈ N such that

Aj1 ∪ Aj3 ⊂ fn(Aj1) ∩ fn(Aj3).

Aj1 ∩ Aj3 = ∅, ent(fn) ≥ log(2). Therefore, ent(f) > 0. ¤XXX

5. Some Remarks About Sensitivity

Let us finish this note with two remarks on sensitivity.

1.- Consider the next family of continuous functions defined on I = [0, 1]. We
say f : I → I is of type L if the following two conditions hold:

i) There exist a partition of I, x0 = 0 < x1 < . . . < xp = 1, such that the graph
of f is a polygonal curve with vertices on (0, f(0)), (x1, f(x1)), . . . , (1, f(1)).
That is, f is a piecewise monotone linear function, and

ii) The slope of any straight line segment of that polygonal curve has absolute
value larger than one.

The family L is studied in [5]. For the sake of completness in the sequel we
prove that if f is of type L, then f is sensitive on I.

Notice that if f and g are of type L, then f ◦ g is of type L as well. Thus for
any n ∈ N, fn is of type L provided f is. Let f be of type L. Let m1, . . . ,mp

be the slopes of the straight line segments in the graph of f . We denote by
εp the min{|mi|, 1 ≤ i ≤ p}. Notice that εp > 1.

Lemma 5.1. Let f be of type L. Then εf2 ≥ (εf )2. Furthermore, for any n ≥ 2,
εfn ≥ (εf )n.
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Proof. Let x ∈ I be such that x 6= x1 and f(x) 6= xi, for any i ≤ i ≤ p. By the
Chain Rule we have that

∣

∣(f2)′(x)
∣

∣ = |f ′(f(x))| |f ′(x)| ≥ (εf )2,

hence εf2 ≥ (εf )2.

By the same argument and induction it is immediate that εfn ≥ (εf )n for any
n ∈ N. ¤XXX

Lemma 5.2. Let f be of type L with εf > 2. Let δf be the minimum of the following
distances: xi −xi−1, 1 ≤ i ≤ p. Then for any subinterval J ⊂ I, there exists k ≥ 0
such that the length of fk(J) is larger than δf , l(fk(j)) > δf .

Proof. Assume, on the contrary, that there exists J , subinterval of I, such that
l(fk) ≤ δf for any k. Thus for any k the interval fk(J) has, in its interior, at most
one point xi. The length of the intervals fk(J) satisfy the following inequalities:

l(f(J)) ≥
εf

2
l(j), l

(

f2(J)
)

≥
(εf

2

)2

l(J), . . . , l
(

fk(J)
)

≥
(εf

2

)k

l(J).

Since
εf

2
> 1 we have

(εf

2

)k

→ ∞ as k → ∞. Thus l(fk(J)) → ∞. But, this is

impossible. ¤XXX

Proposition 5.3. If f is of type L, then f is sensitive on I.

Proof. By Lemma 5.2, there exists n such that εfn > 2. Hence, for any interval
J ⊂ I there exists k ∈ N such that the length of (fn)k(J) is larger than δfn =
min{xi − xi−1, 1 ≤ i ≤ p} > 0, where x0, x1, . . . , xp is the partition induced by fn

on I. Thus there exists x and y in J such that |fnk(x) − fnk(y)| > δfn . Taking

δ =
δfn

2
we see that f is sensitive on I with δ as its constant of sensitivity.

In simple words our claim can be stated in this way: Take a pencil, draw a
polygonal curve without leaving the square [0, 1]× [0, 1] ⊂ R

2, moving from left to
right, starting at the point (0, a) and ending at the point (1, b), in such a way that
in any straight line segment the slope is larger than one in absolute value. At the
end you will obtain the graph of a function sensitive on I, chaotic on a nonempty
interior subset of I and with positive entropy. ¤XXX

2.- The next example shows that sensitive dependence to initial conditions does
not imply chaotic dynamics if our dynamical system is defined on the torus. Let
S1 be the circle, S1 = R/Z, and let M be the torus, M = S1 ×S1. Let us consider
f : M → M defined by f(x, y) = (x + y mod (1), y). Notice that two very close
points with same first coordinate but different second one, (x0, y0) and (x0, y1),
eventually will separate under the iterates of f . Thus f is sensitive on M .

Since the eigenvalues of the matrix associated with f ,

(

1 1
0 1

)

, are λ1,2 = 1,

the entropy of f is zero (see [9]). Also, there is not subset in M where f could
be chaotic. The reason is that any invariant closed set A where f is transitive is
a periodic orbit or is a circle, and in such a case, f |A : A → A is an irrational
rotation. Hence, in either case, f |A is not chaotic.
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