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Abstract. We present the essential theoretical basis and prove concrete prac-
tical formulas to compute the image of a point on the terrestrial sphere under
Peirce quincuncial projection. We also develop a numerical method to im-
plement such formulas in a digital computer and illustrate this method with
examples. Then, we briefly discuss the criticism of Pierpont on the correct-
ness of Peirce’s formula for the projection. Finally, we draw some conclusions
regarding the generalization of Peirce’s original idea by means of Schwarz-
Christoffel transformations.
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Proyeccion quincuncial de Peirce

Resumen. Presentamos los fundamentos tedricos esenciales y demostramos
formulas concretas para calcular de manera practica la imagen de un punto
en la esfera terrestre bajo la proyeccion quincuncial de Peirce. Desarrolla-
mos también un método numérico para implementar dicha proyeccion en un
computador digital, el cual ilustramos con ejemplos. Luego discutimos breve-
mente las objeciones de Pierpont sobre la validez de la formula de Peirce. Por
altimo, esbozamos algunas conclusiones sobre la generalizacion de la idea de
Peirce por medio de transformaciones de Schwarz-Christoffel.

Palabras clave: Proyeccion quincuncial de Peirce, funciones elipticas, cartas
geograficas, métodos numéricos, aplicaciones conformes, teselados.

1. Introduction

The word “map” derives from the medieval Latin mappa mundi, meaning napkin or cloth
of the world. Here, a map projection is a smooth transformation of a sphere into a plane.
There are many types of map projections and they are usually constructed to preserve
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some metric properties of parts of the sphere. These properties comprise area, shape, dis-
tance, among others. In 1879, the American scientist, geodesist and philosopher Charles
Sanders Peirce suggested an angle-preserving map projection useful “for meteorological,
magnetological and other purposes”. The map also shows the connection of all parts on
the Earth’s surface. Peirce quincuncial projection presents the sphere as a square and has
been given the name of “quincuncial”. Certainly, the Latin noun quincunz denotes the
pattern of five points on the corresponding face of a die, or on the volume of a Byzantine
Church.

Peirce’s original paper [10] is extremely laconic. Perhaps because of this, some mathe-
maticians tried, years later, to understand and explain his elegant idea. In particular,
Pierpont [11] detected an error in Peirce’s formula and found a correct expression for the
projection. Other remarks were given shortly after by Frischauf [5].

The essential ingredient in Peirce’s construction is a Jacobi elliptic function, i.e., a mero-
morphic complex function of one complex variable with two linearly independent periods.
The theory of elliptic functions can be addressed in several ways. The contemporary app-
roach to the study of these functions is due to Weierstrass and its modern notation shows
indeed advantages in regard to elegance and symmetry. However, the present paper is
concerned with numerical computing and so, for our purposes, it is more convenient to
use the older Jacobian notation. Because of this, our primary reference on elliptic func-
tions are Jacobi’s original work |7] and the modern account by Solanilla [13]. In addition,
we are interested in some specific results due to Richelot [12] and Durége [4].

By the way, the application of elliptic functions to conformal map projections constitutes
an active research field, both in pure an applied mathematics. We refer the reader to
Lee [8] for a more comprehensive (and very agreeable) treatment of these matters.

In Section 2 we define Peirce quincuncial projection and derive formally practical for-
mulas to compute it. In Section 3 we discuss some symmetries arising from the double
periodicity of the elliptic function involved and use them to clarify some mathematical
considerations left over in the previous sections. Section 4 is devoted to the numerical
calculation of the formulas. We briefly describe a way to program a computer in order to
implement the mathematical expressions found before. Initially, we graph circles of lati-
tude and lines of longitude. Then, we present a version of a map of the World. We also
exchange views on the only, and rather enigmatic, formula given by Peirce [10]. Lastly,
we draw some concluding remarks and announce generalized Peirce-like map projections.

2. Representation of the sphere

The quincuncial projection results from the composition of the famous stereographic
projection with the “inverse” of a Jacobi elliptic function.

2.1. Stereographic projection

We model the globe as a sphere S? of unit radius. To each point P in this sphere,
we associate its geographical coordinates § € (0,2w) and [ € (—m/2,7/2), longitude
and latitude, respectively. Instead of [, it is sometimes convenient to use the parameter
p=m/2+1¢€ (0,7). Thus, we consider the function that projects the sphere without the
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Peirce quincuncial projection 25

North Pole N by prolonging the straight line joining N with P until it reaches the plane
containing the equatorial line. By virtue of the Inscribed Angle Theorem, in Figure 1 it
holds ZNSP = (m —p)/2. Let ( = £ +iv € C be the image of the sphere on the plane.

Since ANO¢ ~ ANPS,
T—=p\_. P _
cot( 2 )—tan2—|§|

and the stereographic projection takes the form

= taun‘%7 x exp(i0).

Figure 1. The stereographic projection.

2.2. Cosine of the amplitude

Peirce projection is the composite (0, p) — ¢ — z = x + iy, where z is given implicitly

by
(=cn (z,%) .

The function cn on the right is known as Jacobi cosinus amplitudinis —cosine of the
amplitude— with modulus 1/ V2. Inasmuch as the most remarkable features of the quin-
cuncial projection rely on the geometric properties of this function, it is convenient to
review some basic facts on elliptic functions.

2.3.  Jacobi elliptic functions

Elliptic functions emerged historically from the inverse function of Legendre’s elliptic
integral of the first kind
2 d
F(¢) = / —_—
0 1—k2sin” @

As we only need here k =1/ V2, no further reference will be made to the general modulus
k. The inverse function of F' is called the amplitude am. Jacobi defined elliptic functions
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26 L. SovaniLLa, A. OosTrA & J.P. YANEZ

by composing the amplitude with some well-known functions. In this paper we will only

make use of
. 1,
sinamz = snz, cosamz = cnz and dnz = {/1 — isn z.

The main properties of these functions arise out of their addition formulas. In particular,

cnz cnw — snz snw dnz dnw
en(z +w) = .

1-— %snzz sn2w

We refer the reader to Jacobi [7], or Solanilla [13|, for details concerning the proof of the
identities we might need. In order to properly understand Peirce projection, we need
first the following relation.

Proposition 2.1. Let z = x + iy, cnz = pexp(if), snz = o exp(i)) and dnz = Texp(in).

Then,
2_ 2.2 11,4
cha::p# and cn2y:27222.
1—50 p?+ o2t

Proof. From the complex conjugate z = = — iy, we get 2z = 2z + Z and 2yi = z — Z.
Therefore, the addition formula for cn implies

cnz cnz —snz snz dnz dnz

cn2x =
1— %sn2z sn2z

Similarly, since sn is odd and cn,dn are even,

. cnz cnZ +snz snz dnz dnz
cn2yi =

1 — $sn2z sn?z

Now we use cnz = cnz = pexp(—if)), snz = snz = oexp(—i)\) and dnz = dnz =
Texp(—ip). The second statement follows from the identity cniv = 1/cnv, v € R. 4
2.4. Turning back to the sphere

Now we should relate the coordinates or parameters 0, p with z = z + iy. The following
result brings us closer to the desired relation.

Proposition 2.2. With the notations in Proposition 2.1, if p = tan(p/2), then
ot =1—2tan? g cos 20 + tan? g,

1
= 1 X (1+2tan2§cos20+tan4§>.

Proof. We depart from the Pythagorean identity cn?z + sn?z = 1, i.e.,

0% exp(20i) + o2 exp(2Xi) = 1.
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Peirce quincuncial projection 27

After equating the imaginary parts',

4
psin20 = —o%\/1 — cos2 2\ iff cos?2) =1 — p—4 sin? 26.
o

After equating the real parts,

/ 4
02 cos 2\ = o 17p—451n2 20 =1 — p? cos 26.
o

Therefore 0% — ptsin? 20 = 1 — 2p2 cos 20 + p* cos? 20, that is to say,
ot =1-2p%cos20 4+ p* =1 — 2tan® g cos 20 + tan* g
Correspondingly, the elliptic identity % (cn?z+ 1) = dnz or
1, 1, ‘
4 exp(20i) + 5=T exp(2ui)
yields, by taking the imaginary part,

4
p?sin 20 = 27%/1 — cos? 2 iff cos?2u=1— 4’0—4 sin? 26.
T

So, the real part furnishes

1
272 cos2p = 2724 /1 — fjsinz 20 = 1+ p? cos 26.
T

In consequence, we have 474 — p?sin? 20 = 1 + 2p? cos 20 4 p* cos? 260. In other words,

47t =1 +2tan2200520+tan4 g

Corollary 2.3. With the previous notations,

1 2
o212 = 5 X \/<1 + tan? g) — 4 tan* g cos? 26.

We hereby achieve our primary objective.

Theorem 2.4. Peirce quincuncial projection (6,p) — x + iy is given by

1 2tan® L — /(1 + tan* §)2 — 4tan* & cos? 20
= —F' | arccos
T 55 —5 ,
2 1+ 2tan® £ cos 20 — tan® £

1+ 2tan? £ cos26 — tan®

p
2
4

1
y = —F | arccos
2 2p 4 p)\2 [P
2tan® £ + (l—l—tan 5) — 4tan® L cos® 20

IWithout loss of generality —as it will be clear below—, snz (and so the angle \) lies in the first
quadrant.
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28 L. SorLaNiLLA, A. O0sTRA & J.P. YANEZ

Proof. Putting together the whole argument, Proposition 2.2 implies

tan? = % X \/(1 + tan? §)2 — 4tan4§cos2 260

cosamr = 1— 2(1—2tan? £ cos 20 + tan Z) ’
cosam2y = 1— 3(1—2tan? B cos 20 + tan* ) ‘
tan? B 4+ 1 x \/(1 + tan? §)2 — 4 tan® £ cos? 260
We recall that am™! = F. ]

We observe that the functions in this theorem are real-valued of one real variable. The
function F' is well-known and is already implemented in most standard mathematical
computer programs. A comprehensive explanation on the incomplete integral F' can be
found in Bellachi [2] and Solanilla et al. [14].

3. Symmetries

Once we pick a domain for ¢cn making it into a one-to-one function, the expressions in
Theorem 2.4 are well-defined. Let us see.

3.1. Fundamental parallelogram

By definition, cnz is a meromorphic doubly periodic function. Then, it suffices to study
its behavior in the fundamental parallelogram II, that is, the parallelogram defined by
the origin and the periods —among other choices—. These can be determined with the
help of the so-called complete integral of the first kind

z
K:F(z):/ __de
: 0 ,/1—%sin2<p

Rightly, since Jacobi [7], it is well-known that the periods of our function are 4K and
2K (1 + 1) (as a consequence of the addition formula). The zeros in II are located at
K, 3K; the poles, at K(2+ 1), K(4+1). Figure 2 illustrates the situation.

~ 1.854074677.

___________ 20 2K(3+1)
4

K@) K@iy ’
7
4

e
° o o

o K 3K 4K
Figure 2. Zeros (o) and poles (x) of cnz in II.

Unfortunately, the function cn : IT — C is not yet one-to-one. Nevertheless, the closure
of the fundamental parallelogram can be represented as

= {4Ks+2K(1+i)t: (s,t) € [0,1]*},
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........................... o o
— —
II —_— II
o YRR IR L LD

Figure 3. Involution of II, choices of X.

and the map 4K s+ 2K (1+i)t > 4K (1 — ) +2K(1+1)(1 —t) is an involution of TT which
works as displayed in Figure 3. 2K + K (1 + 1) is the fixed point of this map. In plain
English, I is split into two parts. Moreover, if z € II has image (under the involution)
w € II, then

z+w=4K+2K(1+14) =0,

modulo 4K, 2K (1+4). This fact constitutes one of the most important discoveries of Liou-
ville [9] in his researches on elliptic functions. As cn is even, cn(z) = cn(w). Therefore,
if ¥ denotes one of the the shaded areas in Figure 3, the function cn : ¥ — C becomes
at last one-to-one.

3.2. Fundamental square

Additional underlying symmetries can be exploited to obtain a nicer fundamental region
for cn. In the first place, the translations of triangle A by 2K(1 + ¢) and triangle A’ by
—2K (1 + i) transform the fundamental parallelogram into a square, as it is sketched in
Figure 4. This will be the fundamental square T' of cn. We also notice that the zeros
(o) of the elliptic function are now symmetrically located with respect to the center of
T. The inverse function of c¢n : T'— C produces the above-mentioned representation of

Figure 4. Construction of the fundamental square T'.

52 as a square. The center and vertices of T constitute, for that reason, a quincunz.

On the other hand, the closure of T' can be given by
T={K(s+t+1)+2Ki(s—t+1):(s,t) € [0,2]*}.
The map K(s+t+1)+2Ki(s—t+1) — K(—s—t+2) + 2Ki(—s+1t) is the involution

of T which sends each point to its antipodal point with respect to the center of the
fundamental square. This center is the fixed point of the involution.
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30 L. SoLANILLA, A. O0sTRA & J.P. YANEZ

Now, the image of triangle A (v. Figure 4) under the involution of II is triangle A’ and
vice versa. Then, the images of A, A’ under the cosine of the amplitude coincide in the
complex plane. This implies that the parts {2 where cn is one-to-one in the fundamental
square are the shaded regions in Figure 5.

Figure 5. Involution of T, choices of .

3.3.  Zero, circles of latitude and lines of longitude

When we substitute p = 0 (South Pole S € 52) in these formulas,

1 1 6K

Z= §F(arccos(—1)) = §F(37r) ok 3K,
1 1 1K

Y= §F(arccos(1)) = §F(27r) =5 = 2K.

In this way, we get the zero K(3 + 2i) € T of cn. The other choices of arccos(—1) give
the remaining zeros of the function. The poles demand some extra, but straightforward,
work.

Let p > 0 be a constant. Then, || = p = tan(p/2) is also a constant and the formulas
for x,y provide the following parametric form for the circles or parallels of latitude:

2p% — \/(1 + p%)? — 4pt cos? 20
1+ 2p? cos20 — p*

1
z(0) = §F arccos

1+ 2p? cos 260 — p*
2p2% + \/(1 + p%)? — 4p* cos? 260

1
y(0) = §F arccos

)

0 € [0,27) is the parameter. Similarly, if we fix § and write x = cos20, we obtain the
following for the lines of longitude:

2tan® 2 — 4/ (1 + tan* §)2 —4x?tan* 2

2 T
1+2xtan® § —tan® L

1
z(p) = §F arccos

2 4
1+2xtan® 5 —tan* L

1
y(p) = §F arccos =
2tan’ & 4 \/(1 + tan §)” — 4x2tan* §
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Peirce quincuncial projection 31
The parameter is now p € [0, 7).

3.4. Conformality and magnification

Our version of Peirce projection is the composite function of the stereographic projection
S2 — {N} — R2,(0,p) — ¢, and the restricted inverse elliptic function R? — Q, ¢ — z.
Our choice of © is the right region in Figure 5. We notice the pole (marked by x) in Q
coincides with the image of the missing North Pole. Therefore, after taking care of minor
details concerning a few points in €2 and disregarding the equatorial line, this composite
projection is in general conformal, i.e., angle-preserving. This implies the images of the
circles of latitude and the lines of longitude cut each other, in general, at right angles.

The magnification, wherever it makes sense, can be computed by noticing with Pierpont

[11] that the symmetries involved imply that m(6,p) = |dz/dp|. By virtue of the chain
rule,

dz||d¢
m(eap) - d_c- % )
where
d¢ 1 dz 1 1
—2|l=———and |—|=|———| = —.
dp|  2cos?(p/2) d¢ den/dz loT]

In the last step we have used den(z)/dz = —sn(z)dn(z). This yields, by Corollary 2.3,
1
V2 cos? gf/(l + tan? g)Q — 4 tan* £ cos?20

m(0,p) =

Clearly, m blows up at the North Pole and at the Equator for 6 € {0,7/2,37/2,27}.
In general, along a parallel of latitude, m attains its minimum for 6 =
{m/4,3n/4,5m/4,7r/4} and a maximum for § € {0,7/2,37/2,27}. By the North and
South Pole, the forms are nearly circles. As p tends to zero, that is, when we approach the
Equator, this behavior results in more and more square-like forms with rounded corners.

4. Computer implementation

4.1. An algorithm

The actions we have used to compute the image of the projection are outlined in the
flowchart shown below.

Firstly, the program reads the geographical coordinates 6, [ of a point on the sphere. The
longitude € consists of

= An angle position in degrees or meridian measured from 0° (Greenwich in England)
to 180° and

= An indication of direction, namely E (East) or W (West).

The latitude [ is given by
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32 L. SoLaniLLA, A. OosTRA & J.P. YANEZ

= An angle position in degrees from 0° (Equator) to 90° and

= An indication of direction, namely N (North) or S (South).
With this information, the program determines

= One of the octants marked I,11,---,VIII in Figure 6 and

= A possible shift of the angle of longitude (also denoted by 6) by 90°.

Start

f Read 0, 1

Find octant, maybe 6 < 6 — 90°

¥

s

(o

The arrangement of the geographical coordinates and the octant is shown in Table 1.

Then, there is a decision step. The program chooses and computes the right formula
according to the octant. Let x,y be the formulas in Theorem 2.4. They might need
the shift described in Table 2. Besides field operations and trigonometric functions,
the computation of an elliptic integral of the first kind is required. A command like
InverseJacobiAM(¢, k) in Maple can easily accomplish this task.

Finally, the program writes the image z, y of the spherical point 6,1 on a Cartesian plane.

4.2. A map of the world

As a first example of the application of the algorithm, we portrait in Figure 7 the images
of some circles of latitude and some meridians.

Figure 8 shows our first sketch of the whole world, obtained with the algorithm described
above. In just Europe, we have used more than 120 points.
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Peirce quincuncial projection 33

Figure 6. Octants.

| Latitude | Longitude | Octant [ Shift |
S 0°<60<90° F 1 no
0°<60<90° W 11 no

90° <0 < 180° E 117 0+ 6 —90°
90° < 0 < 180° W v 0+ 6 —90°
N 0°<6<90° FE v no
0°<0<90° W VI no
90° <0 < 180° E VII | 0+ 60-90°
90° <0 <180° W | VIII | 0+ 6—90°

Table 1. Octants and shifts of longitude.

| Octant | x | Y |
I T Y
1T r— K-z |y
I T Y~ —y

v r+— K-z |y —y

A% r+—zc—K |y+<y+ K
VI T —x y+—y+ K
VII z+—zc—K |y —y+K
VIII T —x y+——-y+ K

Table 2. Octants and formulas.
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34 L. SoranILLA, A. O0sTRA & J.P. YANEZ

Figure 7. Images of parallels of latitude and meridians.

Figure 8. The whole world.

4.3. Tessellation

This drawing can be used as the motif —distinctive recurring form— of a tessellation or
tiling of the plane. Actually, the Latin word tessella denotes a small cube of clay, stone
or glass used to make mosaics.

By the way, it is no coincidence that Peirce [10] presented his quincuncial projection in the
tessellated version of Figure 9. We notice that he did not utilize the Greenwich Meridian
as prime meridian of longitude. Instead, he used something like the meridian through
Cape Town, South Africa (approximately 18° E from Greenwich). This resolution could
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Peirce quincuncial projection 35

THE WORLD

0N A QUINCUNCIAL PROJECTION

Figure 9. Tessellated version of Peirce projection.

be related to an interest to avoid points on dry land where the magnification of the
quincuncial map becomes infinite, or maybe it just obeys to purely aesthetic reasons.

This tesselation is a distinctive feature of Peirce quincuncial projection. Unlike other
projections, in order to use this World map for points or routes close to the borders it
suffices to continue on the adjoining copy. At the onset of his paper Peirce remarks that
this projection “shall show the connection of all parts of the surface”.

4.4. Peirce’s formula

Besides some explanatory remarks, Peirce’s paper [10] consists just of the map shown
in Figure 9, one formula and two tables of coordinates. His formula for the quincuncial
projection has the form (6,1) — z,

1 V1 —cos?lcos?f —sinl
x = —F | arccos
2 1+ 1 —cos?lcos?0

where z is “the value of one of the rectangular coordinates of the point in the new
projection”. For him, indeed, there was no need of giving an additional formula for y.
For a given latitude, the longitude angle of y is equal to the complementary longitude
angle of z. In other words, if 0,0, are respectively the longitudes of z,y, we must have
05+0, = 90°. Peirce’s [10] original table gives at once the values of x and y corresponding
to some fixed values of 6 (longitude) and [ (latitude).

Just like us, Peirce uses octants. However, they do not coincide with ours. Anyway,
although his treatment of symmetries is right and time-saving, Pierpont [11] discovered
that “there seems to be an error” in Peirce’s formula for “special values of [ and 6”. For
example, when [ = § = 0, his formula produces

3r()-%
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36 L. SoraNiLLA, A. OosTRA & J.P. YANEZ

By the way, Peirce’s data [10] are normalized in the sense that he sets K/2 = 1. On the
contrary, our formulas yield z = y = (1/2)F(0) = 0, since p = /2.

Peirce’s formula is —in general- not quite right and he certainly knew it. If we look
carefully at his table of “rectangular co6rdinates”, we would notice a couple of rectangular
boxes at the bottom marked by relatively thick lines. He was aware that the data
contained in these boxes were correct, although they had not been obtained by using
his formula. Figure 10 shows one of these boxes. They correspond to latitudes | =
0°,5°,10°,15° and z-longitudes 0,, = 0°,5°,10°, 15°.

20 F, .548 645! .534 .ms} .498
15 'im 568§ .544
| 10 Aem! 872 .sm! .620/| .590
5 '.1751 752, .18 .673].635|
0 ;Jl.ooo1 .s41| 14 18] o9

Figure 10. One of the boxes marked by Peirce.

We must say that, in the rest of the table, Peirce’s formula produces very good results.
In order to detect the inaccuracies, we can sketch, in one octant, parallels of latitude and
meridians according to his normalized formula. Figures 11 and 12 reveal the problems.
Figure 11 displays the parallel of latitude corresponding to p = 0.785 using both Peirce’s
formula and ours (octant I7). Our formula produces the graphic in green, whereas the
red graphic has been obtained by using Peirce’s formula. Our green curve is clearly more
square-like than Peirce’s. Something similar occurs with the meridians. In Figure 12
we have displayed the meridians for § = 0.785 and 6 = 1.4827 (octant 7). As before,
our formula yields the green graphics and Peirce’s the red ones. The difference is clear:
Peirce’s red curves are not completely symmetric about the origin.

0.5

0.4

03

0.2

0.1

0

0 0.1 02 03 04 0.5

Figure 11. Peirce’s parallel of latitude versus ours for p = 0.785.

So far, we have no clue about the procedure employed by Peirce to find his formula. Nor
do we know anything about how he found the correct values inside the rectangles.
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0.8

0.6

04

02

0

0 02 04 0.6 0.8 1

Figure 12. A pair of Peirce’s meridians versus ours.

There are two other projections that are slight variations of Peirce quincuncial projection.
They were subsequently introduced by Guyou [6] and Adams [1].

5.  Concluding remarks

Let P be a simply connected domain in the complex plane enclosed by a closed polygonal
curve I' having vertices wq,...,w, and interior counterclockwise angles a;m,...,a,7.
The Riemann Mapping Theorem guarantees the existence of a conformal injective map
f :H — P of the upper half plane H ={z = 2z +iy € C: y > 0} onto P. It is known
that, if we additionally require that f(oco) = wy,, f can be written in the form

2z n—1
sy =a+d [ [Ic-mtds,
20 k=1
where a,c € C are constants and 2y < 21 < -+ < 2, are real numbers such that

f(zk) =wg, k=1,...,n—1. Conformal maps of this type are called Schwarz-Christoffel
transformations (cf. Bergonio [3]). As it is evident from above, a convenient restriction
of cn™1(z,1/4/2) gives an example of a Schwarz-Christoffel transformation.

Thus, Schwarz-Christoffel transformations provide a glimpse into the real possibility of
generalizing Peirce quincuncial projection.
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